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Abstract. Multi-objective transportation problem (MOTP) under intuitionistic fuzzy (IF) environment is

analysed in this paper. Due to the fluctuation of market scenario, we assume that the transportation cost, the

supply and the demand parameters are not always precise. Hence, the parameters are imprecise, i.e., they are IF

numbers. Considering the specific cut interval, the IF transportation cost matrix is converted to interval cost

matrix in our proposed problem. Again, using the same concept, the IF supply and the IF demand of the MOTP

are reduced to the interval form. Then the proposed MOTP is changed into the deterministic MOTP, which

includes interval form of the objective functions. Two approaches, namely intuitionistic fuzzy programming and

goal programming, are used to derive the optimal solutions of our proposed problem, and then the optimal

solutions are compared. A numerical example is included to illustrate the feasibility and the applicability of the

proposed problem. Finally, we present the conclusions with the future scopes of our study.

Keywords. Transportation problem; multi-objective decision making; intuitionistic fuzzy programming;

interval programming; goal programming.

1. Introduction

The classical transportation problem (TP) is mainly con-

cerned with distributing any homogeneous product from a

group of supply centres, called sources, to any group of

receiving centres, called destinations, in such a way as to

minimize the total transportation cost, where the trans-

portation cost per unit product is constant regardless of the

amount transported. In the TP, we minimize the cost for

single objective function, i.e., the total transportation cost.

However, in real-life situation, the TPs are not designed as

single objective function. The TP that deals with multiple

objective functions is called a multi-objective transporta-

tion problem (MOTP). The MOTP is a special type of

multi-objective linear programming problem in which

objective functions conflict with each other. Normally,

there does not exist an optimal solution that would simul-

taneously satisfy all the criteria. Hence, we seek the best

compromise solution. In this context, two approaches,

namely intuitionistic fuzzy programming (IFP) and goal

programming (GP), are chosen to find the compromise

(optimal) solution of the MOTP in our study.

In traditional TP, it is considered that all the transportation

parameters like supply, demand and transportation cost, are

precise. However, in real-life situations, these parameters are

imprecise due to incomplete information and uncertainty in

various potential suppliers and environments. Uncertainty

may occur due to the following uncontrollable factors:

1. Decision maker has no notion related to the transporta-

tion cost when an item is to be delivered at the

beginning. Hence, some uncertainty may occur in

connection with the transportation cost.

2. Nowadays, market situation is always unstable due to

large competitions. Hence, the demand of the newly

launched items is totally unpredictable.

3. There may be some sort of uncertainty in connection

with the availability of items at a source because of

various facts. During the time of delivery, the required

amount of items may not be attainable. If a demander

needs more number of items, supplier is not certain about

the distribution of the items. Demander may vary this

order through e-mail/mobile within a few seconds.
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To deal quantitatively with such uncertain information,

many researchers studied the MOTP in fuzzy environment,

which was introduced by Zadeh [1]. Zimmermann [2]

applied fuzzy optimization technique with the linear

membership function to solve the linear programming

problem with several objective functions. Das et al [3]

proposed a solution procedure of the MOTP, where all the

parameters are expressed in terms of an interval by the

decision maker. Li and Lai [4] presented a fuzzy compro-

mise programming approach to solve the MOTP. Ammar

and Youness [5] investigated the efficient solutions and

stability of the MOTP with fuzzy parameters. Roy [6]

described and solved the TP with multi-choice cost and

demand and stochastic supply. Liu [7] developed a tech-

nique to find the value of the objective function in fuzzy to

solve solid TP with fuzzy parameters. Roy and Mahapatra

[8] solved the MOTP with interval-valued parameters in

probabilistic environment. Roy et al [9] investigated multi-

choice TP involving exponential distribution. Mahapatra

et al [10] studied multi-choice stochastic TP involving

extreme value distribution. Maity and Roy [11] solved the

MOTP under multi-choice environment using utility func-

tion approach. Also, Maity and Roy [12] proposed another

approach to solve the MOTP with nonlinear cost and multi-

choice demand. Rani and Gulati [13] discussed uncertain

multi-objective multi-product solid TPs. Maity et al [14]

described MOTP with cost reliability under uncertain

environment. Kocken et al [15] proposed a compensatory

fuzzy approach to solve multi-objective linear TP with

fuzzy parameters. Roy et al [16] depicted conic scalariza-

tion approach to solve multi-choice MOTP with interval

goal. Rani et al [17] presented a method for solving

unbalanced TPs in fuzzy environment. Roy and Maity [18]

solved minimizing cost and time through a single objective

function in multi-choice interval-valued TP. Gupta and

Kumar [19] depicted a new method for solving linear

MOTP where all the parameters are interval-valued fuzzy

numbers. Ebrahimnejad [20] considered fuzzy linear pro-

gramming approach for solving TPs with interval-valued

trapezoidal fuzzy numbers. Ebrahimnejad [21] discussed a

new method for solving fuzzy TPs with LR flat fuzzy

numbers. Roy et al [22] described multi-objective two-

stage grey TP using a utility function with goals.

In fuzzy optimization, the degrees of acceptance of

objective functions and constraints are considered. Fuzzy

set theory has also been developed in many areas and its

different modifications and generalization forms have

appeared. One of the generalization form of fuzzy set

theory is an intuitionistic fuzzy set (IFS), which was

introduced by Atanassov [23]. The concept of IFS is an

alternative approach to define fuzzy set in the case where

available information is not sufficient for the definition

of an imprecise concept by means of the conventional

fuzzy set. The new concept of optimization under

intuitionistic fuzzy (IF) environment was introduced by

Angelov [24]. In an IF optimization, degree of accep-

tance (membership) and degree of non-acceptance (non-

membership) of objective functions and constraints are

considered simultaneously so that the sum of both values

is always less than or equal to one. Recently, many

researchers introduced IF optimization technique in dif-

ferent fields. Jana and Roy [25] proposed a technique to

solve multi-objective IF linear programming problem and

applied it in a capacitated TP. Garg et al [26] used IF

optimization technique to solve multi-objective reliability

optimization in interval environment. Chakraborty et al

[27] developed a new approach to solve multi-objective

multi-choice multi-item Atanassov’s IF TP using a

chance operator.

