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Abstract—In this paper, we propose a faceted requirement classification scheme for analyzing heterogeneous requirements. The
representation of vague requirements is based on Zadeh’s canonical form in test-score semantics and an extension of the notion
of soft conditions. The trade-off among vague requirements is analyzed by identifying the relationship between requirements,
which could be either conflicting, irrelevant, cooperative, counterbalance, or independent. Parameterized aggregation operators,
fuzzy and/or, are selected to combine individual requirements. An extended hierarchical aggregation structure is proposed to
establish a four-level requirements hierarchy to facilitate requirements and criticalities aggregation through the fuzzy and/or. A
compromise overall requirement can be obtained through the aggregation of individual requirements based on the requirements
hierarchy. The proposed approach provides a framework for formally analyzing and modeling conflicts between requirements, and
for users to better understand relationships among their requirements.

Index Terms—Vague requirements, requirements specifications, requirements trade-off analysis, requirements classification,
fuzzy logic.

——————————���F���——————————

1 INTRODUCTION

MAJOR challenge in requirements engineering of com-
plex systems is that the requirements to be captured

are imprecise in nature and usually conflicting with each
other [24], [33], [43]. Balzer et al. have argued that infor-
mality is an inevitable (and ultimately desirable) feature
of the specification process [1]. Similar ideas are also ad-
vocated by other researchers such as Borgida et al. [3],
Feather [14], Fickas et al. [8], Reubenstein and Waters [32],
and Niskier et al. [29]. Borgida et al. have further elabo-
rated that a good requirement modeling approach should
take the problem of describing nature kinds into account,
which usually runs the risk of being vague and subject
to contradiction [3].

However, most of the existing work on requirements
modeling are limited in dealing with this problem. Tradi-
tional requirements modeling approaches (formal or infor-
mal) either require the requirements be stated precisely or
completely exclude this problem out of the scope of the
modeling activity (e.g., see [9] for a survey). Knowledge-
based software engineering indirectly addresses problems
caused by the vagueness in the specification process by
converting domain-specific informal requirements into
formal ones [21], [26].

In this paper, we argue that there are various kinds of in-
formation in the informal requirements (i.e., requirements
are heterogeneous), and that to appropriately model the
requirements, there is a need for distinguishing those in-
formation in the requirements. We propose a requirements

classification scheme for classifying informal requirements
based on the principles of faceted classification scheme [31].
Four facets are identified for characterizing the require-
ments: content, uncertainty, vagueness, and competence.

Soft functional requirements based on fuzzy logic [44],
and an extension of the notion of soft conditions in TBSM
[42], [25] are to alleviate the difficulties in representing
vague requirements. More specifically, the soft functional
requirement is represented using the canonical form in test-
score semantics [45]. The trade-off among requirements is
analyzed by identifying the relationship between require-
ments which could be either conflicting, irrelevant, coop-
erative, counterbalance, or independent. Parameterized ag-
gregation operators, fuzzy and/or, are selected to combine
individual requirements. An extended hierarchical aggre-
gation structure is proposed to establish a four-level re-
quirements hierarchy to facilitate requirements and criti-
calities aggregation through the fuzzy and/or. A compro-
mise overall requirement can be obtained through the ag-
gregation of individual requirements based on the aggre-
gation hierarchical structure. The proposed approach,
called RTA (Requirements Trade-off Analysis), provides a
framework for formally analyzing and modeling vague
functional requirements.

This paper is organized as follows. We first introduce the
requirement classification in Section 2. The notion and for-
malization of soft functional requirements is discussed in
Section 3. The proposed approach for analyzing soft func-
tional requirements is presented in Section 4. RTA is applied
to the ISPBEX expert system as an example to illustrate the
potential benefits of our approach. Related work including
multicriteria optimization problem, AI planning and multi-
perspective specification, is described in Section 5. Finally,
we summarize the potential benefits of the proposed ap-
proach and our future research plan in Section 7.
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2 REQUIREMENTS CLASSIFICATION

As was observed by Blum that informal requirements are
heterogeneous, and can be organized in a variety of ways
[2]. In this section, a faceted requirements classification
scheme is proposed to facilitate the representation and
analysis of informal requirements, which can be considered
as an extension of Blum’s classification in [2].

