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Integrating accurate air quality modeling with decision making is
hampered by complex atmospheric physics and chemistry and its
coupling with atmospheric transport. Existing approaches to model the
physics and chemistry accurately lead to significant computational
burdens in computing the response of atmospheric concentrations to
changes in emissions profiles. By integrating a reduced form of a fully
coupled atmospheric model within a unit commitment optimization
model, we allow, for the first time to our knowledge, a fully dynamical
approach toward electricity planning that accurately and rapidly
minimizes both cost and health impacts. The reduced-form model
captures the response of spatially resolved air pollutant concentrations
to changes in electricity-generating plant emissions on an hourly basis
with accuracy comparable to a comprehensive air quality model. The
integratedmodel allows for the inclusion of human health impacts into
cost-based decisions for power plant operation. We use the new capa-
bility in a case study of the state of Georgia over the years of 2004–
2011, and show that a shift in utilization among existing power plants
during selected hourly periods could have provided a health cost sav-
ings of $175.9million dollars for an additional electricity generation cost
of $83.6 million in 2007 US dollars (USD2007). The case study illustrates
how air pollutant health impacts can be cost-effectively minimized by
intelligently modulating power plant operations over multihour pe-
riods, without implementing additional emissions control technologies.
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In 2013, coal was used to produce 39% of the electricity in the
United States (1), the largest portion of generation from any

fuel type. During combustion, electricity generation from fossil fuels,
such as coal, produces large quantities of primary gaseous pollutants,
such as sulfur dioxide (SO2) and nitrogen oxide (NOX), which are
major contributors to air pollution. These gaseous emissions interact
with the atmosphere downwind of source emissions, forming several
secondary air pollutants, including sulfate-based fine particulates less
than 2.5 μm in aerodynamic diameter (PM2.5) and ozone (O3).
Sulfate-based PM2.5 comprises an estimated average of 24% of the
ambient PM2.5 in the United States (2), and can be controlled, in
part, by a reduction in SO2 emissions. Increased PM2.5 concentra-
tions cause increased mortality and asthma rates, as well as nonfatal
heart attacks, emergency room visits, and hospital visits (3).
Previous studies have integrated air pollution impacts into

energy system models, but these studies lacked heterogeneous
hourly and seasonal temporal pollutant formation. Muller et al.
(4, 5) developed the Air Pollution Emission Experiments and
Policy (APEEP) analysis model that links air emissions data to
monetary and nonmonetary damages with county-scale spatial
resolution. Siler-Evans et al. (6) evaluated the social benefits of
wind and solar power by using Environmental Protection Agency
(EPA) emissions data and the APEEP model. They examined

changes in damages due to changes in generation within several
US subregions, using annually averaged impacts from the APEEP
model (6). Cropper et al. (7) estimated health damages from coal
electricity generation in India by combining data on power plant
emissions with reduced-form intake fraction models and concen-
tration-response functions for fine particles from a study by Pope
et al. (3) to estimate premature cardiopulmonary deaths associated
with air emissions. Caiazzo et al. (8) have used the Community
Multiscale Air Quality (CMAQ) model (9) to assess the health
impacts of major emissions sectors in the United States. These
studies have all made important contributions to the quantitative
understanding of the health impacts of air pollution from electricity,
transportation, and industrial systems. All, however, use simplified
air quality models that assume changes in emissions have homo-
geneous temporal impacts on pollutant concentration formation
(hourly and seasonally) and/or have limited spatial resolution. Due
to these simplifications, the models have limited potential for anal-
ysis when emissions change at an hourly level.
We introduce the Air Pollutant Optimization Model (APOM)

using a new reduced-form model capability via the CMAQ
decoupled direct method in three dimensions (DDM-3D) (10).
The reduced-form model provides accurate and fast predictions of
air pollutant formation at a subcounty spatial resolution via a
12-km × 12-km grid, and also provides accurate modeling of
heterogeneous temporal formation of air pollutants (SI Appendix).

