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New Approach for the Identification and
Validation of a Nonlinear F/A-18 Model

by Use of Neural Networks
Nicolas Boëly and Ruxandra Mihaela Botez

Abstract— This paper presents a new approach for identifying
and validating the F/A-18 aeroservoelastic model, based on flight
flutter tests. The neural network (NN), trained with five different
flight flutter cases, is validated using 11 other flight flutter test
(FFT) data. A total of 16 FFT cases were obtained for all three
flight regimes (subsonic, transonic, and supersonic) at Mach
numbers ranging between 0.85 and 1.30 and at altitudes of
between 5000 and 25 000 ft. The results obtained highlight the
efficiency of the multilayer perceptron NN in model identification.
Optimization of the NN requires mixing of two proprieties: the
hidden layer size reduction and four-layered NN performances.
This paper shows that a four-layer NN with only 16 neurons
is enough to create an accurate model. The fit coefficients were
higher than 92% for both the identification and the validation
test data, thus demonstrating accuracy of the NN.

Index Terms— Aeroservoelasticity, aircraft validation and
identification, flight flutter tests, neural network.

I. INTRODUCTION

O
VER the last two decades, a great deal of attention
has been directed at multilayer neural network (NN)

theories through studies and developments in a wide range
of fields, such as pattern classification, model identification,
and control. It has been demonstrated that NNs in general,
and multilayer perceptron NNs in particular, could serve as
universal approximators for unknown systems or unknown
mathematical functions. In [1] it was proved that multilayer
feed forward NNs, composed of a finite number of neurons and
arbitrary activation functions, were universal approximators. A
mathematical proof of this type of universal identification has
been demonstrated [2]–[4].

As far as hidden neurons are concerned, an over-sized

network could over-fit the noise included in test data and over-

learn it for a special data set, in which case the adaptation to
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unknown test data should be an issue due to the over-training.
Conversely, a hidden layer that is too small could significantly
reduce the results accuracy. Reference [5] suggested the use
of an NN genetic algorithm in order to optimize the data, but
this method was, however, computationally time consuming.

Destructive and pruning methods are also available for
finding the NN size for model identification: the destructive
methods consist in a step-by-step deletion of useless or redun-
dant neurons in an oversized network [6], while the pruning
methods provide a real-time improvement of the NN perfor-
mance by increasing the hidden layer size [7]. A logarithmic
function was used in [8] to empirically demonstrate the direct
relationship between the number of identification iterations
and the hidden layer size. They used the entropy theory to
evaluate the effectiveness of the trained NNs.

NN methodologies could thus be used to identify any
aeroelastic model, as is the case in this paper. The other
crucial parameter in the NN architecture is the choice of the
activation function. The application of NN to a real-world
system remains a challenge in system identification. Back-
propagation NNs are the most commonly used NNs. Indeed,
two other studies were performed in our laboratory on the
F/A-18 model identification; the first study was based on the
combination of NN and fuzzy logic, which was presented in
detail in [9], while the second study was based on fuzzy logic
methodologies, as was shown in [10].

Although NNs have been studied for many years, there is
still no efficient method for calculating optimal NN parame-
ters, such as the layer size, the number of neurons, and the
number of iterations required to train the NN. Besides, the
identification data must be chosen carefully, otherwise, under-

learning could occur, leaving the NN unable to fit any data.
The other crucial parameter in the NN architecture is the
choice of the activation function [see Fig. 6 and (2)]. The
way in which these parameters are chosen is explained in
Section III-A.

NNs are not often used to identify aircraft’s aeroelastic
behavior, nevertheless, they are used to predict the flight flutter
speed. A description and the results are available in [11].

In this paper, the aeroservoelastic F/A-18 model is identified
and validated using NN algorithms, and NN parameters are
properly sized. To obtain the required adaptation and gen-
eralization capabilities for different flight flutter cases, the
NN must be trained. Section II states the problem, while
Section III establishes the optimal parameters required to train

1045–9227/$26.00 © 2010 IEEE
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Fig. 1. Flight cases used for identification vs. flight cases used for validation.
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Fig. 2. OBES control inputs vs. time.

the NN model identification. Results obtained with the new
NN method are shown in Sections IV and V, and conclu-
sions are presented in Section VI. In this paper, the F/A-18
aeroservoelastic model identification is validated using differ-
ent flight flutter test (FFT) data from those used for the model
identification using the new NN methodologies.

