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Abstract

The Oberst method is widely used for the measurement of the mechanical properties of
viscoelastic or damping materials. The application of this method, as described in the ASTM
E756 standard, gives good results as long as the experimental set-up does not interfere with
the system under test. The main difficulty is to avoid adding damping and mass to the beam
owing to the excitation and response measurement. In this paper, a method is proposed to skirt
those problems. The classical cantilever Oberst beam is replaced by a double sized free-free
beam excited in its center. The analysis is based on a frequency response function measured
between the imposed velocity at the center (measured with an accelerometer) and an arbitrary
point on the beam (measured with a laser vibrometer). The composite beam (base beam +
material) properties are first extracted from the measurement by an optimization algorithm.
Young’s modulus and structural damping coefficient of the material under test can be deduced
using classical formulations of the ASTM E756 standard for typical materials or using a finite
element model for more complex cases. An application to a thick and soft viscoelastic material
is presented, the results are shown to be consistent with Kramers-Kronig relations.



1 Introduction

The“Oberst beam”is a classical method for the characterization of damping materials based
on a multilayer cantilever beam (base beam + one or two layers of other materials). As the
base beam is made of a rigid and lightly damped material (steel, aluminum), the most critical
aspect of this method is to properly excite the beam without adding weight or damping. So,
exciting the beam with a shaker is not recommended because of the added mass (moving mass,
stinger misalignment, force transducer). Alternative solutions are suggested in the ASTM E576
standard [1]. An electro-magnetic non-contacting transducer (tachometer pick-up, for exam-
ple) can provide a good excitation but it is limited to ferro-magnetic materials. As aluminum
is widely used for the base beam, a small piece of magnetic material must be glued to achieve
specimen excitation.

This method creates two other problems. The first one is the difficulty to properly mea-
sure the excitation force. If there is no contact, the injected force must be evaluated by the
measurement of the voltage or current applied to the pick-up, without knowing what is really
proportional to the applied force. Moreover, this system is linear for small amplitudes. As the
measurement is made near resonances of the structure, it is not obvious that the hypothesis
of linearity is respected. The second problem is the fact that the small piece of ferro-magnetic
glued to the structure is another source of uncertainty (added damping due to the gluing, mass
of the added piece).

The measurement of the response of the beam is usually made using an accelerometer.
Even if the problem of added damping and mass is much less critical because small and light
accelerometers are available, it is preferable to avoid this solution for the same reasons as above.
A straightforward solution is to use a laser vibrometer, which can accurately measure dynamic
velocities with no contact. However, this equipment is much more expensive than a simple
accelerometer.

Another problem can occur because of the clamped condition of the beam, see figure 1.
The clamping is simulated by an increase of the thickness of the beam (the root). This root is
wedged into a heavy and stiff clamping system. Usually this system is satisfactory but problem
can occur in the case of misalignment, insufficient clamping force and bad machining of the root.
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Figure 1: Cantilever beam used in the Oberst method.



The objective of this study is to develop an alternative method to the one proposed in
the ASTM E756 standard [1], in order to avoid experimental uncertainties and increase the
precision of the measurement.

2 Principle

A cantilever beam has the same dynamical behavior than a free-free beam of twice the
length excited in its center by a normal imposed displacement Y0, see figure 2. In this case,
only the even modes of the free-free beam will be excited, and its modal behavior will be similar
to a clamped beam since the slope and the relative displacement to the imposed motion are
null at this point.
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Figure 2: Similarity between a free-free beam excited in its center and a cantilever beam excited
by its base.

An experimental set-up for the free-free beam excited in its center is proposed in figure 3.
The beam under test (with or without damping material) is simply screwed in its center to an
electro-dynamic shaker by mean of a threaded rod. In practice this is easy to set up; however
care must be taken on the precision of the location of the center to avoid an unbalanced system.