Significance

The production of electricity from coal, natural gas, petroleum, and
biomass releases air pollutants with significant impacts on ecosys-
tems and human health. Pollutant exposure depends not only on
the pollutant source emissions rate and the relative location of the
power plant to population centers but also on temperature, wind
velocity, and other atmospheric conditions, all of which vary by
hour, day, and season. We have developed a method to evaluate
fluctuating pollutant formation from source emissions, which we
integrate within an electricity production model. In a case study of
the state of Georgia from 2004 to 2011, we show how to reduce air
pollutants and health impacts by shifting production among plants
during a select number of hourly periods.
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Air pollutant emission-concentration sensitivities provided by the
CMAQ DDM-3D reduced-form model illustrate heterogeneous
hourly and seasonal temporal impacts. In addition, because the
reduced-form model is derived from the CMAQ model, it pro-
vides considerable improvements in linearized estimation of pol-
lutant emission-concentration sensitivities over previous methods
(10, 11). The importance of the linearized model is its computa-
tional efficiency and capability for integration with electricity gen-
eration commitment and dispatch decision modeling.
In our modeling, we prescribe hourly changes in electricity gen-

eration for specific power plants that reduce concentrations of
PM2.5 downwind of power plants. We use a “bottom-up” approach,
which models individual power plant operation on an hourly level,
using a state-of-the-art reduced-form atmospheric model directly to
predict changes in hourly pollutant concentrations due to changes in
emissions from each power plant. We model power plant opera-
tions using an electricity generation unit commitment optimization
model, with an objective function that includes monetized health
impacts. These impacts are estimated via linearized changes
in pollutant concentrations from a base case scenario using a
$7.61 million 2007 US dollar (USD2007) value of statistical life (VSL;
SI Appendix) and estimated decreases in all-cause mortality rates due
to decreases in pollutant concentration from a study by Pope et al.
(3). The first model prescribes optimized operational decisions that
minimize production costs, and the second comparison model
prescribes decisions with an objective that minimizes both pro-
duction costs and monetized health impacts. Both of these models
are run using identical inputs to provide a comparison between
minimizing production costs and minimizing the sum of production
costs and monetized health impacts.

Operational decisions from the model that includes monetized
health impacts can trade-off the increased cost of lower emission
alternative-fuel generation, such as natural gas, with the monetized
health benefits due to avoided deaths from reduced pollutant con-
centrations. These reduced pollutant concentrations are primarily
due to lower utilization of coal-fueled power plants. Our modeling
framework can inform local, state, and national level policy makers
of estimates of health consequences on surrounding communities
from each power plant, as well as provide actionable ways to reduce
pollutant concentrations when pollutant control technology may not
be available or installed on SO2-emitting coal- or oil-fired plants.
As a case study of our approach, we examine Georgia during two

air quality seasons with different electricity generation load patterns
(12) and weather scenarios. Specifically, we examine the months of
July and January over a retrospective set of years, 2004–2011. The
winter air quality season, represented by January 2007, involves
electricity-generated heating; the summer air quality season, rep-
resented by July 2007, involves extensive use of air conditioning.
The CMAQ is run for these 2 mo, with reduced-form model output
then applied to January and July of 2004–2011, adjusting for
monthly and yearly differences in electricity demand, population
growth, plant emissions rates, fuel costs, and plant heat rates.

Results
We model four of the largest SO2-emitting electricity generation
facilities in Georgia as emissions point sources (shown in Fig. 1A)
and the remaining plants as emissions group sources, grouped
by north and south Georgia (shown in Fig. 1B). Fig. 2 shows
Plant Bowen as an illustration of health impacts from a repre-
sentative SO2-emitting coal plant near a large populated area,
for each hour of January 2007 and July 2007, respectively. Fig.
2 illustrates the temporal dependence of hourly health costs
($/MWh) from sulfate-based PM2.5 formation due to SO2 emis-
sions. These health impacts reflect heterogeneity in the formation
of sulfate-based PM2.5 due to SO2 emissions in summer vs. winter
seasons in Georgia, as well as heterogeneous hour-to-hour PM2.5
formation in daytime vs. nighttime hours. The seasonal and daytime
differences in the formation of PM2.5 from SO2 emissions in
Georgia are due, in part, to increased photochemical activity during
summer months and during daylight hours (13). Fig. 2 shows the
average impact across the month in green for Plant Bowen, illus-
trating when health impacts may be under- or overestimated when
not accounting for hourly changes in pollutant formation. Although
we focus on PM impacts, the method also captures impacts on O3,
but the potential health benefits were found to be dominated by
reducing PM. Using a formal sensitivity approach captures the
potential for “nitrate replacement” (i.e., nitrate increasing when
sulfate is reduced). However, this effect in the southeastern (SE)
United States is rather small, owing to the relative insensitivity of
acidity to sulfate reductions for the region (14).
Fig. 3 shows how inclusion of monetized health impacts changes

the least cost operation of the electricity generation system in
Georgia. In July 2004, natural gas would have been substituted for