GP has been widely used to solve multi-objective deci-

sion making problem. The basic concept of GP was intro-

duced by Charnes and Cooper [28]. They modelled GP for

linear programming problem in which conflicting goals

were incorporated in the constraints. It has been further

improved by Lee [29] and later by Ignizio [30]. Aenaida

and Kwak [31] applied the GP approach to solve TP. Many

researchers used GP approach to solve multi-objective

optimization problem in various uncertain environments.

Abd El-Wahed and Lee [32] used interactive fuzzy GP to

solve the MOTP. Zangiabadi and Maleki [33] used fuzzy

GP technique to solve the MOTP by considering non-linear

membership functions.

Though many investigations have been performed on TP

under different environments by several researchers, there

are some gaps in TP that occur in real-life situations, where

traditional fuzzy environment is not adequate to tackle the

situation. Based on this consideration, we incorporate IF

environment in our discussed TP. The main contributions

of the proposed study are as follows:

(1) In our proposed MOTP, all the parameters of TP are

considered as intuitionistic fuzzy numbers (IFNs) due to

fluctuation of market scenario. (2) In our proposed

approach, we define ða; bÞ cut to convert IF transportation

cost into an interval, and demand and supply into

inequalities. Values of a and b are chosen by the decision

maker according to his/her choice. (3) We deduce a crisp

mathematical model with interval-valued objective func-

tion, from the proposed intuitionistic fuzzy multi-objective

transportation problem (IFMOTP). (4) Two approaches,

namely IFP and GP, are considered to solve the interval-

valued MOTP and the obtained solutions are also solutions

of the primary IFMOTP at ða; b) cut level. (5) Different

values of a and b provide different solutions and the

decision maker has a freedom to choose a better solution.

The rest of the paper is designed as follows. In section 2,

the basic preliminaries in connection with IFS and interval

number are briefly summarized. Section 3 contains the

mathematical model of the IFMOTP with a conversion

technique for IFMOTP into the crisp model. In section 4,

drawbacks of the existing methods are discussed. Section 5
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depicts two approaches, namely IFP and GP, which are

used to solve the crisp model. Section 6 discusses the

advantages of our proposed study. In section 7, a numerical

example is provided to justify our proposed problem and

the results are discussed. Section 8 contains the conclusion

of the paper with the future studies.

2. Preliminaries

In this section, we include some basic definitions and

arithmetic operations on IFNs and interval numbers.

Definition 2.1 ([23]) Let X denote a universe of dis-

course; then an IFS eAI in X is given by a set of ordered

triplet as follows:

eAI ¼ fhx; l
eAI
ðxÞ; c

eAI
ðxÞi : x 2 Xg;

where l
eAI
ðxÞ, c

eAI
ðxÞ: X ! [0,1] are functions such that 0

� l
eAI
ðxÞ þ c

eAI
ðxÞ� 18 x 2 X. For each x, l

eAI
ðxÞ and

c
eAI
ðxÞ represent the degree of membership and degree of

non-membership functions, respectively. Again the func-

tion p
eAI
ðxÞ ¼ 1 � l

eAI
ðxÞ � c

eAI
ðxÞ is called ‘‘degree of

hesitation’’ of the element x in the set A. If p
eAI
ðxÞ ¼

0 8 x 2 X; then the IFS reduces to a fuzzy set.

Definition 2.2 ([23]) Let X be a non-empty set; eAI and eBI

are two IFSs in X given by eAI ¼ fhx; l
eAI
ðxÞ; c

eAI
ðxÞi : x 2

Xg and eBI ¼ fhx; l
eBI
ðxÞ; c

eBI
ðxÞi : x 2 Xg, respectively.

Then the following properties hold:

(i) eAI � eBI if and only if l
eAI
ðxÞ� l

eBI
ðxÞ and

c
eAI
ðxÞ� c

eBI
ðxÞ 8 x 2 X,

(ii) eAI \ eBI ¼ fhx; l
eAI
ðxÞ ^ l

eBI
ðxÞ; c

eAI
ðxÞ _ c

eBI
ðxÞi :

x 2 Xg ¼ fhx;minðl
eAI
ðxÞ; l

eBI
ðxÞÞ;maxðc

eAI
ðxÞ;

c
eBI
ðxÞÞi : x 2 Xg;

(iii) eAI [ eBI ¼ fhx; l
eAI
ðxÞ _ l

eBI
ðxÞ; c

eAI
ðxÞ ^ c

eBI
ðxÞi :

x 2 Xg ¼ fhx;maxðl
eAI
ðxÞ; l

eBI
ðxÞÞ;minðc

eAI
ðxÞ;

c
eB
ðxÞÞi : x 2 Xg:

Definition 2.3 An IFS eAI is said to be normal if there

exists x0 such that l
eAI
ðx0Þ ¼ 1 and c

eAI
ðx0Þ ¼ 0.

Definition 2.4 Support of an IFS eAI with universal set X

is denoted by Support ðeAIÞ and is defined by Support

ðeAIÞ ¼ fx : l
eAI
ðxÞ[ 0 and c

eAI
ðxÞ� 1; x 2 Xg:

Definition 2.5 ða; bÞ-cut of an IFS eAI is denoted by eAI
ða;bÞ

and is defined by eAI
ða;bÞ ¼ fx : l

eAI
ðxÞ� a and

c
eAI
ðxÞ� b; aþ b� 1; x 2 X} where a; b 2 ð0; 1�.

Definition 2.6 An IFN eAI is an IF subset of real numbers

with the following results:

(i) The IFS eAI is normal.

(ii) The IFS eAI is convex for the membership function

l
eAI
ðxÞ, i.e., l

eAI
ðkx1 þ ð1 � kÞx2Þ� minfl

eAI
ðx1Þ;

l
eAI
ðx2Þg for x1; x2 2 R; k 2 ½0; 1�.

(iii) The IFS A is concave for the non-membership

function c
eAI
ðxÞ, i.e., c

eAI
ðkx1 þ ð1 � kÞx2Þ�

maxfc
eAI
ðx1Þ; c

eAI
ðx2Þg for x1; x2 2 R; k 2 ½0; 1�.