II. PROBLEM STATEMENT

Aeroservoelastic interaction studies include the investigation
of surface deformations of aircraft structures and their inter-
actions with the aircraft controls. In this paper, a nonlinear
F/A-18 aircraft model is built by linking the control sur-
face deflections to the aircraft’s structural deflections. Sixteen
different FFT data expressed in terms of different Mach
numbers and altitudes were collected and provided to us by
NASA’s Dryden Flight Research Center (DFRC) laboratories.
We divided these 16 FFT cases into two types of FFT data:
five were used for the NN model identification and 11 for the
NN model validation, as shown in Fig. 1.

In order to obtain the recorded FFT data shown in Fig. 1,
the flight control computer was modified by adding a research
flight control system to generate the Schroeder frequency
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Fig. 3. Left wing accelerations, speeds, and deflection positions-variations
with time.
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Fig. 4. FFT data processing scheme.

sweep control inputs. This processor was activated by the
pilot with a cockpit switch. The software used to control the
actuators was called the On-Board Excitation System (OBES).
The input activated by the OBES was a Schroeder frequency
sweep equally spaced in the frequency domain. An example
of the OBES controls is shown in Fig. 2.

The OBES Schroeder excitation signal is defined as

OBES(t) =

S
∑

k=1

Aksin (2π fk t + ϕk) (1)

where fk is the kth measurement frequency, ϕk is the kth phase
and Ak is the kth amplitude of the OBES Schroeder signal.
Details of the Schroeder signals theory are given in [12]. The
OBES Schroeder signals were sent to the aircraft actuators
to generate the F/A-18 control surface oscillations. Records
of structural surface accelerations were obtained at 30-s time
intervals, and we integrated the accelerations twice to obtain
the surface deflections [13]. These integrations remove noise
disturbances due to accelerations, as shown at the bottom of
Fig. 3, where variations in structural deflections with time are
presented for the left wing.

In Fig. 4, the fast Fourier transform data-processing scheme
explains how the surface positions were generated and there-
fore obtained from pilot manoeuvres.

The six inputs considered in Fig. 5 are the left and right
aileron positions AI L L and AI L R ; the left and right stabilizer
positions ST BL and ST BR ; and the left and right vertical tail
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positions V E RTL and V E RTR . The four outputs are the left
and right wing positions W I NGL and W I NG R ; and the left
and right trailing edge flap positions T E FL and T E FR .

The multiple input–multiple output (MIMO) model link-
ing the six inputs to the four outputs is clearly shown in
Fig. 5. A specific NN architecture was chosen for the MIMO
model, which was trained using only five flight flutter cases
(see Fig. 1). The NN model was then validated by using the
other 11 flight cases in order to validate the generalization
ability of the model identification. This paper provides a
new way of aircraft identification and validation using new
NN methodologies, thus providing a better understanding
of aircraft flutter behavior in three primary flight regimes
(subsonic, transonic, and supersonic).

In this paper, the scales of the axes are not represented
because of the confidentiality of data that were provided by
the NASA DFRC.

III. NN ARCHITECTURE

A. Methodology

In order to define the NN architecture, we must choose the
values of its main five parameters, namely the input layer size,
the hidden layer size, the output layer size, the number of
neurons of each layer, and a proper identification dataset.

One neuron, composed of weights, bias, and an acti-
vation function, is defined in Fig. 6, where dk−1

j ( j =

1, . . . , N), dk
i , f k, wk

i j , and bk
i are the input data, the output

data, the activation function, the weights, and the biases of its
kth layer. Such a neuron is expressed as

dk
i = f k

⎡

⎣

N
∑

j=1

(

wk
i j dk−1

j

)

+ bk
i

⎤

⎦ . (2)

There is no rule for the choice of the layer size. In order
to simplify the NN identification model, is assumed that the
input layer size would equal to its first hidden layer size. An
increase in the number of neurons on the input layer would
increase the number of useless or redundant neural weights for
identification. Conversely, having a small number (one or two)
of neurons on the input layer would decrease the generalization
capacity of the model due to a lack of information. As far as
the output layer is concerned, the choice is easier thanks to the
fact that the output layer size must be the same as the output
data size, which is 4 (see Fig. 5).