McIntoshDublin Mill

Hammond
Bowen

McDonough

Scherer

Wansley/Yates

A B

Fig. 1. Point and group emissions sources used in the case study, with coal plants
shown in black and labeled by name. (A) Location of three point source emitting
coal plants and one point source representing a set of coal and natural gas plants
(Wansley/Yates). (B) Locations of north and south Georgia group source emissions
categories, separated by a dashed line (more information regarding choice of the
north and south Georgia split is provided in SI Appendix). Biomass plants are
green, oil plants are brown, and natural gas plants are orange.

Fig. 2. January 2007 (Left) and July 2007 (Right) median health impacts from secondary PM2.5 formation, per unit of generation by hour of day for Plant
Bowen. The 10th to 90th percentile values and minimum (Min) and maximum (Max) values for each day are indicated via the shaded region and plus signs,
respectively. The green line indicates the average health impact for the month averaged across all hours in the month. In January, Georgia operates on
Eastern Standard Time (EST); in July, Georgia operates on Eastern Daylight Time (EDT).
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coal on 20 of 31 d. With peak generation of ∼23 GW in July (12),
the shifts represent a roughly 25% change in generation on July 5,
2004. Additionally, 12 of 31 d had a shift in generation greater
than 10%. In 2004–2009, the coal plant reductions are primarily
from Plant Bowen near Atlanta and the coal-fired units at
Wansley/Yates and Plant Hammond in north Georgia; the natural
gas increases are primarily from the Plant McIntosh Combined
Cycle facility near Savannah, Georgia, and the gas-fired units at
Wansley and other natural gas plants throughout the state. Close
inspection shows that health impact considerations in 2004 also
result in some oil plants displacing coal; the oil is primarily from
Plant McManus in Brunswick, Georgia. Decisions during January
months are mostly unaffected by health impact costs, in part, due
to decreased formation of sulfate-based PM2.5 from SO2 emissions
from lower photochemical activity in winter months (13). Addi-
tionally, there is lower total and peak electricity demand vs. sum-
mer months, with a peak generation of ∼21 GW (12).
Table 1 illustrates $175.9 million USD2007 total avoided health

impacts over the years 2004–2011 for July (health impacts over the
years 2004–2011 for January are illustrated in SI Appendix, Table
S2) with the operating scenario including monetized health im-
pacts vs. the operating scenario not including health impacts. The
avoided health impacts from 2004 to 2011 represent a 27.4%
decrease of reducible health impacts from the operating scenario
that optimizes production costs without health impact costs. The
avoided health impacts require an $83.6 million USD2007 increase
in production costs for 2004–2011, primarily due to the increased
use of more costly natural gas. We also compared the model in-
cluding temporally resolved pollutant formation with an alternative
baseline model that includes average pollutant formation for each
plant for the month modeled. The model using an average pol-
lutant formation and health impact for each plant has health

savings of roughly $62 million USD2007. When including temporally
resolved pollutant formation, there is an additional estimated
savings of roughly $114 million USD2007 in health impacts. Further,
Fig. 2 illustrates the average hourly health impact for Plant Bowen
and how temporally resolved health impacts, leveraged within
the APOM, are heterogeneous compared with the average impact.
In the later years of our study (2009–2011), some of the largest

coal-fired plants in Georgia, Bowen, Wansley, and Hammond, have
dramatically decreased SO2 emissions per MWh due to the in-
stallation of flue gas desulfurization (FGD) units. For example,
FGD units at Plant Bowen decreased roughly 97% of SO2 emis-
sions per MWh of generation (12) (SI Appendix). Fig. 3 shows fuel
use changes in July 2004, a representative summer month at the
beginning of our time horizon (fuel use changes for July 2005–2011
are shown in SI Appendix, Figs. S4 and S5), and there is similar fuel
use change every year during certain days of the month, such as July
6. However, there is less change in fuel use in July 2011 vs. July
2004 due to the decrease in emissions rates at several coal plants in
2011 and the lower price of natural gas in 2011 vs. 2004 (SI Ap-
pendix, Table S11). Fig. 4 illustrates the unit commitment optimi-
zation model average dispatched load for coal and natural gas
across each hour of July 2007 for both the scenario including health
impacts and the scenario not including health impacts.
In addition to aggregated monetized health impacts, we ex-