To characterize the heterogeneous requirements in the
proposed framework, informal requirements are viewed as
a collection of statements. Each statement can be classified
under the four facets we have identified: content, uncer-
tainty, vagueness, and competence. The most common facet
is the contents of requirements: functional and nonfunc-
tional [35]. The construction of functional requirements in-
volves modeling the relevant internal states and behavior of
both the component and its environment. Nonfunctional
requirements usually define the constraints that the product
must satisfy. It is of interest to note that formally specifying
the nonfunctional requirements is difficult.

The second and third facets are related to the imperfect
information in informal requirements. Fuzzy logic re-
searchers have identified several categories for classifying
such information:

•� Zimmermann has distinguished uncertainty from im-
precision [46]. Uncertainty due to lack of information
is called stochastic uncertainty by contrast to the
vagueness (fuzziness) concerning the description of
the semantic meaning of statements. Imprecision is
meant in the sense of vagueness.

•� Dubois and Prade have pointed out that imprecision
and uncertainty can be considered as two aspects of
imperfect information: imprecision relates to the con-
tent of an item of information while uncertainty re-
lated to its truth (or conformity) to a reality [10]. In
[11], the notion of imprecision has been further elabo-
rated from the set-theoretic viewpoint. The meanings
of a precise, an imprecise, and a vague statement are
interpreted as a singleton, a crisp subset, and a fuzzy
subset, respectively.

•� Klir has divided uncertainty into two types: vague-
ness and ambiguity [23]. Vagueness is associated with
the difficulty of making sharp or precise distinctions
in the world. On the other hand, ambiguity is associ-
ated with one-to-many relations, that is, situations with
two or more alternatives that are left unspecified.

Our notion of vagueness is adopted from Dubois and
Prades’ definition in [11] in the sense that vagueness is re-

lated to the semantic meaning of the statements, and can be
described using three terms: vague, imprecise or precise.
Uncertainty is associated with the users needs, and can be
best described as follows: If the information in the informal
requirements are only partial known, which is resulted
from poorly understood users’ needs, then the require-
ments are uncertain. On the other hand, if the requirements
are completely known, then the requirements are certain.

The final facet concerns the competence of the require-
ments, that is, to discern if the requirement is rigid or
soft [42]. A rigid requirement must always be satisfied. A
soft requirement is a requirement that is desired to be sat-
isfied. Similar concepts can also be found in other disci-
plines, for example,

1)� in verification & validation of expert systems, Rushby
distinguished a minimum competence from a desir-
able competence [36], and

2)� in constraint-based reasoning, Borning et al. consid-
ered a solution could fall into a spectrum of admis-
sibility from the admissible solution to the optimal
one [19].

The proposed requirements classification scheme is sum-
marized in Table 1.

Traditional requirements modeling approaches only dis-
tinguish the functional requirements from nonfunctional
ones. No distinction has been made between rigid and soft
requirements (i.e., all requirements are treated as rigid).
Furthermore, the issues of uncertainty and vagueness in-
volved in the informal requirements were excluded out of
the scope of modeling activity. Based on our classification
scheme, the famous informal requirements of library prob-
lem described in [20], can then be classified under the cate-
gory of <functional, certain, precise, rigid>. The open re-
quirements (i.e., the needs are poorly understood) that
Blum attempted to address in [2] can be interpreted as a
requirement of <functional, uncertain, precise, rigid>. The
emphasis of the paper is on functional, certain and vague
requirements with regard to soft competence (called soft
functional requirements).