Definition 2.7 An IFN of the form eAI ¼ ða1; a2; a3Þ
ða1; a2; a3Þ where a1 � a1 � a2 � a3 � a3 is said to be tri-

angular IFN if its membership and non-membership func-

tions, respectively, are defined as follows:

l
eAI
ðxÞ ¼

x� a1

a2 � a1

if a1 � x� a2;

a3 � x

a3 � a2

if a2 � x� a3;

0 otherwise;

8

>

>

>

<

>

>

>

:

and

c
eAI
ðxÞ ¼

a2 � x

a2 � a1

if a1 � x� a2;

x� a2

a3 � a2

if a2 � x� a3;

1 otherwise:

8

>

>

>

<

>

>

>

:

Triangular IFN is depicted in figure 1.

Arithmetic operations on triangular IFNs: Let A ¼
ða1; a2; a3Þða1; a2; a3Þ and B ¼ ðb1; b2; b3Þðb1; b2; b3Þ rep-

resent two triangular IFSs; then addition, subtraction,

multiplication and scalar multiplication of the numbers are

stated as follows:

Figure 1. Triangular intuitionistic fuzzy number.
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Addition : Aþ B ¼ ða1 þ b1; a2 þ b2; a3 þ b3Þ
ða1 þ b1; a2 þ b2; a3 þ b3Þ:

Subtraction : A� B ¼ ða1 � b3; a2 � b2; a3 � b1Þ
ða1 � b3; a2 � b2; a3 � b1Þ:

Multiplication : A:B ¼ ½minfa1b1; a1b3; a3b1; a3b3g;
a2b2;maxfa1b1; a1b3; a3b1; a3b3g�
½minfa1b1; a1b3; a3b1; a3b3g; a2b2;

maxfa1b1; a1b3; a3b1; a3b3g�:

Scalar multiplication: For any real k

kA ¼
ðka1; ka2; ka3Þðka1; ka2; ka3Þ if k� 0;

ðka3; ka2; ka1Þðka3; ka2; ka1Þ if k\0:

�

The ða; bÞ cut of a triangular IFN is shown in figure 2.

Definition 2.8 ða; bÞ-cut of a triangular intuitionistic

fuzzy number eAI ¼ ða1; a2; a3Þða1; a2; a3Þ is the set of all

x whose degree of membership is greater than or equal to a
and degree of non-membership is less than or equal to b;

i.e., eAI
ða;bÞ ¼ fx : l

eAI
ðxÞ� a and

c
eAI
ðxÞ� b; aþ b� 1; x 2 X}.

Now, l
eAI
ðxÞ� a

) x� a1

a2 � a1

� a and
a3 � x

a3 � a2

� a; or x� a1 þ aða2 � a1Þ

and x� a3 � aða3 � a2Þ:

Again, c
eAI
ðxÞ� b

) a2 � x

a2 � a1

� b and
x� a2

a3 � a2

� b or x� a2 � bða2 � a1Þ

and x� a2 þ bða3 � a2Þ:

Let AL ¼ maxfa1 þ aða2 � a1Þ; a2 � bða2 � a1Þg; and

AU ¼ minfa3 � aða3 � a2Þ; a2 þ bða3 � a2Þg:

Then ða; bÞ-cut of a triangular IFN can be reduced into

an interval form of eAI
ða;bÞ as ½AL;AU � where AL and AU are,

respectively, lower and upper limits of the interval.

Definition 2.9 ([26]) Let R be the set of all real numbers;

then the interval number C is a closed interval denoted by

C ¼ ½cL; cR� and is defined as follows:

C ¼ ½cL; cR� ¼ fx : cL � x� cR; cL; cR 2 Rg;

where cL and cR are, respectively, lower and upper limits of

the interval C. If cL ¼ cR then C reduces to a real number.

An interval C can also be written as

C ¼ \cc; cw [ ¼ fx : cc � cw � x� cc þ cw; x 2 Rg;

where cc and cw are, respectively, the centre and the width

of the interval C and cc ¼ cLþcR
2

and cw ¼ cR�cL
2

: An interval

can also be presented as an order triplet �C ¼ ½cL; cC; cR�.

Interval arithmetic: Let C ¼ ½cL; cR� and D ¼ ½dL; dR�
be two intervals; then addition, subtraction, multiplication,

division and scalar multiplication of interval numbers are

described as follows:

Addition : CþD¼ ½cLþ dL;cRþ dR�:
Subtraction : C�D¼ ½cL� dR;cR� dL�:

Multiplication : C:D¼ ½minðcLdL;cLdR;cRdL;cRdRÞ;
maxðcLdL;cLdR;cRdL;cRdRÞ�:

Division : C=D¼ ½minðcL=dL;cL=dR;cR=dL;cR=dRÞ;
maxðcL=dL;cL=dR;cR=dL;cR=dRÞ�
provided 0 62D:

Scalar multiplication: For any real k

kC ¼
kcL; kcR½ � if k� 0;

kcR; kcL½ � if k\0:

�

Order relation between intervals: We assume the fol-

lowing definition, which is mainly used for comparing

intervals involving many practical applications.

Definition 2.10 ([3]) The order relation � LR between

C ¼ ½cL; cR� and D ¼ ½dL; dR� is defined as C� LRD iff

cL � dL and cR � dR; C\LRD iff C� LRD and C 6¼ D:

This order relation represents decision maker’s prefer-

ence for selecting the alternative with minimum cost and

maximum cost, i.e., if C\LRD, then C is preferred to D.

3. Model formulation

TP with a single objective function is hardly applicable to

design many practical problems. To overcome this diffi-

culty, we choose multiple objective functions (withFigure 2. ða; bÞ cut of a triangular intuitionistic fuzzy number.
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conflicting and non-commensurable nature) into the TP and

here it is referred to as MOTP. The main aim of the MOTP

is to calculate an optimal plan for transporting a homoge-

neous commodity from m sources to n destinations in such

a way that all the objective functions are optimized

simultaneously. Let there be K number of objective func-

tions Z1; Z2; . . .; ZK . For each objective function Zk, a

transportation cost ckij is associated with transporting one

unit of commodity from the ith source to the jth destination.