amine each plant in Georgia via disaggregated spatially resolved
changes in health impacts. The two operating scenarios can be
compared with each other and with historically observed emis-
sions (12). As an example of such a comparison, we show spatial
impacts for Plant Bowen for the month of July 2007. Plant
Bowen, located in northwest Georgia (Fig. 1A), is a bituminous
coal plant northwest of Atlanta illustrated in Fig. 5 by a red
annulus. Plant Bowen had substantial SO2 pollutant emissions
due to large production and the use of bituminous, high-sulfur
coal. The plots shown in Fig. 5 illustrate health impacts from the
operating scenario minimizing the cost of production (Left) and
the scenario minimizing the cost of production and health im-
pacts (Right). Fig. 5 (Right) represents a 30% reduction in the
utilization of Plant Bowen in July 2007. Fig. 5 illustrates differ-
ences in monetized health impacts per person for the month of
July 2007 from operating the plants to minimize both operating
costs and health impacts.
Compared with historically observed emissions, and with the

model minimizing production cost, the model that minimizes
production costs and monetized health impacts has a large
positive effect on health impacts through altered operation of
certain power plants, such as Plant Bowen. The plot shown in
Fig. 6 illustrates the hourly dependence of monetized health
impacts for Plant Bowen, which averages roughly $17/MWh of
electricity generation in July. This $17/MWh of monetized health im-
pacts at Plant Bowen can be compared with plants in southern
Georgia, which average less than $10/MWh in monetized health
impacts in July. The difference in health costs is due, in part, to
the transport and transformation of SO2 into sulfate-based PM2.5
near large population areas downwind of Plant Bowen (Fig. 5).
As a reflection of these high-health-impact costs in July 2007, as

MW
July 2004CoalGas Oil

Jul 1 Jul 6 Jul 11 Jul 16 Jul 21 Jul 26 Jul 31

-5,000

0

5,000

Fig. 3. July 2004 hourly difference in fuel use in the scenario minimizing both production cost and monetized health impacts and the scenario minimizing
production cost. Positive values indicate more of that fuel being used in the scenario including health impacts. A value of 0 indicates no change during that
hourly period between the two scenarios. Note that nuclear, hydro, and biomass do not change between the two scenarios, so they are not shown.

Table 1. July monetized difference in health impacts (health
costs) in millions USD2007, increased production costs in millions
USD2007, and avoided deaths when minimizing the sum of
production costs and monetized health impacts vs. minimizing
production costs

Year
Health cost
decrease

Production cost
increase

Estimated
avoided deaths

2004 $25.9 (24.7%) $14.01 (4.5%) 3.4
2005 $11.5 (10.6%) $5.58 (1.3%) 1.5
2006 $36.4 (30.0%) $21.10 (4.7%) 4.8
2007 $39.4 (32.5%) $24.93 (5.8%) 5.2
2008 $24.5 (21.4%) $14.21 (3.0%) 3.2
2009 $5.5 (32.5%) $0.56 (0.1%) 0.7
2010 $23.4 (66.0%) $2.10 (0.4%) 3.1
2011 $9.2 (47.9%) $1.08 (0.2%) 1.2
Total $175.9 (27.4%) $83.57 (2.4%) 23.1