3 SOFT FUNCTIONAL REQUIREMENTS

In this section, we propose the use of soft functional require-
ments, an extension of the notion of soft conditions in TBSM
[42], to explicitly capture the imprecision of functional re-
quirements. In TBSM, the functionality of a task is specified
by properties of its state-transition, <a, b>, where b is the
state before the task, and a is the state after invoking the

TABLE  1
REQUIREMENTS CLASSIFICATION
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task. The functional requirement of a task can thus be speci-
fied using a pair <precondition, postcondition>. In the tradi-
tional approach to software specification, the precondition
and the postcondition describe properties that should be
held by the states b and a. These conditions specify a rigid
functionality because whether they are satisfied by a state is
a black-and-white situation. Rigid functional requirements
can be formally defined as follows:

DEFINITION 1 (Rigid Functional Requirement). A rigid func-
tional requirement of a task T is a pair of formula <ϕ1, ϕ2>
where ϕ1 is a precondition and ϕ2 is a postcondition, such
that for every <b, a> ∈ T,

hold(ϕ1, b) ⇒ hold(ϕ2, a),

where “hold(ϕ, b)” is a function that returns either 1 (true)
or 0 (false) in a state a, and ⇒ denotes logic implication
operator.

However, as was mentioned earlier, imprecision often
is inevitable in the functional requirements of complex
software systems. We propose the use of soft functional
requirements to directly express requirements that are
elastic in nature. A soft functional requirement describes
state properties that can be satisfied to a degree. By gener-
alizing the definition of rigid functional requirements, we
arrive at the following formal definition of soft functional
requirements.

DEFINITION 2 (Soft Functional Requirement). A soft functional
requirement of a task T is a pair of formula <ϕ1, ϕ2> where
ϕ1 is T’s precondition and ϕ2 is T’s postcondition, such that
for every <b, a> ∈ T,

fhold(ϕ1, b) 
f

⇒  fhold(ϕ2, a),

where “fhold(ϕ, b)” is a function that returns the degree to
which a formula ϕ is true in state s, and

f
⇒

denotes implication operator in fuzzy logic.

The function fhold is a generalization of the hold predi-
cate in situation calculus [28], which states properties that
are true in a given state. Note that a soft functional require-
ment degenerates to a rigid functional requirement when
fhold(ϕ, s) returns either 1 (true) or 0 (false). Therefore, a soft
functional requirement is a generalization of a rigid one.

The soft conditions can be represented using the notion
of canonical form in Zadeh’s test-score semantics [45]. A ba-
sic idea underlies test-score semantics is that a proposition
p in a natural language may be viewed as a collection of
elastic constraints, C1, …, Ck, which restricts the values of a
collection of variables X = (X1, …, Xn). In fuzzy logic, this is
accomplished by representing p in the canonical form

p → X is A

in which A is a fuzzy predicate or, equivalently, an n-ary
fuzzy relation in U, where U = U1 × U2 × … × Un and Ui, i =
1, …, n, is the domain of Xi. The canonical form of p implies

that the possibility distribution of X is equal to A πX = A
which in turns implies that Poss{X = u} = µA(u), u ∈ U,
where µA is the membership function of A and Poss{X = u}
is the possibility that X takes u as its value [44]. It is in this
sense that A, acting as an elastic constraint on X, restricts
the possible values which X can take in U.

DEFINITION 3. Let p be a proposition in its canonical form, X
is A, X is a state variable in state s, and ui is the value of X
in s. Then

fhold(p, s) = µA(ui).

This definition is useful for deriving conflicting and co-
operative degrees for soft requirements.

4 ANALYZING SOFT REQUIREMENTS

Generally, there are three steps involved in performing the
trade-off analysis for soft requirements:

1)� to examine the conflicting and cooperative degrees for
any two individual soft requirements;

2)� to identify the relationships between soft require-
ments based on the conflicting and cooperative de-
grees; and

3)� to aggregate soft requirements for a compromise over-
all requirement.