Let ai be the total availability of the product at the ith

source and bj be the total demand of the product at the jth

destination. Let xij be the unknown quantity transported

from the ith source to the jth destination so as to minimize

the objective functions. The mathematical model of the

MOTP is described as follows:

Model 1

minimize ZkðxijÞ ¼
X

m

i¼1

X

n

j¼1

ckijxij ð3:1Þ

subject to
X

n

j¼1

xij � ai ði ¼ 1; 2; . . .;mÞ; ð3:2Þ

X

m

i¼1

xij � bj ðj ¼ 1; 2; . . .; nÞ; ð3:3Þ

xij � 0 8 i and j: ð3:4Þ

3.1 IFMOTP

In real-life situations, the transportation parameters

(transportation cost, supply and demand) are not precise

due to incomplete information of various potential sup-

pliers and environments. To deal quantitatively with such

imprecise information, we consider the MOTP in IF

environment. Here, we assume transportation cost ð eckij
IÞ;

supply ðeaIi Þ and demand ðebj IÞ as the IFNs whose mem-

bership and non-membership functions are supplied. The

MOTP with the IF parameters is treated here as an

IFMOTP. The mathematical model of the IFMOTP is

shown in Model 2 as follows:

Model 2

minimize eZI
kðxijÞ ¼

X

m

i¼1

X

n

j¼1

eckij
I
xij ð3:5Þ

subject to
X

n

j¼1

xij � eaIi ði ¼ 1; 2; . . .;mÞ; ð3:6Þ

X

m

i¼1

xij � ebIj ðj ¼ 1; 2; . . .; nÞ; ð3:7Þ

xij � 0 8 i and j; ð3:8Þ

where eZI
kðxijÞ is the kth objective function in IF form. Now,

the membership function l
eck
ij

I
ðxÞ and non-membership

function c
eck
ij

I
ðxÞ of transportation cost eck

I
ij (8i; j and k) are

given as follows:

l
eck
ij

I
ðxÞ ¼

x� ckij1

ckij2 � ckij1
if ckij1 � x� ckij2;

ckij3 � x

ckij3 � ckij2
if ckij2 � x� ckij3;

0 otherwise;

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

ð3:9Þ

and

c
eck
ij

I
ðxÞ ¼

ckij2 � x

ckij2 � ckij1
if ckij1 � x� ckij2;

x� ckij2

ckij3 � ckij2
if ckij2 � x� ckij3;

0 otherwise:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

ð3:10Þ

Similarly the membership and non-membership func-

tions of supply eai
I (i ¼ 1; 2; . . .;m) are defined as follows:

lI
eai
ðxÞ ¼

1 if x� ai1;
ai2 � x

ai2 � ai1
if ai1 � x� ai2;

0 if x� ai2;

8

>

>

<

>

>

:

ð3:11Þ

and

c
eai I
ðxÞ ¼

0 if x� ai1 þ di;

x� ai1 � di

ai2 � ai1 � di
if ai1 þ di � x� ai2;

1 if x� ai2;

8

>

>

<

>

>

:

ð3:12Þ

where di is the acceptable limit of non-membership func-

tion of eai
I .

Also the membership and non-membership functions of

demand ebj
I (j ¼ 1; 2; . . .; n) are given as follows:

l
ebj

I
ðxÞ ¼

1 if x� bj2;

x� bj1

bj2 � bj1
if bj1 � x� bj2;

0 if x� bj1;

8

>

>

<

>

>

:

ð3:13Þ

and

c
ebj

I
ðxÞ ¼

0 if x� bj2 � pj;

bj2 � pj � x

bj2 � pj � bj1
if bj1 � x� bj2 � pj;

1 if x� bj1;

8

>

>

<

>

>

:

ð3:14Þ
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where pj is also the acceptable limit of non-membership

function of ebj
I .

The degree of acceptance (membership) and degree of

rejection (non-membership) both are described simultane-

ously; however, they are not complementary to each other.

IFS can be used in a more general way for defining this

fuzziness. It is possible to represent the objective functions

and constraints by the IFS, i.e., a pair of membership and

non-membership functions.

Now ða; bÞ-level interval or ða; bÞ-cut of the IF cost

coefficients are given by eAI
ða;bÞ ¼ fhx; l

eck
ij

I
ðxÞ; c

eck
ij

I
ðxÞi :

l
eck
ij

I
ðxÞ� a; c

eck
ij

I
ðxÞ� b; a; b 2 ð0; 1�}, where a and b are

fixed numbers such that aþ b� 1. This is a set of elements

that belong to the set at least to the degree a and do not

belong to the set at most to the degree b. The values of a
and b are prescribed by the decision maker according to

his/her choice. Now, for transportation cost, we consider

l
eck
ij

I
ðxÞ� a; c

eck
ij

I
ðxÞ� b.

Hence, we have

x� ckij1

ckij2 � ckij1
� a;

ckij1 � x

ckij2 � ckij1
� b or x� ckij1 þ aðckij2 � ckij1Þ;

x� ckij2 � bðckij2 � ckij1Þ

and

ckij3 � x

ckij3 � ckij2
� a;

x� ckij2

ckij3 � ckij2
� b or x� ckij3 � aðckij3 � ckij2Þ;

x� ckij2 þ bðckij3 � ckij2Þ:

We assign ckijL and ckijU in the following way:

ckijL ¼ maxfckij1 þ aðckij2 � ckij1Þ; ckij2 � bðckij2 � ckij1Þg

and

ckijU ¼ minfckij3 � aðckij3 � ckij2Þ; ckij2 þ bðckij3 � ckij2Þg8 i; j; k:

Hence, we derive the interval for each IF cost parameter in

the form ½ckijL; ckijU �. Then the objective function (3.5) can be

rewritten as follows:

minimize ZkðxijÞ ¼
X

m

i¼1

X

n

j¼1

½ckijL;ckijU �xij ðk ¼ 1;2; . . .;KÞ;

where ZkðxijÞ is the kth objective function in interval form.

Similarly, for the supply parameter eaIi , we have

l
eai I
ðxÞ�a and c

eai I
ðxÞ�b.