To finalize the general architecture, there is always the need
to choose the hidden layer size. In [14], it was highlighted that
an NN with no hidden layer size can only fit a linear function
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Fig. 6. kth neuron layer perceptron.

or a decision. One hidden-layer NN could approximate any
function representing a continuous mapping on finite mathe-
matical spaces. If one more hidden layer is added, the network
could approximate any mapping with any accuracy. A four-
layered NN was written in [15] that had higher generalization
capacity than a three-layered one. We do not know what type
of mapping could represent our system, and therefore two
hidden layers are chosen to represent our NN.

Rule-of-thumb methods have been explored in NN sciences
to calculate the number of neurons. This number could be
calculated either by taking the average between the input layer
size and the output layer size or taking two-thirds of the
input layer size plus the output layer size [14]. In [6], it was
shown that, to avoid redundant neurons, an optimized layer
should have between three and five neurons. In Section IV,
the influence of the number of neurons and the generalization
error on the identification model are analyzed.

The capabilities of three-layered and four-layered NNs were
studied in [15]. They showed mathematically that a four-
layered NN which has to give N outputs must have (N/2+3)

hidden neurons for any hidden layer. From this demonstration,
we chose to use a four-layered NN. As far as its layer sizes are
concerned, the input layer size and the output layer size have to
be equal, respectively, to the number of inputs and the number
of outputs. Thus, the NN has six inputs neurons whereas it
has only four outputs neurons. Using the rule of Tamura and
Tateishi, as we have four outputs signals, the number of hidden
neurons must be equal to (4/2 + 3), that is 5.

To put it in a nutshell, the NN of this FFT identification is
composed of four layers. The first layer, which is called the
input layer, has six neurons. The two hidden layer have both
five neurons as shown in [15]. Finally, the output layer has
four neurons.

This NN maps the FFT signals data for the entire flight
envelope. The NN is trained with exclusively the five training
test data. Its generalization capacity will be tested with all the
flight validation test data signals.

B. NN Back-Propagation Algorithm Description

The back-propagation learning laws from the Levenberg–
Marquardt algorithm, which is described in [16], are used in
identification simulation.
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Fig. 8. MIMO model identification results for M = 1.30 and altitude H =

25 000 ft.

The multilayer network back-propagation algorithm is a
gradient descent optimization procedure, in which a mean
square error performance index is minimized by adjusting the
network parameters (weights w and biases b), as shown in
[17]–[19].

We can say that the first step consists in the forward
propagation of the input through the network, followed by
the second step, which involves the calculation of the mean
square error performance index of the NN model, the third,
which is the backward propagation of the sensitivities through
the network, and finally, the fourth step, which consists of an
update of the biases and weights, see Fig. 7.

There are two cases to be considered: 1) if the entire squared
error decreases after a weight and bias update, both updates are
accepted and the learning rate is multiplied by a factor higher
than 1, and 2) if the entire squared error increases by less
than the defined percentage, then the weight and bias update
are accepted, but the learning rate is unchanged.

One of back-propagation algorithm problems we must face
is the achievement of a global or a local minimum. In both

TABLE I

FIT COEFFICIENTS (%) FOR FIVE IDENTIFICATION FFT DATA MODEL

Mach Altitude WINGL WINGR TEFL TEF R

number 103 ft

0.85 5 98.02 99.44 99.64 99.03
0.9 10 97.61 98.95 99.22 98.18
1.1 15 96.79 98.26 99.64 98.07
1.2 20 98.78 96.85 98.28 97.46
1.3 25 98.72 95.55 94.16 94.89

Left Trailing Edge Flap Position vs. time Right Trailing Edge Flap Position vs. time 

Left Wing Position vs. time Right Wing Position vs. time 

NN model

Test data

Time [sec] Time [sec]

Fig. 9. MIMO aeroservoelastic model validation for M = 1.10 and H =

25 000 ft.

cases, the algorithm guarantees its convergence to a solution
that minimizes the mean squared error, as long as the learning
rate is not too high.