4.1 Defining Conflicting and Cooperative Degrees
Intuitively, two requirements are conflicting with each other
if an increase in the degree to which one requirement is
satisfied often decreases the degree to which another re-
quirement is satisfied, that is, the fhold decreases between
the two after states (called a conflicting after state pair).
On the other hand, two requirements are said to cooperate
with each other if an increase (or decrease) in the degree
to which one requirement is satisfied often increases (or
decreases) the degree to which another requirement is sat-
isfied, that is, the fhold increases (or decreases) between
the two after states (called a cooperative after state pair).
Note that the third possibility is that the fhold remains un-
changed between the two after states, which is called an
irrelevant after state pair. Similar ideas about the defini-
tions of conflict and cooperation can be found in [5]. We
formally define conflicting, cooperative, and irrelevant after
state pairs below.

DEFINITION 4 (Conflicting, Cooperative, and Irrelevant After
State Pairs). Assume that R1 = <ϕ11, ϕ12>, R2 = <ϕ21,
ϕ22> are two requirements, and that Ab is a set of common
after state pairs w.r.t. a given before state b.

A set of conflicting after state pairs, denoted as CFb, is
defined as

{(ai, aj)|(fhold(ϕ12, ai) − fhold(ϕ12, aj)) ×
(fhold(ϕ22, ai) − fhold(ϕ22, aj)) < 0, and ai, aj ∈ Ab}.

A set of cooperative after state pairs, denoted as CPb, is
defined as

{(ai, aj)|(fhold(ϕ12, ai) − fhold(ϕ12, aj)) ×
(fhold(ϕ22, ai) − fhold(ϕ22, aj)) > 0, and ai, aj ∈ Ab}.
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A set of irrelevant after state pairs, denoted as IRb, is de-
fined as

{(ai, aj)|(fhold(ϕ12, ai) − fhold(ϕ12, aj)) ×
(fhold(ϕ22, ai) − fhold(ϕ22, aj)) = 0, and ai, aj ∈ Ab}.

Hence, a set of common after state pairs, Ab can be
divided into three subset: conflicting, cooperative, and ir-
relevant, in such a way that Ab = CFb ∪ CPb ∪ IRb and
CFb > CPb > IRb = ∅. The formal definitions of conflicting
and cooperative degrees w.r.t. a given before state are
described below.

DEFINITION 5 (Conflicting and Cooperative Degrees). As-
sume that R1 = <ϕ11, ϕ12>, R2 = <ϕ21, ϕ22> are two re-
quirements, Ab is a set of common after state pairs w.r.t. a
given before state b, and that CFb and CPb denote conflict-
ing and cooperative after state pairs w.r.t. b, respectively.

The conflicting degree between two requirements, R1 and
R2, w.r.t. b, is defined as:

cfb(R1, R2) =

(| ( , )  ( , )|+

( , ) ( , )|)
  

(| ( , ) ( , )|+
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The cooperative degree between two requirements, R1
and R2, w.r.t, b, is defined as:

cpb(R1, R2) =
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Having defined the conflicting and cooperative degrees,
it is necessary to further define the average conflicting and
cooperative degrees due to the fact that a requirement may
have many before and after states.

DEFINITION 6 (Average Conflicting and Cooperative De-
grees). Assume that R1 = <ϕ11, ϕ12>, R2 = <ϕ21, ϕ22> are

two requirements, Ab is a set of common after state pairs
w.r.t. a given before state b, BR1

 and BR2
 are sets of all pos-

sible before states of R1 and R2. The average conflicting

degree between two requirements, R1 and R2, w.r.t. b,
is defined as:

cf(R1, R2) = 

cf R R

B B

b
b B B

R R

R R

( , )1 2

1 2

1 2

∈ ∩
∑

∩
 .

The average cooperative degree between two require-
ments, R1 and R2, w.r.t. b, is defined as:

cp(R1, R2) = 

cp R R

B B

b
b B B

R R

R R

( , )1 2

1 2

1 2

∈ ∩
∑

∩
 .

B BR R1 2
∩  is the cardinality of intersection between BR1

and BR2
.