Hence
ai2 � x

ai2 � ai1
� a and

x� ai1 � di

ai2 � ai1 � di
� b;

i.e., x� ai2 � aðai2 � ai1Þ and x�ðai1 þ diÞ
þbðai2 � ai1 � diÞ:

Then the supply constraints (3.6) can be described as

follows:
X

n

j¼1

xij �Ai 8 i; ð3:15Þ

where Ai ¼ minfai2 � aðai2 � ai1Þ; ðai1 þ diÞþ bðai2 � ai1
� diÞg:

In a similar way, for demand parameter ebj
I , we have

l
ebj

I
ðxÞ� a and c

ebj
I
ðxÞ� b:

Hence
x� bj1

bj2 � bj1
� a and

bj2 � pj � x

bj2 � pj � bj1
� b;

i.e., x� bj1 þ aðbj2 � bj1Þ and x�ðbj2 � pjÞ
�bðbj2 � pj � bj1Þ:

Hence the demand constraints (3.7) can be written as

follows:
X

m

i¼1

xij �Bj 8 j; ð3:16Þ

where Bj ¼ maxfbj1 þ aðbj2 � bj1Þ; ðbj2 � pjÞ�
bðbj2 � pj � bj1Þg.

Finally Model 2 is converted to Model 3 as follows:

Model 3

minimize ZkðxijÞ ¼
X

m

i¼1

X

n

j¼1

½ckijL;ckijU �xij ðk ¼ 1;2; . . .;KÞ

subject to
X

n

j¼1

xij�Ai ði¼ 1;2; . . .;mÞ;

X

m

i¼1

xij�Bj ðj¼ 1;2; . . .;nÞ;

xij�0 8 i; j:

Here, we choose a and b in such a manner that
Pm

i¼1 Ai �
Pn

j¼1 Bj. This is the necessary condition for

feasible region of this problem.

Then the optimization problem, i.e., Model 3 can be

rewritten as follows:

Model 3.1

minimize ½Z1; Z2; . . .; ZK �
subject to X 2 S;

where Zk¼½ZLk;ZRk�¼½
Pm

i¼1

Pn
j¼1c

k
ijLxij;

Pm
i¼1

Pn
j¼1c

k
ijUxij�

ðk¼1;2;...;KÞ, and S¼fX :
Pn

j¼1xij�Ai ði¼1;2;...;mÞ and
Pm

i¼1xij�Bj ðj¼1;2;...;nÞ}.

Here X 2 S � R is the decision vector and S is the fea-

sible region. ZLk and ZRk are the left and right limits of the

objective function Zk at decision vector X. Now the centre

of the objective function is given by ZCk ¼ ZLkþZRk
2

. Then,

the problem, i.e., Model 3.1 is transformed into mathe-

matical programming with ordered triplet as follows:
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Model 4

minimize ½ZLk; ZCk; ZRk� ðk ¼ 1; 2; . . .;KÞ

subject to
X

n

j¼1

xij �Ai ði ¼ 1; 2; . . .;mÞ;

X

m

i¼1

xij �Bj ðj ¼ 1; 2; . . .; nÞ;

xij � 0 8 i; j:

Theorem 3.1 Model 4 is solvable as well as feasible if
Pm

i¼1 Ai �
Pn

j¼1 Bj where Ai and Bj are given by Eqs.

(3.15) and (3.16), respectively.

Proof Straightforward.

Definition 3.1 A feasible solution vector X� 2 S is said to

be the Pareto-optimal solution (efficient or non-dominated)

of the MOTP if there does not exist any other vector X 2 S

such that ZkðXÞ� LRZkðX�Þ for k ¼ 1; 2; . . .;K and

ZkðXÞ\LRZkðX�Þ for at least one k.

Definition 3.2 A feasible solution vector X� 2 S is an

optimal compromise solution for the MOTP if it is pre-

ferred by the decision maker to all other feasible solutions,

taking into consideration all criteria contained in the multi-

objective functions.

4. Drawbacks of the existing methods

From the past literature review, researchers have developed

various procedures for solving intuitionistic fuzzy trans-

portation problem (IFTP). Hence we mention the main

deviations of the existing methods as follows:

1. There are few research papers available in the literature

to solve the MOTP in IF environment.

2. The existing method (Jana and Roy [25]) can be applied

to solve the MOTP only where demand and supply are IF

in nature. It cannot be used to solve the MOTP where all

the parameters are IF in nature.

3. Jana and Roy [25] considered membership function as a

hyperbolic function and non-membership function as a

parabolic function, which are nonlinear functions and

they are very complicated to handle for solving MOTP in

IF environment.

4. Kumar and Hussain [34] utilized the ranking function for

solving fully IFTP. However, the method has no new

concept for solving fully IFTP when compared to the

existing literature.

5. Solution procedure

We consider two approaches for solving Model 4 and they

are as follows:

• IFP approach

• GP approach

In the next subsections, we briefly describe the solution

concepts of these approaches. Utilizing the approaches, we

extract the optimal solutions of our proposed problem.

5.1 IFP approach

For each objective function, i.e., ZLk; ZCk and ZRk, we first find

the lower bounds LLk; LCk and LRk (best values) and the upper

bounds ULk;UCk and URk (worst values) where LLk;LCk and

LRk are the aspired levels of achievement and ULk;UCk and

URk are the highest acceptable levels of achievement for the

objective functions ZLk; ZCk and ZRk, respectively. When the

aspired level and the acceptance level for each objective

function are specified, we formulate a crisp model. The

algorithm of this approach is given as follows.

Algorithm

Step 1: Solve the MOTP by considering one objective

function at a time and ignoring all others; collect the

obtained solutions. Repeat this process K times if there are

K number of objective functions.

Step 2: Determine the corresponding cost for every

objective function at each obtained solution.

Step 3: To each objective function, find best values

[LLk; LCk; LRk] and worst values [ULk;UCk;URk]. Define

membership and non-membership functions for each

objective function as follows:

lðZmkÞ ¼

1 if Zmk � Lmk;
Umk � Zmk

Umk � Lmk
if Lmk � Zmk �Umk;

0 if Zmk �Umk:

8

>

>

<

>

>

:

k ¼ 1; 2; . . .;K; m ¼ L;C;R;

and

cðZmkÞ ¼

0 if Zmk � Lmk;
Zmk � Lmk

Umk � Lmk
if Lmk � Zmk �Umk;

1 if Zmk �Umk:

8

>

>

<

>

>

:

k ¼ 1; 2; . . .;K; m ¼ L;C;R;

Step 4: After this, the intuitionistic optimization model

can be changed into Model 5 as follows.