As previously indicated, the weights and biases are chosen
arbitrarily at the first iteration. To avoid a local minimum,
several initial guesses are made in order to ensure convergence
to the global minimum.

One criterion is applied to estimate the degree of the NN
model identification and to determine whether it would fit the
FFT data. The fit coefficient is expressed through (3)

F I T = 100

[

1 −

√

∑

(t − dm)2
∑

[t − mean(t)]2

]

. (3)

Equation (3) shows the definition of this criterion as the L2-
norm of the error between the FFT data and the NN model
over the L2-norm of the error between the FFT data and its
mean value.

The mean values of the four output fit coefficients are com-
pared to find out which NN case fits the best for our system
(see Table I). Results are further analyzed on the basis of this
criterion, using identification, validation, and robustness tests.

IV. RESULTS

The NN model obtains fit coefficients between 94.16% and
99.64% for the five identification cases (Table I).

The worst NN model identification case is the one corre-
sponding to the last row shown in Table I, and corresponding
results are presented visually in Fig. 8.
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Fig. 10. MIMO aeroservoelastic model validation for M = 1.20 and H =

10 000 ft.
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Fig. 12. Left and right aileron positions original signals, left and right aileron
positions perturbed signals: variations with time.

V. VALIDATION OF THE NN IDENTIFIED MODEL

A. Generalized Capacity

Table II and Figs. 9 and 10 show the results obtained for
the NN model identification and validation. In order to analyze

TABLE II

FIT COEFFICIENTS FOR NN MODEL VALIDATION BY USE OF 11 FFT DATA

Mach Altitude WINGL WINGR TEFL TEF R

number 103 ft

0.85 10 97.93 98.46 98.31 97.32
0.85 15 98.45 98.25 98.28 97.13
0.9 5 93.26 95.47 96.95 96.88
0.9 15 94.75 98.52 98.68 97.35
1.1 10 98.24 98.85 99.19 97.58
1.1 20 97.66 98.81 96.97 96.65
1.1 25 93.30 96.54 95.11 91.00
1.2 10 89.29 92.04 92.16 96.70
1.2 15 98.54 98.08 98.28 97.90
1.2 25 97.22 98.48 97.84 97.11
1.3 20 92.62 93.04 95.31 98.12

TABLE III

FIT COEFFICIENTS FOR ROBUSTNESS TEST FOR ALL FLIGHT CONDITIONS

Mach Altitude WINGL WINGR TEFL TEF R

number 103 ft

0.85 5 77.84 80.79 83.80 86.90
0.85 10 89.99 94.40 79.51 87.33
0.85 15 83.68 81.24 87.85 85.48
0.9 5 87.93 92.07 91.58 87.12
0.9 10 89.32 90.72 87.10 79.54
0.9 15 83.90 92.78 86.01 88.30
1.1 10 83.13 78.76 89.60 81.03
1.1 15 79.25 90.37 89.49 90.26
1.1 20 87.11 90.34 83.65 86.89
1.1 25 83.40 89.41 79.17 85.71
1.2 10 86.37 76.68 88.19 86.95
1.2 15 84.89 91.23 88.76 78.95
1.2 20 84.79 92.56 89.32 88.65
1.2 25 90.46 91.23 87.78 90.18
1.3 20 76.98 84.63 93.36 83.37
1.3 25 76.78 83.76 81.39 88.38

the trained NN generalization abilities, the 11 other FFT tests
(see Fig. 1) were considered for the NN model validation,
while 5 FFT tests were considered for its identification. The
fit coefficient values are shown in Table II.