3 Theoretical background

3.1 Beam equation: compact model

The bending vibrations of a beam are described by:

Y (x, ω) = C cosh(βx) + D sinh(βx) + F cos(βx) + G sin(βx) (1)

with

β4 =
ρAω2

EI
(2)

where C, D, F and G are four unknown coefficients determined from boundary conditions, A is
the cross-section area, ω the pulsation, ρ the mass density of the beam, E the elastic modulus
(or Young’s modulus) and I the second moment of area of the beam cross section.
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Figure 3: Proposed experimental set-up: a composite beam excited in its center by a normal
imposed displacement.

For the free-free beam problem shown in Fig. 2, the following four boundary conditions are
used:

EI
∂2Y

∂x2
= 0 at x = 0 and x = L, (3)

∂

∂x

(
EI

∂2Y

∂x2

)
= 0 at x = 0 and x = L, (4)

where L is the length of the beam.
These equations represent the bending moment and the shear force at both extremities of

the beam respectively. Conditions at x = 0 lead to a simplification of Eq. (1): C = F and
D = G.

The imposed displacement Y0 along the normal axis at the center point gives the following
cinematic constraints to be applied on Eq. (1):

Y (L/2) = Y0, (5)
∂Y (L/2)

∂x
= 0. (6)

Finally, if H is the ratio of the dynamic response of the beam divided by the imposed
motion, Eqs. (1) to (6) yield to:

H(x, ω) =
1
2

cosh(βL/2) + cos(βL/2)
1 + cosh(βL/2) cos(βL/2)

[cosh(βx) + cos(βx)]

+
1
2

sinh(βL/2)− sin(βL/2)
1 + cosh(βL/2) cos(βL/2)

[sinh(βx) + sin(βx)]. (7)

In this equation, the natural frequency equation for a clamped-free beam of length L/2 is
found in the denominator. This confirms the validity of the principle of the method explained
in section 2, in which the free-free beam excited in its center is similar to the Oberst beam.

It must be noted that the same model is used for both the bare beam and the composite
beam. In the second case, the beam is seen as a homogenous equivalent beam. The objective



is to determine de product E × I of the beam under test where E is the complex equivalent
Young’s modulus:

E = E′(1 + jη) (8)

with

E′ : Real part of the Young’s modulus,
η : Structural damping coefficient (real value).

I is the equivalent second moment of area. The extraction of the material mechanical
properties is made in a second step. Equation (7) is the “compact” model of the beam, because
there is no need to make a modal decomposition, all the information is included in this single
equation.

3.2 Validation of the model

The model has been validated using two beams. The first one is a 400.00 mm long (L)
aluminum beam of 19.97 mm wide (w) and 1.58 mm thick (H1). The real part of its Young’s
modulus E1 is 70.0 GPa and its structural damping coefficient η1 is 0.0007. These values have
been taken constant for preliminary validation purposes. The results are given in Fig. 4 for
a measurement point at the tip x = 0 of the beam. The agreement between the model’s pre-
diction and the measurement is good. The modal peaks are well located, the measured and
calculated levels are close. The measured curve is obtained using the set-up depicted in Fig.
3. Experimental set-up will be discussed in detail at section 4.

The frequency response function (FRF) between the middle point where the beam is ex-
cited and the tip of the beam tends towards 1 (0 dB) between two modes, the two points are
vibrating in phase with the same amplitude. Near a mode, the response point reaches high
amplitudes controlled by the damping. The frequencies of the modes could be predicted using
the classical formulation for a cantilever beam. Conversely, those FRFs can be used directly
to calculate the mechanical properties of materials using the ASTM E756 standard for example.