Model 5

maximize ðh� dÞ
subject to lðZmkÞ� h; cðZmkÞ� d;m ¼ L;C;R;

k ¼ 1; 2; . . .;K;

X

n

j¼1

xij �Ai ði ¼ 1; 2; . . .;mÞ;
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X

m

i¼1

xij �Bj ðj ¼ 1; 2; . . .; nÞ;

h� d; hþ d� 1; h; d 2 ½0; 1�;
xij � 0 8 i; j;

where h and d are the aspiration levels for membership and

non-membership functions of the objective functions,

respectively.

Step 5: Now Model 5 can be solved using LINGO

software; let X� be the optimal solution. Then we calculate

left, centre and right limits of each objective function at

X�; hence we get the optimal compromise solutions of the

objective functions in triplet form as

½ZLkðX�Þ; ZCkðX�Þ; ZRkðX�Þ�; k ¼ 1; 2; . . .;K:

5.2 GP approach

GP is used to solve multi-objective decision making prob-

lems. The basic concept of the GP is to minimize the sum

of the deviations of the objective functions from their

respective goals (target values), which is determined by the

decision maker. The proposed problem is solved using the

GP approach through the following steps.

Step 1: Solve the MOTP by choosing only one objective

function at a time and omitting others; store the derived

solutions. Continue this process K times if there are

K number of objective functions.

Step 2: Compute the corresponding cost for every objec-

tive function at each derived solution. Thereafter, find the

best value of Zmk as Lmk and worst value of Zmk as Umk,

(m ¼ L;C;R; k ¼ 1; 2; . . .;K) for each objective function.

Step 3: Take goal at most Z
g
mk to every objective function

as Z
g
mk =LmkþUmk

2
;m ¼ L;C;R; k ¼ 1; 2; . . .;K:

Step 4: Formulate the mathematical model (Model 6)

using the GP as follows.

Model 6

minimize
X

K

k¼1

ðdþLk þ dþCk þ dþRkÞ

subject to
X

n

j¼1

xij�Ai ði¼ 1;2; . . .;mÞ;

X

m

i¼1

xij�Bj ðj¼ 1;2; . . .;nÞ;

Zmk � dþmk þ d�mk ¼ Z
g
mk; m¼ L;C;R;

k¼ 1;2; . . .;K;

xij�0 8 i; j;

where dþmk and d�mk ðm ¼ L;C;R; k ¼ 1; 2; . . .;KÞ are

positive and negative deviations of the objective functions.

Step 5: Model 6 can be solved with the help of LINGO

software; let X� be the optimal solution. Calculate left,

centre and right limits of each objective function at X�;
hence, we derive the optimal compromise solutions of the

objective functions in triplet form as

½ZLkðX�Þ; ZCkðX�Þ; ZRkðX�Þ�; k ¼ 1; 2; . . .;K:

6. Advantages of our proposed method

In this section, we explore the main advantages of our

proposed method over the existing methods.

1. In our proposed method, all the transportation parameters

are IFNs, which are not considered in the existing methods.

2. In our formulated method, we use linear membership and

non-membership functions, which are easy to tackle with

less computational burden for solving the proposed MOTP.

3. The decision maker has freedom to choose the values of

a and b with the condition aþ b� 1. Different values of

a and b provide a variety of solutions, which have a wide

spectrum to select a better solution by the decision

maker.

7. Application example

A renowned company collects baby food products [35]

from three production sources and then supplies to four

destination centres, in which the transportation cost, the

supply and the demand are IFNs. The decision maker lays

emphasis on criteria such as minimization of total trans-

portation cost, transportation time (delivery time) and loss

during the transportation through the given route

(i, j) ði ¼ 1; 2; 3; j ¼ 1; 2; 3; 4Þ: Here, Z1; Z2 and Z3 repre-

sent the total transportation cost in hundred dollar($) per

unit, transportation time in days per unit and loss during the

transportation in dollar, respectively, from each production

source to each destination centre. Without loss of general-

ity, the transportation cost, the transportation time and loss

during the transportation are assumed as triangular IFN; the

cost matrix corresponding to the objective functions Z1; Z2

and Z3 are specified, respectively, in tables 1, 2 and 3.

The decision maker is interested in transporting the baby

food products from the ith source to jth destination so as to

satisfy the following availability and demand constraints:

x11 þ x12 þ x13 þ x14 ¼ eaI1;

x21 þ x22 þ x23 þ x24 ¼ eaI2;

x31 þ x32 þ x33 þ x34 ¼ eaI3;

x11 þ x21 þ x31 ¼ ebI1;

x12 þ x22 þ x32 ¼ ebI2;

x13 þ x23 þ x33 ¼ ebI3;

x14 þ x24 þ x34 ¼ ebI4:
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The membership functions l
ea1

I ðxÞ; l
ea2

I ðxÞ and l
ea3

I ðxÞ and

non-membership functions c
ea1

I ðxÞ; c
ea2

I ðxÞ and c
ea3

I ðxÞ of

corresponding supplies eai
I (i ¼ 1; 2; 3) are designed based

on the data prescribed by the decision maker as follows:

l
eaI

1

ðxÞ ¼

1 if x� 8;

13 � x

13 � 8
if 8� x� 13;

0 if x� 13;

8

>

>

<

>

>

:

l
ea2

I ðxÞ ¼

1 if x� 11;

15 � x

15 � 11
if 11� x� 15;

0 if x� 15;

8

>

>

<

>

>

:

l
ea3

I ðxÞ ¼

1 if x� 14;

18 � x

18 � 14
if 14� x� 18;

0 if x� 18:

8

>

>

<

>

>

:

and

c
ea1

I ðxÞ ¼
0 if x� 9;

x�9
13�9

if 9� x� 13;

1 if x� 13;

8

>

<

>

:

c
ea2

I ðxÞ ¼
0 if x� 13;

x�13
15�13

if 13� x� 15;

1 if x� 15;

8

>

<

>

:

c
ea3

I ðxÞ ¼

0 if x� 14:5;

x� 14:5

18 � 14:5
if 14:5� x� 18;

