New Anthraquinone and Iridoid from the Fruits of Morinda citrifolia

Kohei Kamiya, ${ }^{a, b}$ Yohei Tanaka, ${ }^{a}$ Hanani Endang, ${ }^{c}$ Mansur Umar, ${ }^{c}$ and Toshiko Satake ${ }^{*, a, b}$
${ }^{a}$ Faculty of Pharmaceutical Sciences, Kobe Gakuin University: ${ }^{b}$ High Technology Research Center, Kobe Gakuin University; Nishi-ku, Kobe 651-2180, Japan: and ${ }^{c}$ Faculty of Mathematics and Natural Sciences, University of Indonesia; Depok-Jawa Barat, Indonesia. Received July 25, 2005; accepted September 6, 2005

Abstract

From the fruits of Morinda citrifolia L., one new anthraquinone, 5,15-O-dimethylmorindol, together with five known anthraquinones and one new iridoid, morindacin, together with two known iridoids, were isolated. Their structures were elucidated by analysis of spectroscopic data.

Key words Morinda citrifolia; Rubiaceae; anthraquinone; iridoid

Morinda citrifolia L. (Rubiaceae), known as "noni", is a small tree that grows widely across Polynesia. The roots, barks, stems, leaves and fruits have been used traditionally as a folk medicine for the treatment of many diseases ${ }^{1)}$ including diabetes, hypertension ${ }^{2)}$ and cancer. ${ }^{3)}$ Furthermore, today "noni juice", which is made from the fruits of this plant, is widely drunk for the purported prevention of lifestyle-related diseases such as diabetes, hypertension, cardiopathy and cerebral apoplexy caused by arteriosclerosis. In our previous study of the bioactive constituents of M. citrifolia fruits for the prevention of arteriosclerosis, six lignans were isolated as active components. ${ }^{4)}$ The rubiaceous plant is well-known for its anthraquinone and iridoid constituents. In earlier studies of anthraquinones from M. citrifolia, morenone-1, morenone-2, nordamnacanthal, morindone, rubiadin, ru-biadin-1-methyl ether and 7-hydroxy-8-methoxy-2-methylanthraquinone were identified in the root. ${ }^{5-7)}$ Additionally, morindone, physcion and physcion- $8-O-\alpha$-L-arabinopyranosyl $(1-3)$-[β-D-galactopyranosyl($1-6$)]- β-d-galactopyranoside were found in its heartwood, ${ }^{8)}$ while 6,8 -dimethoxy-3methylanthraquinone $1-O-\beta$-rhamnopyranosyl(1-4) β-Dglucopyranoside has been isolated from the flower. ${ }^{9)}$ In studies of iridoids from M. citrifolia, asperuloside, ${ }^{10)}$ asperulosidic acid, ${ }^{11)} 6 \alpha$-hydroxyadoxoside, ${ }^{12)} 6 \beta, 7 \beta$-epoxy- 8 -episplendoside, ${ }^{12)}$ borreriagenin, ${ }^{12)}$ citrifolinin $\mathrm{B},{ }^{12)}$ deacetylasperuloside ${ }^{12)}$ and dehydromethoxygaertneroside ${ }^{12)}$ were all isolated from the fruits, while citrifolinin A and citrifolinoside were isolated from the leaves. ${ }^{13,14)}$ The present paper describes the isolation and characterization of one new anthraquinone, 5,15-dimethylmorindol (1), together with five known anthraquinones, alizarin-1-methylether (2), ${ }^{15)}$ anthra-gallol-1,3-dimethylether (3), ${ }^{16)}$ anthragallol-2-methylether (4), ${ }^{17)}$ 6-hydroxy-anthragallol-1,3-dimethylether (5) ${ }^{18)}$ and morindone-5-methylether (6), ${ }^{19}$) and one new iridoid, morindacin (7), together with two known iridoids, asuperlosidic acid $(\mathbf{8})^{20)}$ and deacetylasperulosidic acid (9). ${ }^{20)}$