Percentage of health impact decrease and percentage of production cost
increase are given in parentheses.
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shown in Fig. 6, the APOM optimization model avoids genera-
tion at Plant Bowen during high-health-impact hours or days in
years with similar low coal prices relative to natural gas, such as
2004–2008 (SI Appendix, Table S11), and substitutes generation
at Plant Branch and Kraft (plants with marginally lower emis-
sions rates, which are located further away from populated areas)
and natural gas power in locations such as the Plant McIntosh
Combined Cycle Facility (south Georgia), the Effingham County
Power Plant (south Georgia), the Wansley Combined Cycle Plant
(mid-Georgia), and the KGen Murray Combined Cycle Plant
(north Georgia) (fuel use changes are shown in Fig. 3).
The APOM decreases Plant Bowen use by 100% during hours

with large health impacts (Fig. 6), decreasing PM2.5 concentrations
during several days of July 2007. In the years 2009 and 2011, natural
gas generation decreased in cost per MWh relative to coal (SI
Appendix, Table S11), reducing the possible health impact savings
available through the reduced use of coal. After Plant Bowen fully
implemented emission control technology, the APOM does not
change production levels in 2011 at Plant Bowen due to the sig-
nificantly lower estimated health impact costs.

Discussion
Recent developments in air pollutant modeling have created in-
creased capability for policy analysis via more accurate and com-
putationally cheaper reduced-form modeling. These reduced-form
models, such as the CMAQ DDM-3D, provide a necessary solu-
tion to the computational burden of running and rerunning the
full atmospheric model. The CMAQ DDM-3D reduced-form
model sensitivities are generated for each point source for a
given emissions scenario and a single time, and they can then be
used and reused within integrated models, such as the unit
commitment optimization model illustrated in our case study.
The integration can create innovative air pollutant policy rec-
ommendations previously not possible due to the complexity and
computational issues involved in modeling a large number of
emissions scenarios.
The utilization of the CMAQ DDM-3D, as presented here, is

what makes our approach possible. The accurate, yet rapid re-
sponse function of pollutant formation with respect to emissions
sources with unprecedented temporal resolution allows for ex-
ploration and use of heterogeneous emissions impacts on pol-
lutant formation due to hourly and seasonal differences in
weather, wind patterns, and atmospheric chemistry. Operational
recommendations differ when taking these hourly impacts into
account. Emissions in a given hour vs. an earlier hour or later
hour may have very different health impacts due to differences in
formation and transport of pollutants to populated areas. In
particular, nighttime health impacts from emissions vs. daytime
health impacts from emissions may alter valuation of generation
technologies that run more during daytime (solar) or nighttime
(wind) hours (6). In addition, there are seasonal differences that

affect air pollutant formation, such as the number and intensity of
daylight hours (13). Using an annual or monthly average of
monetized health impacts may overvalue or undervalue emissions
reductions in peak seasonal periods, such as winter and summer,
respectively, or miss hourly changes in pollutant formation.
Using the APOM for a case study of Georgia over an 8-y

period, $175.8 million USD2007 in monetized avoided mortality is
obtainable in the retrospective scenario at a cost of $83.6 million
USD2007 in increased production costs. These health impacts
gains via decreases in PM2.5 concentration are primarily during
hours in which formation of PM2.5 from SO2 emissions occurs
more readily. Due to the temporally dependent pollutant for-
mation from SO2 emissions, we illustrate the groundbreaking use
of a temporally resolved reduced-form air pollutant model.
Reduced-form model capabilities have increased substantially

over the preceding decade (15), and will continue to improve as new
research explores ways of estimating pollutant concentration spe-
ciation and changes due to emissions more accurately. Research in
reduced-form models generated online from fully coupled atmo-
spheric models (e.g., CMAQ DDM-3D) will advance the modeling
framework presented, providing flexible and accurate pollutant for-
mation at an increased resolution in time (subhour intervals) and
space (sub–12-km grid). Using the DDM-3D to forecast source-
specific impacts [e.g., electricity generating unit (EGU), traffic] days
in advance is also practical (16), providing operators with needed
information in time to plan with existing tools.
Although any change in air pollution policy and implementa-

tion is challenging, this approach provides the potential to meet
human health and electricity dispatch objectives more cost-
effectively. Suppose pollution prices are instituted to incorporate
temporal and spatial impacts explicitly. Our results suggest that a
price schedule that reflects spatial, temporal, and seasonal var-
iations increases welfare by not only reducing pollution levels but
also by redistributing emissions across space and time. Firms can
respond to these types of policies by generating in areas with less
potential for high health externalities and shifting their production
to periods of time when pollution prices are low. This approach will
require firms to incur costs, but these shifts in location and times
have net societal benefits and should be encouraged.
Our approach can be paradigm-shifting, but it will introduce

practical challenges associated with the implementation of spatial
temporally resolved policies. First, any such policy needs to adapt to
changes in the location and time of polluting activities, as well as
secular trends in the economy and technology. This challenge could
be addressed by allowing the policy to be reevaluated every 5 to 10 y.
Second, the implementation of these policies in the dispatch and
operation of the system will require a more efficient decision-making
process. A price schedule associated with each unit of production

Fig. 4. July 2007 average dispatched load by hour of the day for coal and
natural gas plants. The scenario including health impacts is shown by solid
lines, and the scenario excluding health impacts is shown by dashed lines.