These results demonstrate the accuracy of the NN identifi-
cation flutter model with unknown flight test cases used for
its validation. Even if the flight envelope is spread from H =

5000 ft to H = 25 000 ft and from M = 0.85 to M = 1.3,
we assume that this identification and validation dataset is a
judicious choice representing an aircraft’s aeroelastic behavior.
The results obtained for the worst cases are shown in Figs. 9
and 10.

These results show the generalization ability of the NN
model to fit FFT data that has never been trained. The fit
coefficients for all validation FFT cases are higher than 90%.

B. Robustness Tests

The robustness of our estimated model was evaluated by
considering the model’s output resulting from a simulation
using slightly perturbed input signals [13]. Actually, the per-
turbed input signals correspond to the original input signals
that are sampled and re-sampled to obtain the original input
signal sample time (Fig. 11).

The purpose of this test was to evaluate the effect on
the model’s output for negligible input signal perturbations.
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Fig. 13. Robustness test results for M = 0.85 and H = 5000 ft.
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Fig. 14. Robustness test results for M = 1.3 and H = 25 000 ft.

The model is considered robust if it is not sensitive to very
small perturbations of its inputs.

The perturbed input signal was generated by performing the
following operations: 1) re-sampling of the signal by keeping
only one out of 500 points, and 2) reconstruction of the signal
from these points by interpolations in order to obtain the
initial sampling rate. This procedure is illustrated in Fig. 11,
where �tsample is the sampling rate over the concatenated time
interval of 150 s, which is equivalent to adding a large number
of small perturbations to the input signals in order to measure
the model sensitivity to these perturbations. If the NN model
is robust, it must react very well to small perturbations of the

input signals, which means that we have neither divergence
nor oscillations on the output signals.

Next, Fig. 12 highlights the difference between the original
left and right aileron position signals and the perturbed left
and right aileron position signals.

Table III shows the fit coefficient values obtained for the NN
model using the robustness test procedure. The values of these
fit coefficients demonstrate the robustness of the NN model.

These results show the NN identification model accuracy.
Even though the flight envelope covers a broad range going
from H = 5000 to H = 25 000 ft and from M = 0.85 to
M = 1.3, the fit coefficients of the two worst robustness tests
are higher than 76%. Figs. 13 and 14 show the robustness test
results for the two worse cases.

VI. CONCLUSION

Sixteen FFTs for different combinations of Mach numbers
and altitudes were used for NN model identification and vali-
dation in this paper. The NN algorithm was used for the model
identification from FFTs. Two types of tests, namely validation

and robustness tests, were used to evaluate the fit coefficients
needed to quantify the aircraft model’s performance.

The fit coefficients calculated through validation tests were
found to be higher than 92.04%, while those obtained through
robustness tests had the worst values (76.68%). Therefore, the
estimated model fit the FFTs data very well. The lowest fit
coefficient was obtained for the right wing position for the
flight condition expressed by M = 1.20 and H = 10 000 ft,
while the highest was obtained for the right wing position
for the flight condition expressed by M = 0.85 and H =

10 000 ft. The trained NN model was validated using 11 other
FFT data.

The NN identification method has the advantage of having a
short computation time and estimates an excellent model from
the flight test inputs and outputs without a priori knowledge
about the aircraft model dynamics. The estimated model was
found to be robust following an evaluation using the re-
sampling technique. From the results obtained, it can be
concluded that our NN method is extremely efficient for
aircraft model identification based on known FFTs.

These results are better than those obtained for the previous
identified state-space model, using the subspace method by
Sandrine De Jesus Mota et al. [13]. The drawback of our NN
method is its stability study, which would be more difficult to
analyze using NN data than by using the state-space model.
However, this new NN aircraft identification model has proven
its ability to generate proper flight flutter deformations at a new
flight envelope point. Thus, an MIMO nonlinear NN model
could very well estimate structural surface deflections for 16
flight conditions.

This methodology allows us to compute nearly online an
NN identification mapping of the aircraft’s aeroelastic behav-
ior. This was successfully obtained with FFT data signals
provided by the NASA DFRC, with F/A-18 active aeroelastic
wing A/C. This NN mapping would be used for the establish-
ment of a flight flutter suppression controller in order to avoid
flutter effects on structural and control deflections.
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