Compound 1 was obtained as a yellow amorphous powder. The molecular formula of $\mathbf{1}$ was determined by HR-EI-MS to
be $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{6}$. The ${ }^{13} \mathrm{C}$-NMR spectrum indicated 17 carbon signals, including two methoxy carbons ($\delta 58.89,62.36$), one methylene carbon (δ 68.56) and two carbonyl carbons (δ 187.78, 181.91). In the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum, two pairs of ortho-coupled proton signals [one at $\delta 7.78$ and 7.73 (each $1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}$), and the other at $\delta 8.14$ and 7.35 (each 1 H , d, $J=8.5 \mathrm{~Hz}$)] were observed. Furthermore, the presence of two methoxy groups, one methylene group and a hydrogenbonded hydroxy group were suggested from the ${ }^{1} \mathrm{H}$ resonances of $\delta 4.03$ and 3.51 (each 3 H , s), $4.64(2 \mathrm{H}, \mathrm{s})$ and $13.01(1 \mathrm{H}, \mathrm{s})$. The regiochemistry of each functional group was determined by a HMBC experiment (Fig. 2). From the above results, compound $\mathbf{1}$ was characterized as 1,6-dihy-droxy-5-methoxy-2-methoxymethylanthraquinone. This compound was named as $5,15-O$-dimethylmorindol, as it is the 5,15-dimethylether of morindone 15 -alcohol.

Compound 7, a colorless syrup, gave a molecular formula of $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{5}$ by HR-FAB-MS. The IR spectrum of 7 indicated absorption bands due to hydroxyl and lactone functions at $3400 \mathrm{~cm}^{-1}$ and $1743 \mathrm{~cm}^{-1}$, respectively. The ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$ NMR spectra of 7 showed signals assignable to a trisubstituted double bond [$\delta_{\mathrm{H}} 5.84(\mathrm{H}-7), \delta_{\mathrm{C}}$ 125.07, 153.35 (C-7, 8)], three oxygen-bearing methylenes $\left[\delta_{\mathrm{H}} 3.72,3.79(\mathrm{H}-1)\right.$, $\left.\delta_{\mathrm{C}} 60.79(\mathrm{C}-1)\right],\left[\delta_{\mathrm{H}} 4.16,4.22(\mathrm{H}-10), \delta_{\mathrm{C}} 60.54(\mathrm{C}-10)\right]$ and $\left[\delta_{\mathrm{H}} 3.84,3.90(\mathrm{H}-11), \delta_{\mathrm{C}} 62.82(\mathrm{C}-11)\right]$ and one oxygenbearing methine $\left[\delta_{\mathrm{H}} 5.40(\mathrm{H}-6), \delta_{\mathrm{C}} 88.27\right.$ (C-6)]. The connectivities of the quaternary carbons (C-3, C-8) were deduced by a HMBC experiment (Fig. 3). In the HMBC spectrum, one quaternary carbon signal at $\delta 180.93$ (C-3) was correlated with methine signals at $\delta 2.96(\mathrm{H}-4)$ and $3.33(\mathrm{H}-$ 5), and the other quaternary carbon signal at $\delta 153.35$ (C-8) was correlated with methylene signals at $\delta 3.72,3.79$ (H-1) and 4.16, $4.22(\mathrm{H}-10)$. Acetylation of 7 with acetic anhydride in pyridine yielded the triacetate (7a), suggesting that 7 possessed three hydroxyl groups. From the above evidence and with the aid of ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ COSY spectra, the planar structure was established. Furthermore, the relative stereostructure of 7 was characterized on the basis of a NOESY

Fig. 1. Anthraquinones and Iridoids from the Fruits of M. citrifolia

Fig. 2. HMBC (Arrows) Correlations of $\mathbf{1}$

Fig. 3. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY (Bold Lines) and HMBC (Arrows) Correlations of 7

Fig. 4. NOESY (Arrows) Correlations of 7
experiment (Fig. 4): i.e., the proton signal at $\delta 3.33$ (H-5) showed a NOESY correlation with proton signals at $\delta 2.96$ (H-4), $5.40(\mathrm{H}-6)$ and $3.10(\mathrm{H}-9)$, indicating that the stereochemical relationship of a hydroxymethyl group at C-4 and the hydroxy group at C-6 was syn. Therefore, the structure of 7 was determined to be 1,4-bis(hydroxymethyl)-3-hydroxy$3,4,6,7,3 \mathrm{a}, 7 \mathrm{a}$-hexahydro-6-oxainden-5-one (IUPAC nomenclature). This is the first report of this compound from a natural source, and it has been named morindacin.