We have further distinguished positive cooperative de-
grees from negative ones. A positive cooperative degree
means that if an increase in the degree to which one re-
quirement is satisfied often increases the degree to which
another requirement is satisfied. Otherwise, it is called a
negative cooperative degree.

4.2 Relationships Between Soft Requirements
The relationships among soft requirements are crucial for
adequately interpreting the intended meaning of a com-
promise overall requirement, because they reflect the
structure of interaction among the soft requirements. To-
gether with information about the criticality of soft re-
quirements which usually represents users’ pros and cons
of the requirements, the relationships among soft require-
ments can serve as a guideline for requirements aggrega-
tions [17], [5].

In the proposed framework, the relationship between

any two soft requirements, say Ri and Rj, can be classified
under five categories: independent, irrelevant, counterbal-

ance, conflicting, and cooperative. Ri and Rj are said to be
independent if there is no common after state shared by the
requirements, that is, AR1

 I AR2
 = ∅. Two requirements are

irrelevant if there is no conflicting and cooperative relation-
ships between the requirements, that is, all after state pairs
are irrelevant pairs (i.e., cp = cf = 0). In the case of counter-
balance relationships, both the conflicting and cooperative
relationships co-exist and their degrees are equivalent (i.e.,
cp = cf).

To further refine conflicting and cooperative relation-
ships, we have identified three subcategories: strong, mod-
erate, and weak. A relationship is said to be conflicting if
the conflicting degree between Ri and Rj is greater than
the cooperative degree. On the other hand, if the coop-
erative degree is greater than the conflicting degree, then
Ri cooperates with Rj. In the case that there is only con-
flicting after state pairs (i.e., cp = 0), Ri is strongly con-
flicting with Rj. Similarly, if there is only cooperative after
state pairs (i.e., cf = 0), two requirements are strongly coop-
erative with each other.

The co-existence of conflicting, cooperative and irrele-
vant after state pairs (i.e., cp + cf < 1) usually drops either
the conflicting degree or the cooperative degree further
compared with the existence of only conflicting and coop-
erative after state pairs (i.e., cp + cf = 1). The former is called
weak conflicting or weak cooperative, while the later is called
moderate. The relationships between soft requirements are
summarized in Table 2.
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4.3 Hierarchical Aggregation of Requirements
Having decomposed user’s requirements into different in-
dividual ones, it is then necessary to achieve some level of
integration between those individual requirements. In gen-
eral, there are two issues needed to be addressed in us-
ing aggregation operators for the integration of individual
requirements:

•� The variety of aggregation operators could make it
difficult to determine which one to use in a specific
application [22]. Zimmermann [46] has outlined eight
general criteria: axiomatic strength, empirical fit,
adaptability, numerical efficiency, compensation,
range of compensation, aggregating behavior, and re-
quired scale level of membership functions. Further-
more, Yen et al. [43] have summarized several criteria
for selecting an appropriate aggregation operator in
the context of requirements engineering:

1)� intended relationship between requirements,
2)� feasible combined requirements,
3)�higher satisfiable realization, and
4)� requirements with criticalities.

However, most of the existing approaches (including
our earlier work) only considered one or two of the
criteria in the analysis, for example, requirements
with criticalities in [41], intended relationships be-
tween requirements in [43], or between objectives
in [17].

•� The averaging operator is symmetrical, monotonic,
commutative and idempotency, but the property of
associativity is not available. The lack of associativity
with respect to any averaging operator raises some
important issues of how to extend the operator. Sev-
eral researchers such as Yager and Filev [40] and
Cutello and Motero [7] have proposed different im-
peratives in holding the definition together as ele-
ments are added to an aggregation.

To alleviate the above-mentioned problems, we propose
an extension of the hierarchical aggregation structure advo-
cated in [39], where requirements in each disjunct and con-

junct are expanded to form a requirements hierarchy. In the
proposed framework, we not only explore all the criteria
summarized by Yen et al. in [43], but also relax the as-
sumption by taking the consideration that requirements
from users are usually described using either and, or or
natural language connectives, or both. The steps in estab-
lishing a hierarchical structure for requirements aggrega-
tion are discussed below.