The second example (figure 5) is the result of the measurement on the same beam with
an unknown double sided adhesive of thickness H2 = 0.13 mm. The Young’s modulus has
been adjusted, for the first mode, to obtain an equivalent complex modulus E allowing a good
fitting of the calculated curve with the measured one for the first resonance. The fact that the
real part of the Young’s modulus and the damping coefficient of the composite beam are not
constant cannot be clearly seen on this scale although it can be verified. This example shows
that the compact model can also be used for composite beams. In the following, the results will
not be presented on such a wide frequency band. They will concentrate on each mode sepa-
rately, in order to obtain at least one value for the damping and Young’s modulus for each mode.

The advantage of this method is to calculate the properties of the composite beam using
several data points and the real analytical formulation for the curve fitting. The ASTM E756
standard uses the values of the modal frequencies (read at the peaks) and damping (measured
with an n dB bandwidth method). The modal frequency is equal to the peak frequency as long
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Figure 4: Validation of the compact model, bare aluminum beam (L = 400 mm, w = 19.97
mm, H1 = 1.58 mm, T = 21o C).

as the damping is light, in the case of high damping, the natural frequency should be corrected.
Secondly, the n dB bandwidth method is a quick way to evaluate the damping and, actually, is
not very precise. A curve fitting method is preferable. However, usual curve-fitting algorithms
are based on trial functions, which are not the real function. The second objective of this work
is to improve the precision of the determination of materials properties using a function which
depicts the real physical problem: Eq. (7).

3.3 Calculation of material properties

In the following, the approach is the same as the ASTM E756 standard, the calculation
of material properties are based on the same models. The only difference is that the ASTM
E756 standard separates the Young’s modulus (real number) to the damping (real number)
and makes two calculations. In this study, all the moduli are complex numbers.

3.3.1 Extensional damping

When the damping material is unconstrained (glued on one or two faces of the base beam),
the treatment is called extensional damping. As one of the faces of the material is free, the
added rigidity is due to the bending. The determination of the materials properties is based on
the Ross, Ungar and Kerwin [2, 3] model for a multi-layer structure. The referred model allows
to calculate the flexural rigidity E×I of a multi-layer beam or plate using the properties of the
different layers (density, thickness, length, Young’s or shear modulus). The following equations
give the equivalent flexural rigidity for a single sided damped beam and a double sided damped
beam, respectively:

EI = E1I1

(
1 + eh3 + 3(1 + h)2

eh

1 + eh

)
, (9)

EI = 2E2I2 + E1I1. (10)
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Figure 5: Validation of the compact model, aluminum beam with an unknown adhesive layer
L = 400 mm, w = 19.97 mm, H1 = 1.58 mm, H2 = 0.13 mm, T = 21o C).

with

e : Young’s modulus ratio E2/E1,
h : Thickness ratio H2/H1,
E1 : Young’s modulus of the base beam (N.m−2),
I1 : Second moment of area of the base beam cross section (m4),
H1 : Thickness of the base beam (m),
E2 : Young’s modulus of the tested material (N.m−2),
I2 : Second moment of area of the tested material cross section (m4),
H2 : Thickness of the tested material (m).

The calculation of the Young’s modulus of the material E2 using Eq. (9) leads to the
resolution of an equation of the second order (two complex roots). But only the root with the
positive real and imaginary part is the physical solution.

3.3.2 Shear damping

When the material is constrained between the base beam and a rigid layer, the composite
beam has a slightly higher flexural rigidity due to the shear deformation of the sandwiched
material, which is much higher than the bending deformation alone. Equation (11) [3] gives
the flexural rigidity for a composite beam with a shear damping treatment assuming that the
base beam and the rigid constraining layer are similar.

EI =
E1I1

6
+ E1H1 (H1 + H2)

2 G2

E1H1H2β2 + 2G2
(11)

with G2: Complex shear modulus of the tested material (N.m−2).
The second term of Eq. (11) is due to the flexural rigidity of the sandwiched material. For

soft material, this term can be neglected for the first modes. However, it is interesting to note



that the shear deformation energy decreases as the frequency increases due to the division by
the squared modal constant.