Experimental

General Procedures and Plant Material General experimental procedures and plant material have been described in an earlier publication. ${ }^{4)}$

Extraction and Isolation The extraction and partition processes have been published earlier. ${ }^{4)}$ The methanol extract $(89 \mathrm{~g})$ of M. citrifolia fruits was dissolved in a $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ mixture $(1: 3,11)$ and sequentially partitioned with CHCl_{3}, EtOAc and $n-\mathrm{BuOH}$ (each 11×3 times). The CHCl_{3} soluble phase (44 g) was chromatographed on Sephadex LH-20 using $\mathrm{CHCl}_{3}-\mathrm{MeOH}(1: 1)$ to give an anthraquinone-containing fraction. This fraction was subjected repeatedly to SiO_{2} column chromatography using a hexane-EtOAc solvent system to afford compounds $\mathbf{1}(18.2 \mathrm{mg}), \mathbf{2}(6.0 \mathrm{mg})$, $3(8.3 \mathrm{mg}), \mathbf{4}(8.0 \mathrm{mg}), \mathbf{5}(1.5 \mathrm{mg})$ and $\mathbf{6}(6.3 \mathrm{mg})$. The $n-\mathrm{BuOH}$ soluble phase $(9.7 \mathrm{~g})$ was chromatographed on Sephadex LH-20 using MeOH to give an iridoid-containing fraction. This fraction was subjected repeatedly to Rp-18 column chromatography using $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(1: 4)$, and to SiO_{2} column chromatography using $\mathrm{CHCl}_{3}-\mathrm{MeOH}(4: 1)$ to afford compounds 7 $(29.2 \mathrm{mg}), 8(36.9 \mathrm{mg})$ and $9(119.3 \mathrm{mg})$.
5,15-Dimethylmorindol (1): Yellow amorphous powder; HR-EI-MS: m/z $[\mathrm{M}]^{+} 314.0797$ (Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{6}: 314.0790$); IR $v_{\max }^{\mathrm{KBr}} \mathrm{cm}^{-1}: 3400,1668$, $1632,1566,1508,1429,1362,1279,1258,1117,961$; UV $\lambda_{\max }^{\text {MeOH }} \mathrm{nm}$ $(\log \varepsilon): 412$ (3.86), 267 (4.25), 224 (4.45), 203 (4.17); ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz})$: see Table 1.

Morindacin (7): Colorless syrup; $[\alpha]_{\mathrm{D}}^{26}+2.0^{\circ}(c=0.2, \mathrm{MeOH})$; HR-FABMS: $[\mathrm{M}+\mathrm{H}]^{+} m / z 215.05091$ (Calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}_{5}: 215.0919$); IR $v_{\max }^{\mathrm{KBr}}$ $\mathrm{cm}^{-1}: 3400,1743,1635,1386,1190,1051 ;{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}-$ NMR (100 MHz): see Table 2.

Table 1. The ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectral Data for $\mathbf{1}$ in CDCl_{3}

No.	${ }^{13} \mathrm{C}$	${ }^{1} \mathrm{H}$
1	159.48	
2	133.94	$7.73(\mathrm{~d}, 7.8)$
3	134.46	$7.78(\mathrm{~d}, 7.8)$
4	118.98	
5	146.89	$7.35(\mathrm{~d}, 8.5)$
6	156.07	$8.14(\mathrm{~d}, 8.5)$
7	120.09	
8	125.57	
9	187.78	
10	181.91	
11	125.81	
12	126.96	$4.64(\mathrm{~s})$
13	114.89	$4.03(\mathrm{~s})$
14	133.27	$3.51(\mathrm{~s})$
15	68.56	
$5-\mathrm{OMe}$	52.36	
$15-\mathrm{OMe}$		

Coupling patterns and coupling constants (J) in Hz are given in parentheses.

Table 2. The ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectral Data for 7 in $\mathrm{CD}_{3} \mathrm{OD}$

No.	${ }^{13} \mathrm{C}$	${ }^{1} \mathrm{H}$
1	60.79	$3.79(\mathrm{dd}, 11.4,4.5)$
3	180.93	$3.72(\mathrm{dd}, 11.4,6.7)$
4	45.89	$2.96(\mathrm{ddd}, 6.0,4.7,3.7)$
5	43.97	$3.33(\mathrm{dt}, 7.7,6.0)$
6	88.27	$5.40(\mathrm{brd}, 7.7)$
7	125.07	$5.84($ quint-like $)$
8	153.35	$3.10(\mathrm{~m})$
9	49.99	$4.22(\mathrm{ddd}, 15.0,2.4,1.2)$
10	60.54	$4.16(\mathrm{ddd}, 15.0,2.8,1.7)$
		$3.90(\mathrm{dd}, 10.8,4.7)$
11	62.82	$3.84(\mathrm{dd}, 10.8,3.7)$

Coupling patterns and coupling constants (J) in Hz are given in parentheses.