Total Health Impacts Due to PM    From Plant Bowen ($ / Month / Person)

0 5 10 15 20+
2.5

Fig. 5. July 2007 total monetized health impact estimates, per person, from
Plant Bowen (shown in red), due to secondary formation of PM2.5 from SO2

emissions. The health impacts due to emissions health impacts when mini-
mizing production cost (Left) and the health impacts when minimizing both
production and health impact cost (Right) are shown.
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that is updated with the same periodicity suggested above is a simple
way to incorporate spatially and temporally resolved regulation in the
operation of the system. According to our model results, the welfare
gains of this policy are substantial and could justify the costs of in-
creased regulation, especially if one considers possible co-benefits to
ecosystems and other pollution receptors.
We demonstrate the potential of integrating reduced-form air

pollutant modeling with a decision model through electricity
generation unit commitment and dispatch for the state of
Georgia. Our method illustrates how health impacts could be
significantly reduced by modulating emissions via power plant
operations on a limited, but specific, number of hourly periods.
Integrating temporally and spatially detailed air pollutant mod-
eling with operational decision making has not been possible
before. Adoption of this approach could identify immediate cost-
effective actions to reduce the health impacts of air emissions
from existing energy and industrial systems without additional
emissions control technologies. Although we have demonstrated
its use in Georgia, the approach can be used worldwide.

Materials and Methods
Our analysis requires several steps. We (i) gather recorded data on historical
power plant operation, emissions, and generation load; (ii) run a baseline
emissions scenario via the CMAQ for two air quality seasons that generates
CMAQ DDM-3D reduced-form air quality model sensitivities; (iii) link the
reduced-form air quality model to the unit commitment optimization model
via a linearized estimate of monetized health impacts using the reduced-
form model; (iv) run the minimum cost unit commitment optimization
model for the time period and desired months, either including or excluding
estimates of monetized air pollutant health impact costs; (v) analyze output
from model runs to examine the health impact savings between the models
including and excluding monetized health impacts; and (vi) run sensitivity
analysis on model inputs to examine how results change due to uncertain
input data. Each step is discussed below, and the modeling framework is
summarized in SI Appendix, Fig. S1.

Data Collection. EGU characteristics, such as fuel type and nameplate capacity,
are obtained from the EPA Emissions & Generation Resource Integrated
Database (eGRID) for the years 2004–2010, with missing years substituted by
the most recent past year of data (17). Capacity factors used for each plant
are either fixed for natural gas, coal, biomass, oil, and nuclear plants or set
to the annual average value from the EPA eGRID for each hydro plant (SI
Appendix). Hourly generation demand is computed from generation load
via hourly load data from EPA continuous emissions monitoring (CEM) and
annualized net generation from the eGRID (17) (SI Appendix). Fuel costs are
from the US Energy Information Administration (EIA) State Energy Data
System database for Georgia and the United States (18). Heat rates are from
the EIA Electric Power Annual national averages (19), EPA eGRID (17), or EIA
Annual Energy Outlook 2012 (20) (SI Appendix). The Bureau of Labor Sta-
tistics Consumer Price Index is used to adjust nominal dollar costs to real
dollar costs (SI Appendix). Variable operations and maintenance (O&M) costs
are from the EIA Electric Power Annual (19) (SI Appendix). Fixed O&M costs
are from the National Renewable Energy Laboratory’s Cost and Performance
Assumptions for Modeling Electricity Generation Technologies (SI Appendix).