1 if x� 18:

8

>

>

<

>

>

:

Also the membership functions l
eb1

I
ðxÞ; l

eb2
I
ðxÞ;

l
eb3

I
ðxÞ and l

eb4
I
ðxÞ and non-membership functions

c
eb1

I
ðxÞ; c

eb2
I
ðxÞ; c

eb3
I
ðxÞ and c

eb4
I
ðxÞ of corresponding

demands ebj
I (j ¼ 1; 2; 3; 4) are described with the concept

of the decision maker as follows:

l
eb1

I
ðxÞ ¼

1 if x� 12;

x� 7

12 � 7
if 7� x� 12;

0 if x� 7;

8

>

>

<

>

>

:

l
eb2

I
ðxÞ ¼

1 if x� 9;

x� 5

9 � 5
if 5� x� 9;

0 if x� 5;

8

>

>

<

>

>

:

l
eb3

I
ðxÞ ¼

1 if x� 9;

x� 4

9 � 4
if 4� x� 9;

0 if x� 4;

8

>

>

<

>

>

:

l
eb4

I
ðxÞ ¼

1 if x� 7;

x� 3

7 � 3
if 3� x� 7;

0 if x� 3:

8

>

>

<

>

>

:

and

c
eb1

I
ðxÞ ¼

0 if x� 10;

10 � x

10 � 7
if 7� x� 10;

1 if x� 7;

8

>

>

<

>

>

:

Table 3. Loss during the transportation for IFMOTP.

D1 D2 D3 D4

S1 (1, 2, 3)(0.5, 2, 3.5) (2.5, 4, 5)(2, 4, 6) (6, 7, 8)(5, 7, 9) (2, 3, 4)(1, 3, 4.5)

S2 (4, 6, 8)(3, 6, 9) (2.5, 4, 5)(2, 4, 6) (6, 8, 10)(5, 8, 11) (2.5, 4, 5)(2, 4, 6)

S3 (6, 8, 10)(5, 8, 11) (1, 2, 3)(0.5, 2, 3.5) (3, 5, 7)(2.5, 5, 7.5) (.5, 1, 1.5)(0, 1, 2)

Table 1. Transportation cost for IFMOTP.

D1 D2 D3 D4

S1 (6, 8, 10)(5, 8, 11) (7, 9, 10)(6, 9, 10.5) (6, 7, 8)(5, 7, 9) (1, 2, 3)(0.5, 2, 3.5)

S2 (3, 5, 7)(2.5, 5, 7.5) (4, 6, 8)(3, 6, 9) (2.5, 4, 5)(2, 4, 6) (6, 7, 8)(5, 7, 9)

S3 (2, 3, 4)(1, 3, 4.5) (6, 7, 8)(5, 7, 9) (6, 7, 8)(5, 7, 9) (3, 5, 7)(2.5, 5, 7.5)

Table 2. Transportation time for IFMOTP.

D1 D2 D3 D4

S1 (1, 2, 3)(0.5, 2, 3.5) (7, 9, 10)(6, 9, 10.5) (6, 8, 10)(5, 8, 11) (.5, 1, 1.5)(0, 1, 2)

S2 (2.5, 4, 5)(2, 4, 6) (2, 3, 4)(1, 3, 4.5) (4, 6, 8)(3, 6, 9) (6, 7, 8)(5, 7, 9)

S3 (3, 5, 7)(2.5, 5, 7.5) (1, 2, 3)(0.5, 2, 3.5) (6, 8, 10)(5, 8, 11) (1, 2, 3)(0.5, 2, 3.5)
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c
eb2

I
ðxÞ ¼

0 if x� 7;

7 � x

7 � 5
if 5� x� 7;

1 if x� 5;

8

>

>

<

>

>

:

c
eb3

I
ðxÞ ¼

0 if x� 8;

8 � x

8 � 4
if 4� x� 8;

1 if x� 4;

8

>

>

<

>

>

:

c
eb4

I
ðxÞ ¼

0 if x� 6;

6 � x

6 � 3
if 3� x� 6;

1 if x� 3:

8

>

>

<

>

>

:

If the decision maker chooses the values of a and b as 0.7

and 0.2, respectively, the corresponding objective functions

are derived as follows:

ZL1 ¼ 7:4x11 þ 8:4x12 þ 6:7x13 þ 1:7x14 þ 4:5x21 þ 5:4x22

þ 3:6x23 þ 6:7x24 þ 2:3x31 þ 6:7x32 þ 6:7x33 þ 4:5x34;

ZC1 ¼ 8x11 þ 8:85x12 þ 7x13 þ 2x14 þ 5x21 þ 6x22

þ 3:95x23 þ 7x24 þ 3x31 þ 7x32 þ 7x33 þ 5x34;

ZR1 ¼ 8:6x11 þ 9:3x12 þ 7:3x13 þ 2:3x14 þ 5:5x21 þ 6:6x22

þ 4:3x23 þ 7:3x24 þ 3:3x31 þ 7:3x32 þ 7:3x33 þ 5:5x34;

ZL2 ¼ 1:7x11 þ 8:4x12 þ 7:4x13 þ :85x14 þ 3:6x21 þ 2:7x22

þ 5:4x23 þ 6:7x24 þ 4:5x31 þ 1:7x32 þ 7:4x33 þ 1:7x34;

ZC2 ¼ 2x11 þ 8:95x12 þ 8x13 þ x14 þ 3:95x21 þ 3x22

þ 6x23 þ 7x24 þ 5x31 þ 2x32 þ 8x33 þ 2x34;

ZR2 ¼ 2:3x11 þ 9:3x12 þ 8:6x13 þ 1:15x14 þ 4:3x21

þ 3:3x22 þ 6:6x23 þ 7:3x24 þ 5:5x31 þ 2:3x32

þ 8:6x33 þ 2:3x34;

ZL3 ¼ 1:7x11 þ 3:6x12 þ 6:7x13 þ 2:7x14 þ 5:4x21 þ 3:6x22

þ 7:4x23 þ 3:6x24 þ 7:4x31 þ 1:7x32 þ 4:5x33 þ :85x34;