4.3.1 Convert Requirements into DNF
To take these connectives into account, we proposed the
use of disjunctive normal form (DNF) to obtain a uniform
representation of the requirements. Requirements in DNF
form can then be arranged based on an extension of the
notion of the hierarchical aggregation structure advocated
in [47], [39], [6], [7], where requirements in each disjunct
and conjunct are expanded to form a requirements hierar-
chy. A requirements hierarchy can be established based on
the notion of the requirements criticality and the positive
cooperative degree. In fact, the requirements may carry
different weights reflecting their degrees of criticality,
where a weight is a nonnegative real number. We have
adopted Saaty’s pairwise comparison approach to the as-
signment of weights to requirements [37]. That is, the rela-
tive weights of each requirement pair are used to form a
reciprocal matrix, and the absolute weight of each require-
ment is obtained from the normalized eigenvector using
eigenvalue method. A requirement R can thus be repre-
sented by a triple: <wR, µA(x), R>, where wR denotes the
criticality associated with the requirement R, and µA(x) is
based on Definition 3, x ∈ X.

4.3.2 Establish A Requirements Hierarchy
Assume that requirements are either connected by the
conjunction or by the disjunction connective and that the
hierarchy is from level 0 (the top level) to level n (see
Algorithm 1).

This step is important in the sense that the ordering es-
tablished through the hierarchy helps to alleviate the asso-
ciativity problem inherited in averaging operators, namely,
a unique ordered list can thus be obtained.

TABLE  2
RELATIONSHIPS BETWEEN SOFT REQUIREMENTS
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4.3.3 Select Aggregation Operators
To select appropriate aggregation operators, we propose the
consideration of operators that can:

1)� reflect the intended relationship between requirements,
2)�associate the criticality with each requirement,
3)� fit the aggregation structure, and
4)� incorporate the notion of conflicting and cooperative

degrees.

We have chosen fuzzy and and fuzzy or operators proposed
in [39], due to the fact that fuzzy and operator can be used
within each conjunction, while fuzzy or can be applied be-
tween each disjunction, and that the compensation between
aggregated sets can be achieved by incorporating the con-
flicting and cooperative degrees into the parameters in
these two operators, which in turn can reflect the relation-
ships between requirements. In RTA, all the requirements
are considered during the aggregation process, and hence
no requirement will be excluded out. However, the lower
the degree of the criticality of a requirement, the lower the
impact of the requirement on the result of the aggregation.
Therefore, the exclusive or aggregation is not considered in
RTA. In addition, the mathematical structure of these op-
erators is easy and can be handled efficiently [39]. In order
to better match our aggregation structure, these two op-
erators are also adopted for criticalities aggregation to re-
flect different relationships between the requirements. We
formally define these two operators below.

DEFINITION 7. (Extended Fuzzy and). Assume two require-

ments <wR1
, µA(x), R1>, <wR2

, µB(x), R2>, ∀x ∈ X.

<wR1
, µA(x), R1> ∧γ and

 <wR2
, µB(x), R2>

is defined as

<wand(wR1
, wR2

), µand(µA(x), µB(x)), R1 ∧ R2>

where

µand(µA(x), µB(x)) = γand min {µA(x), µB(x)} +

( )( ( ) ( ))1
2

− +γ µ µand A Bx x
,

wand(wR1
, wR2

) = γand min {wR1
, wR2

} +

( )( )1
2

1 2
− +γ and R Rw w

,

γand = (cf − cp + 1)/2 and γand ∈[0, 1].

DEFINITION 8. (Extended Fuzzy or). Assume two requirements

<wR1
, µA(x), R1>, <wR2

,  µB(x), R2>, ∀x ∈ X.