The complex Young modulus (or shear modulus) can be extracted from Eqs. (9) to (11)
when the composite flexural rigidity E× I has been previously determined by the curve fitting
of Eq. (7) with experimental measurements for each frequency band containing one vibration
mode. It must be noted that expressions (9) to (11) depend on assumptions detailed in [1, 3].

4 Application

Estimations of the Young’s modulus and the structural damping coefficient of a polyvinyl
chloride based viscoelastic material are presented as an application of the proposed experimental
set-up. This material of density 1260 kg.m−3 will be named material R in the following.

4.1 Preparation of experiments

4.1.1 Selection of test configuration

The first step is to select the most appropriate beam configuration for the test. If the
material under test is rigid enough to be measured alone, this is the best way to proceed. If
not, it is suggested to start with the sandwich composite beam for softer materials like thin
elastic materials. For heavier or more rigid materials (damping sheets), the single side beam
can be tried, but the base beam should be as thin as possible and should never be thicker than
the material under test. Globally, the ASTM E756 recommendations must be followed.

From static obervations, the one side configuration is chosen for material R.

4.1.2 Gluing

The gluing of the material under test is another source of error. Some materials are self-
adhesive, and in some cases the glue is not strong enough to insure a good contact between
the two surfaces. In the case of slipping, the imposed deformation from the base beam to the
material can lead to a slight underestimation of the properties of the material. Thin double
sided adhesives can be used but great care must be taken as the adhesive layer’s presence can
affect the results. Particulary, it must be kept to a minimum thickness as recommended in the
ASTM E756 standard.

To insure that the gluing of material R is sufficient, the double sided adhesive presented in
section 3.2 is used. Preliminary tests have shown that the adhesive layer modify the response
of the beam (See Fig. 5 compared to Fig. 4). A first inversion, using the method described
in section 3.3.1, is thus realized to estimate an equivalent Young’s modulus and structural
damping coefficient for the aluminum beam with adhesive layer.

4.2 Experimental set-up

The experimental set-up is shown in figure 6. The damping layer is glued to the aluminum
beam with a thin double sided adhesive. An electrodynamic shaker driven by a white noise
signal excites the multilayer in its center through a line displacement. The tip motion is
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Figure 6: Experimental set-up.

measured with a laser vibrometer and the center motion using an accelerometer. To obtain
displacements, one time integration and a double time integration are performed on the laser
vibrometer signal, and on the accelerometer signal, respectively.

Note that the rod’s diameter must be minimum to support the accelerometer and impose
the local displacement.

Measurements have been realized between 980 to 1000 mbar of static pressure with 10 to
20 % of relative humidity.

4.3 Results

Figure 7 presents 6 FRF measurements obtained for material R at temperatures from 30oC
to 5oC. On this figure, the frequency and temperature dependence of the material’s stiffness
and its structural damping is clear. The viscoelastic material stiffness decreases with temper-
ature.

The thickness of the material sample is 6.35 mm (1/4”). The classical analysis for thin
beams described in section 3.3 or in the ASTM E756 [1] standard is not relevant for such a
thickness. Consequently, a hierarchical 3-Dimensional finite element software [4] is used in the
inversion to model the material R perfectly bonded onto the equivalent beam defined at section
3.2. A quasistatic measure [6] of material R Poisson ratio νxz reveals an elastic anisotropy :
0.11. Although this value is not usual, it will be used in the 3-D simulation and assumed to be
real and constant in the frequency range of interest and in temperature. This latter assumption
can be challengeable [5].

The rigidity of the previous base beam, with a double sided adhesive layer, is compared to
the added rigidity due to the material R under test. These comparisons at various frequencies
and temperatures allow to characterize material R elastic properties.
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Figure 7: Measured frequency responses for a one side configuration beam with viscoelastic
material R as function of frequency and temperature.