ZC3 ¼ 2x11 þ 3:95x12 þ 7x13 þ 3x14 þ 6x21 þ 3:95x22

þ 8x23 þ 3:95x24 þ 8x31 þ 2x32 þ 5x33 þ x34;

ZR3 ¼ 2:3x11 þ 4:3x12 þ 7:3x13 þ 3:3x14 þ 6:6x21 þ 4:3x22

þ 8:6x23 þ 4:3x24 þ 8:6x31 þ 2:3x32 þ 5:5x33 þ 1:15x34:

Also, the supply and the demand constraints are calcu-

lated as follows:

x11 þ x12 þ x13 þ x14 � 9:5;

x21 þ x22 þ x23 þ x24 � 12:2;

x31 þ x32 þ x33 þ x34 � 15:2;

x11 þ x21 þ x31 � 10:5;

x12 þ x22 þ x32 � 7:8;

x13 þ x23 þ x33 � 7:5;

x14 þ x24 þ 34� 5:8:

Finally, the proposed model of the application example is

transformed into an interval optimization in triplet as

follows.

Model 7

minimize ½ZLk; ZCk; ZRk� ðk ¼ 1; 2; 3Þ
subject to x11 þ x12 þ x13 þ x14 � 9:5;

x21 þ x22 þ x23 þ x24 � 12:2;

x31 þ x32 þ x33 þ x34 � 15:2;

x11 þ x21 þ x31 � 10:5;

x12 þ x22 þ x32 � 7:8;

x13 þ x23 þ x33 � 7:5;

x14 þ x24 þ 34� 5:8;

xij � 0 8 i; j:

7.1 Results and discussion

We apply two approaches to solve Model 7 with the help of

LINGO software. The IF approach provides the optimal

(compromise) solution with the degree of membership as

0.5324982 and the degree of non-membership as

0.4675018; the solution is x11 ¼ 5:826373; x14 ¼
3:673627; x23 ¼ 7:5; x31 ¼ 4:673627; x32 ¼ 7:8; x34 ¼
2:126373: The solution is derived using GP approach as

x11 ¼ 5:843116; x14 ¼ 3:656884; x23 ¼ 7:432055; x24 ¼
1:093637; x31 ¼ 4:656884; x32 ¼ 7:8; x33 ¼ :06794452;
x34 ¼ 1:049479: A comparison between the optimal

(compromise) solutions calculated from both approaches to

each objective function is presented in table 4.

Comparing the results from table 4, we conclude that IFP

produces a better result (from Def. 2.10) than the GP

approach in our proposed study. One can consider any type

of example on TP for efficiency of the proposed study. Both

the solutions satisfy Model 2 at ða; bÞ cut level. The IF

costs are obtained from IFP approach as follows:

Table 4. Comparison between the results obtained from two approaches.

Objective function Intuitionistic fuzzy programming Goal programming

Z1 [150.8078, 162.8360, 174.8642] [153.5500, 165.3644, 177.1789]

Z2 [91.43357, 103.5473, 115.6609] [97.0050, 109.1178, 121.2307]

Z3 [124.9759, 137.7890, 150.6021] [127.6599, 140.6775, 153.6950]
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fZ1
I ¼ð119:908238; 163:210984; 202:76373Þ

ð94:958238; 163:210984; 229:1269165Þ;
fZ2

I ¼ð61:6104405; 103:547254; 145:4840675Þ
ð42:0604405; 103:547254; 165:0340675Þ;

fZ3
I ¼ð95:0785755; 137:789016; 180:4994565Þ

ð71:3549485; 137:789016; 202:38627Þ:

IF costs are calculated from GP approach as follows:

fZ1
I ¼ð120:3789746; 160:4886386; 196:8822752Þ

ð95:3729236; 160:4886386; 230:5355035Þ;
fZ2

I ¼ð66:13991912; 107:0188812; 147:8978432Þ
ð46:5678406; 107:0188812; 170:3957085Þ;

fZ3
I ¼ð96:42844406; 139:6826666; 182:3900706Þ

ð73:2802723; 139:6826666; 205:845993Þ:

8. Conclusion and future study

We have analysed the MOTP in IF environment in our

paper. More specifically, the parameters of the MOTP such

as the transportation cost, the supply and the demand have

been treated as IFNs. Considering the specific cut interval,

the IF transportation cost of cost matrix is converted to the

interval cost matrix in the proposed problem. Again, using

the specific cut interval, the IF supply and the IF demand of

the MOTP are reduced to the inequality interval form. The

values of a and b are prescribed by the decision maker

according to her/his choice in the proposed problem. Each

objective function is represented in triplet with left, right

and centre interval form, and hence the proposed problem

becomes a multi-objective interval optimization problem.

To solve the formulated problem, we have constructed the

linear membership and the non-membership functions to

each parameter. Then the proposed MOTP is solved by two

approaches, namely the IFP and the GP. Thereafter, we

have derived the optimal (compromise) solutions for each

approach with specific instance and the solutions are

compared. Finally, we have concluded that the IFP

approach produces a better solution compared with GP

approach of the proposed problem. Our proposed method is

not applicable when the transportation parameters are not

IF in nature. Also, our proposed method is not suitable for

arbitrary choice of the values of (a, b).

We must emphasize that in relation to this paper, there

are other lines of work of absolute relevance and impor-

tance that we have not raised because they are outside the

objectives initially set; however, in future investigation, one

can analyse the MOTP with parameters that are interval-

valued IFNs and study the effect of variation in solution of

the MOTP. In the same way, possibility of using fuzzy

MCDM methods [36] is an interesting line to be explored in

forthcoming paper(s). Another scope to consider is the non-

linear membership function and non-linear non-member-

ship function like exponential, hyperbolic, etc., instead of

linear membership and non-membership functions for

solving the MOTP. Besides, it is of upmost importance to

think about real world problems in this context (cf.

[37–41]), to see that we have problems with large dimen-

sions where it is not possible to apply the algorithms pre-

sented here. In this regard, a line of research that we intend

to explore in the future is the application of meta-heuristic

algorithms to solve such problems. Nature-inspired meta-

heuristic algorithms, such as Genetic Algorithms, Ant

Colony Optimization, Simulated Annealing, etc., seem

more than appropriate to successfully solve these problems,

and will be the grounds for research work in the near future.
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