<wR1
, µA(x), R1> ∨γ or

 <wR2
, µB(x), R2>

is defined as

<wor(wR1
, wR2

), µor(µA(x), µB(x)), R1 ∨ R2>

where

µor(µA(x), µB(x)) = γor max {µA(x), µB(x)} +

( )( ( ) ( ))1
2

− +γ µ µor A Bx x
,

wor(wR1
, wR2

) = γor max {wR1
, wR2

} +

( )( )1
2

1 2
− +γ or R Rw w

.

γor = (cp − cf + 1)/2 and γor ∈ [0, 1].

_______________________________________________________________________________________________________

Algorithm 1: (Establish a Requirements Hierarchy)
1) Top-down:

a) Sort the criticalities for all requirements.
b) Arrange requirements from top down in a descending order of the criticalities. Requirements with the

same criticality will be placed at the same level.
2) Top-level requirements:

a) If there is only one requirement with the highest criticality, place it on the top of the hierarchy.
b) Else if there are more than one requirement with the highest criticality,

i) Compute the total cooperative degree for each requirement with the rest of the requirements whose
criticality is the same.

ii) Sort the total cooperative degrees computed in the previous step.
iii) Arrange requirements from left to right on the top in a descending order of the total cooperative

degrees.
iv) Add a virtual requirement on the top of those requirements.

3) Grouping requirements (between two adjacent levels):
a) For requirements (other than requirements at the top level) with the same criticality, compute all the co-

operative degrees for each requirement at level i with every requirement at level i − 1.
b) Given a requirement, Rh, at level i, for every requirements, Rk, at level i − 1, sort the cooperative degree of

Rh and Rk, obtained from the previous step. Group the requirement whose cooperative degree is the high-
est under Rh.

c)�Continue the previous step until all the requirements at level i have been considered.
4) Left-right (for each group):

a)�    Given a requirement, Rk, at level i − 1, for every requirements, Rh, at level i, sort the cooperative degrees
of Rh and Rk.

b)�    Arrange from left to right the requirements at level i in a descending order.
_______________________________________________________________________________________________________
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In the case that two requirements are connected by and,
there are two situations:

1)� if γand equals to 1 (i.e., requirements are strongly con-
flicting), the fuzzy and operator reduces to min, and

2)� if γand equals to 0 (i.e., requirements are strongly coop-
erative), the operator becomes arithmetic mean.

If the requirements are connected by or, the fuzzy or opera-
tor yields max under the condition that γor equals to 1;
whereas, the operator boils down to arithmetic mean if γor
equals to 0. Although the ranges for the parameters γand/γor
in the case of “moderate” and “weak” relationships are
similar, a subtle distinction can still be made through the
observation of cf and cp. That is, in the case of “moderate”
relationship, cf + cp = 1; whereas, for “weak” relationship, cf
+ cp < 1. This distinction can have some impacts on the
computation of γand and γor.

γand = γor = 0.5 indicates that two requirements are either
irrelevant or counterbalance. Generally, if two requirements
are independent, there is no need for performing the aggre-
gation. These are summarized in Table 3.

4.3.4 Aggregate Requirements
To aggregate requirements in a requirement hierarchy, there
are two steps involved:

1)� to utilize the breadth first search algorithm to trav-
erse the requirements hierarchy to form an ordered
list, and

2)� to apply fuzzy and or fuzzy or operator recursively to
the requirements in the list.

Finally, a four-level hierarchical aggregation structure
can thus be built (see Fig. 1):

1)�Requirements hierarchies built from disjuncts by ap-
plying Algorithm 1 are placed at the bottom of the hi-
erarchical structure. Each requirement hierarchy is
converted into its ordered list.

2)�Fuzzy and operator is applied recursively to glue re-
quirements in an ordered list to establish an aggre-
gated requirement, which is placed on the top of the
requirements hierarchy.

3)�All the aggregated requirements will be used to build
an aggregated requirements hierarchy, in which the
aggregated requirement in the hierarchy are in turn
combined using fuzzy or operator recursively to form
an overall aggregated requirement. It is of interest
to note that a hierarchy in RTA is established mainly
based on the relationships among the requirements
and the criticalities of the requirements. Therefore,
only the change of relationships and criticalities will
result in the change of the hierarchy. Namely, given
a new set of relationships and criticalities, RTA will
rebuild a new hierarchy instead of reusing the previ-
ous hierarchy.