Acetylation of 7 Compound $7(2.0 \mathrm{mg})$ was acetylated with $\mathrm{Ac}_{2} \mathrm{O}$-pyridine, and the product was purified by column chromatography on SiO_{2} using hexane-EtOAc $(5: 1)$ to yield triacetate $7 \mathbf{a}(1.1 \mathrm{mg})$. $7 \mathbf{a}$: Colorless amorphous powder; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta: 5.95(1 \mathrm{H}, \mathrm{d}, J=1.9 \mathrm{~Hz}, \mathrm{H}-$ 7), $5.42(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6), 4.72(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-10), 4.42(1 \mathrm{H}, \mathrm{dd}, J=11.9,4.9 \mathrm{~Hz}, \mathrm{H}-$ 1a), $4.40(1 \mathrm{H}, \mathrm{dd}, J=11.1,4.0 \mathrm{~Hz}, \mathrm{H}-11 \mathrm{a}), 4.32(1 \mathrm{H}, \mathrm{dd}, J=11.1,4.3 \mathrm{~Hz}, \mathrm{H}-$ $11 \mathrm{~b}), 4.21$ ($1 \mathrm{H}, \mathrm{dd}, J=11.9,3.4 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{~b}), 3.27(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5,9), 3.03(1 \mathrm{H}$, m, H-4), 2.08, 2.07, 1.98 (each 3H, s, COCH_{3}).

Acknowledgment We are grateful to Dr. K. Hori, Akita Research Institute of Food and Brewing, for measurements of the high-resolution mass spectrum.

References

1) Wang M. Y., West B. J., Jensen C. J., Nowicki D., Chen S., Palu A., Anderson G., Acta Pharmacol. Sin., 23, 1127-1141 (2002).
2) Youngken H. W., Jenkis H. J., Butler C. L., J. Am. Pharm. Assoc., 40, 271-273 (1960).
3) Hirazumi A., Furusawa E., Chou S. C., Hokama Y., Proc. West Pharmacol. Soc., 39, 25-27 (1996).
4) Kamiya K., Tanaka Y., Endang H., Umar M., Satake T., J. Agric. Food Chem., 52, 5843-5848 (2004).
5) Jain R. K., Srivastava S. D., Proc. Nat. Acad. Sci. India, 62A, 11-13 (1992).
6) Bowie J. H., Cooke R. G., Aust. J. Chem., 15, 332-335 (1962).
7) Rusia K., Srivastava S. K., Curr. Sci., 58, 249 (1989).
8) Srivastava M., Singh J., Int. J. Pharmacog., 31, 182-184 (1993).
9) Tiwari R. D., Singh J., J. Indian Chem. Soc., LIV, 429-430 (1977).
10) Levand O., Larson H., Planta Med., 36, 186-187 (1979).
11) Liu G., Bode A., Ma W. Y., Sang S., Ho C. T., Dong Z., Cancer Res., 61, 5749-5756 (2001).
12) Su B. N., Pawlus A. D., Jung H. A., Keller W. J., MaLaughlin J. L., Kinghorn A. D., J. Nat. Prod., 68, 592-595 (2005).
13) Sang S., He K., Liu G., Zhu N., Wang M., Jhoo J. W., Zheng Q., Dong Z., Ghai G., Rosen R. T., Ho C. T., Tetrahedron Lett., 42, 1823-1825 (2001).
14) Sang S., He K., Liu G., Zhu N., Cheng X., Wang M., Zheng Q., Dong Z., Ghai G., Rosen R. T., Ho C. T., Organic Lett., 3, 1307-1309 (2001).
15) Lajis J. N. H., Abdullah M. A., Ismail N. H., Ali A. M., Marziah M., Ariff A. B., Kitajima M., Takayama H., Aimi N., Natural Product Sciences, 6, 40-43 (2000).
16) Banthorpe D. V., White J. J., Phytochemistry, 38, 107-111 (1995).
17) Simoneau B., Brassard P., Tetrahedron, 42, 3767-3774 (1986).
18) Halim A. F., El-Fattah H. A., El-Gamal A. A., Thomson R. H., Phytochemistry, 31, 355-356 (1992).
19) Cameron D. W., Coller D. R., Aust. J. Chem., 52, 941 - 948 (1999).
20) Kamiya K., Fujita Y., Saiki Y., Endang H., Umar M., Satake T., Heterocycles, 56, 537-544 (2002).