Figure 8 shows the variation of the real part of the Young’s modulus, in the x-direction, with
frequency and temperature for material R: E′

3. These results are obtained from measurements
of figure 7 and the use of a Levenberg-Maquardt inversion algorithm [7, 8]. The figure confirms
the earlier observations : the material’s modulus decreases significantly with temperature.

The variation of structural damping η3 with frequency and temperature, for this viscoelas-
tic material, is shown in figure 9. A material’s state transition, which will be more clearly
highlighted in Fig. 11 of section 4.4, can be observed.

In these two series of results, Fig. (8) and Fig. (9), the first mode results have been
ignored because of high sensibility of this mode to boundary conditions. The same coefficients
of variation as in the ASTM E756 standard applied on the precisions of these results, ie. 10%
to 20%.

4.4 Validation

The consistency of measurement data for material R are discussed looking at figures 10
and 11. These figures show results of the Time-Temperature Superposition (TTS) principle
application for material R [9, 10].

A curve fitting for the real part of Young’s modulus, E′
3, using the fractional Zener model

[11] with parameters M0 = 3.98 106 N.m−2, c = 202, α = 0.553 and τ = 1.82 10−6s is done on
figure 10.

On figure 11, measurements of the structural damping coefficient η3 are compared with the
theoretical calculation using the local K-K relations from dispersion of the Young’s modulus
[11]. The value of α greater than 0.5 and the low accuracy of structural damping coefficient
measurements can explain the underestimation of the theoretical calculus [11].
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Figure 8: Variation of the real part of Young’s modulus E′
3 with frequency and temperature for

viscoelastic material R. +: 5oC, o: 10oC, �: 15oC, 4: 20oC, ?: 25oC, �: 30oC. Measurements
points for each temperature are linked for the sake of legibility, not to suggest a linear evolution
between these points.
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Figure 10: TTS application: master curve of the real part of Young’s modulus (E′
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at a reference temperature of 20oC for material R. �: measurements, —: curve fitting of the
fractional Zener model [11].
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Figure 11: TTS application : master curve of the structural damping coefficient η3 at a reference
temperature of 20oC for material R. ◦: measurements, —: calculation using the local K-K
relations from dispersion of the Young’s modulus.



Acknowledgement

The authors would like to thank Christian Langlois for his precious help on the numerical
calculus.

References

[1] ASTM E756-98, Standard test method for measuring vibration-damping properties of
materials, American Society for Testing and Materials, 1998.

[2] Ross, R., Ungar E.E., Kerwin E.M., Damping of plate flexural vibrations by means of
viscoelastic laminate, Structural Damping, Proceedings of ASME, New York, 1959.

[3] Nashif A.D., Jones D.I.G., Henderson J.P., Vibration Damping, John Wiley & Sons, 1985.

[4] Langlois C., Modelling vibro-acoustic problems with finite elements, Master’s thesis, Sher-
brooke university (Qc), Canada, 2003

[5] Pritz T., Measurement methods of complex Poisson’s ratio of viscoelastic materials, Ap-
plied Acoustics, 60, 279-292, 2000.

[6] Langlois C., Panneton R., Atalla N., Polynomial relations for quasi-static mechanical
characterization of isotropic poroelastic materials, J. of the Acoustical Society of America,
110(6), 2001.

[7] Levenberg K., A method for the solution of certain non-linear problems in least-squares,
Quarterly of Applied Mathematics, 2(2), 164-168, 1944.

[8] Marquardt D.W., An algorithm for least squares estimation of non linear parameters,
SIAM J., 11, 431-441, 1963.

[9] Ferry J.D., Viscoelastic properties of polymers, John Willey and Sons, 1961.

[10] Corsaro R.D., Sperling L.H., Sound and vibration damping with polymers, American
Chem. Soc., 1990.

[11] Pritz T., Verification of local Kramers-Kronig relations for complex modulus by means of
fractional derivative model, J. of Sound and Vibration, 228(5), 1145-1165, 1999.