Plants in Georgia >25 MW in nameplate capacity are required to monitor
emissions via EPA CEM (21); for plants under 25 MW in capacity, we use an
emissions rate based on fuel type from the EPA eGRID (17). Fuel for each
plant is subtyped into bituminous coal, subbituminous coal, residual fuel oil,
distillate fuel oil, natural gas, biomass (several subtypes), nuclear, and hydro

(SI Appendix). Monthly (January or July) average emissions rates are used for
coal generation point source plants and Plant Hammond (12) (SI Appendix).
National annual average SO2 emissions rates from the EPA eGRID are used
for fuel subtypes for group source plants (17) (SI Appendix).

Emissions Scenario and CMAQ DDM-3D Model Sensitivities. Within the APOM,
source emission-concentration sensitivities are used to calculate monetized
health impacts. These sensitivities are based on spatially resolved pollutant
concentration estimates simulated by the CMAQ model, one of the most
widely used chemical transport models in current air quality management (9).
The modeling domain covers the continental United States using a 36-km
grid resolution with a finer 12-km grid covering the SE United States. The
meteorological fields are simulated by the Weather Research and Fore-
casting model with 4D data assimilation techniques. The gridded emission
rates are prepared by the Sparse Matrix Operator Kernel for Emissions
model using the 2008 National Emissions Inventory and 2007 CEM system for
NOX and SO2 emissions from EGUs. The model performance is evaluated
using the air quality system (AQS) observational data. The performance
metrics for 8-h average O3 and 24-h average PM2.5 concentrations meet US
EPA guidelines (SI Appendix) and are summarized in SI Appendix, Table S5.

A reduced-form model of the CMAQ is established using the sensitivities
calculated by the embedded direct sensitivity technique, the CMAQ DDM-3D
(10, 11, 15, 22). Sensitivities quantify the pollutant-emission response,

Si,j =
∂Ci

∂«j
, [1]

where Si,j is the sensitivity of pollutant i to emission rate, Ci is the concen-
tration of pollutant i, and «j represents the fractional change in emission
rate j. Both Si,j and Ci vary with time and location. The CMAQ DDM-3D
calculates the sensitivities to all of the emission rates of interest simulta-
neously, along with simulation of the pollutant concentrations. The reduced-
form model can be expressed as

C*i = C0
i +

XN

j=1

∂Ci

∂«j
Δ«j +

1
2

XN

j=1

∂2Ci

∂«2j
Δ«2j +

XN

j=1

XM

k=1, k≠ j

∂2Ci

∂«j∂«k
Δ«jΔ«k +H.O. T . ,

[2]

where C0
i is the baseline concentration of pollutant, C*i is the concentration

of pollutant i with perturbation in emission rates of interest, Δ«j is the
fractional change in emission rate j, and H.O.T. refers to higher order terms.
For small changes (up to about 30–50% of total emissions), Cohan et al. (23)
have shown that only the first (linear) term is typically required to get an
accurate approximation of the response to emission changes; thus, the
second-order and higher terms are excluded in our study. The number of
sensitivity parameters, N, depends on how many emission sources are of
interest. For the case study presented, the sensitivity parameters examined
are SO2 emissions from selected point sources and group sources in Georgia.
The resulting reduced-form model has been evaluated using the original
CMAQ model and has been shown to capture the pollutant-emission re-
sponse well (SI Appendix, Tables S5, S10, and S11).

Linearized Health Impact Estimate. Monetized health impact costs are esti-
mated via EGU air pollutant emissions rates from point or group sources
detailed in SI Appendix. Changes in emissions of pollutants, such as SO2 and
NOX, cause changes in formation, and thus concentrations of O3 and PM2.5

downwind, which is modeled using the CMAQ DDM-3D reduced-form
model. We use the formation of sulfate PM2.5 from SO2 emissions when
calculating and modeling health impacts within the case study, and the
CMAQ DDM-3D can be used for other species of secondary and primary

Fig. 6. Plant Bowen hourly operation when including health impacts (blue, in MW) and hourly health impacts (green, in $/MWh) for July 2007. Gray areas
designate the late evening and morning hours of 11:00 PM to 11:00 AM EDT.
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PM2.5 and O3 (5). Pollutant concentrations are then connected to health end
points via linearized approximations of concentration-response functions.
Increased PM2.5 concentrations have been shown to cause an increase in all-
cause mortality (3), and sulfate-based PM2.5 comprises the largest portion of
reducible health impacts in our study. These sulfate-based PM2.5 health im-
pacts are what were used and reported in Table 1. Changes in mortality are
then valued via a VSL estimate of $7.61 million USD2007 (results using al-
ternative VSL estimates are provided in SI Appendix).

Spatially resolved mortality rates and population estimates are used in the
health impact valuation step, andmatch the 12-km geospatial grid resolution
(SI Appendix). Population varies by year, taken from US Census Bureau
population estimates of Georgia (SI Appendix). All-cause mortality estimates
are taken from 2010 US CDC mortality rates by county for Georgia (SI Ap-
pendix). Both population and mortality are placed on a 12-km grid and are
taken from the EPA BenMAP database, which uses a population gridding
algorithm to estimate population within each 12-km grid square, based on
US Census block estimates (SI Appendix).

These calculations provide a linearized estimate of monetized health
impacts on a 12-km grid for the state of Georgia on an hourly time scale
(discussion and derivation of the linearized estimate are provided in SI Ap-
pendix). The linearized estimate of monetized health impacts is then used
within the unit commitment optimization model of the APOM.

Unit Commitment Optimization Model. The optimization component of the
APOMlinks anelectricity generationunit commitmentmodelwitha reduced-form
air qualitymodel. Theoptimizationmodel objective is tominimize a summationof
both electricity production costs andmonetized health impact cost estimates. The
electricity production costs include fuel costs, O&M costs, and generation startup
costs. The reduced-form air quality model adds additional plant-dependent,
spatially resolved health impact costs to each unit of power production. These
health impact costs are due to PM2.5 formed from the emissions of SO2. SO2 forms
several species of secondary PM2.5, such as inorganic aerosols (sulfate, nitrate, and
ammonium) and organic aerosols (e.g., organic carbon). We chose to use sec-
ondary inorganic sulfate PM2.5 formed from SO2 emissions, which is one of the
largest components of secondary PM2.5 (2). Additional information on the
mathematical formulation used for unit commitment is provided in SI Appendix.

Output Analysis. The APOM has several outputs and health cost estimates of
interest. The computation of health costs by plant and hour of the month is
generated before running the optimization model. These monetized,

population-weighted health impacts present an hourly approximation of
emissions impacts on sulfate-based PM2.5 pollutant concentrations and causal
chronic health impacts, such as increased all-cause mortality. The dispatch
strategy output by the optimization model reduces daily and monthly average
PM2.5 concentrations by reducing PM2.5 concentrations during specific pre-
scribed hourly periods. Such a strategy provides specific reductions in hourly
periods at EGUs, which is in contrast to a strategy of reducing aggregate SO2

emissions for a region or reductions in plant level emissions without specific
recommendations as to the hour or day these emissions reductions should
occur. These hourly estimated health impacts can be further disaggregated
spatially, which provides an examination of affected populations and illus-
trates where EGU emissions health impacts are most heavily weighted.

The optimization model outputs prescribed unit commitment and hourly
dispatched generation that should occur at each modeled EGU. Load curves
can be examined for any inconsistencies with observed historical electricity
production or to describe changes in relative terms to historical operation
of plants.

Sensitivity Analysis. Due to the uncertain nature of many of the model pa-
rameters, sensitivity analysis was run on several sets of input data. One of the
most uncertain inputs of the optimization model is the set of hourly emissions-
concentration sensitivities. CMAQ model performance is evaluated using AQS
observational data, which measure pollutant concentrations hourly at a
numberof locations throughout theUnited States. Theperformancemetrics for
24-h average PM2.5 concentrations for the modeling domain are summarized
in the SI Appendix, Table S5, and they are near the acceptable range according
to the guidance provided by Boylan and Russell (24).

In addition, there are uncertainties in VSL estimation. We examine VSL un-
certainty by running a representative month, July 2007, using five VSL estimates
that span the range of 26 EPA-reported studies (SI Appendix). In addition, there is
uncertainty in the estimation of βPM2.5, which is the causal estimated change in
mortality rate due to a change in PM2.5 concentration. We use the 95% confi-
dence interval reported by Pope et al. (3) to create a normal distribution for
βPM2.5. We then run the model for 25 random samples from the normal distri-
bution for each of the five VSL estimates to obtain model sensitivity to both
βPM2.5 and VSL simultaneously (SI Appendix, Figs. S6 and S7).
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