5 RELATED WORK

Work in a number of fileds has made its mark on our
requirements trade-off analysis framework. Analogies of
trade-off analysis based on relationships may be found
in multicriteria decision making [5], [16], AI planning
[27], [38], and multiperspectives specifications [43], [14],
[12], [18], [30].

5.1 Multicriteria Decision Making
Relationship analysis approaches in multicriteria decision
making [4], [5], [17], [15] focus on an explicit modeling of

TABLE  3
RELATIONSHIPS VS. AGGREGATION OPERATORS

Fig. 1. The extended hierarchical aggregation structure.
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relationships between goals, and on the determination of
the final set of decision alternatives according to the rela-
tionships. Carlsson and Fuller [5] propose an approach to
fuzzy multiple objective programming (FMOP) with inter-
dependency relationships among objectives, which is an
extension of Carlsson’s MOP [4] to fuzzy logic. Three kinds
of relationships have been identified: supportive, conflict-
ing, and independent. The basic idea is to utilize these rela-
tionships to modify the membership function of the so
called “good solution.” Felix [15] and Felix et al. [17] pro-
pose an approach, called DMRG (Decision Making Based
on Relationship between Goals), to defining a spectrum of
relationships based on fuzzy inclusion and fuzzy noninclu-
sion: independent, assist, cooperate, analogous, hinder,
compete, trade-off, and unspecified dependent, and to de-
termining the final set of decision alternatives according to
the relationships. These approaches are similar to ours in
two aspects: the problems of modeling the relationships,
and the issues of aggregation.

5.2 AI Planning
Research in the areas of goals conflict in AI planning tackles
issues similar to the trade-off analysis, for example,

•� Sycara [38] provides a negotiation method, that is
called PERSUADER, to find a compromise accept-
able to all agents under the situations that planning
goals are ill-specified, subgoals cannot be enumer-
ated and the utilities with the subgoals are not pre-
cisely known. The negotiation is performed through
proposal and modification of goal relaxation. There
are two ways of reacting to negative feedback through
negotiation: changing the rejecting agent’s evaluation
of the plan through persuasive argumentation, and
modifying/repairing the plan so that it will be more
acceptable. The main difference between PERSUADER
and our approach in the trade-off analysis is that
in aggregating individual requirements, require-
ments are compensated to each other based on their
relationships in our approach; whereas, PERSUADER
needs to modify user ’s utility if no solution can
be obtained.

•� Luria [27] proposes a commonsense planner called
KIP (Knowledge Intensive Planner) which is devel-
oped for the Unix Consultant system. KIP uses goals
conflict concerns to deal with potential goal conflicts.
Luria classifies goal conflict concerns into six types:
default concerns, violated-default concerns, intended
effects concerns, unintended effects concerns, ex-
pressed goal conflict concerns and effect goal conflict
concerns. After KIP detects the goals of the user, it
selects a potential plan. KIP then checks for violated
defaults goal conflict concern. KIP next proceeds the
intended effect of the selected plan about user goal.
Finally, KIP evaluates the degree of those concerns. If
the degree of concern is low, KIP disregards the con-
cern. If the degree of concern is high, KIP elevates the
concern to a source of plan failure and pass it to goal
conflict resolution. Conflict resolution may occur by
either modifying the plan, or choosing a new plan.

5.3 Multiperspectives Specifications
Work on multiple perspectives has been investigated along
several directions. Feather [14] suggests using many paral-
lel evolutionary transformations for constructing specifica-
tions, which may then be merged by replaying them se-
quently. Finkelstein and Fuks [18] develop a framework to
support the construction of formal specifications and rea-
soning about the process of specifications from multiple
viewpoints. Their model has two parts: an underlying view-
point architecture and a dialogue scheme, which combines
the dialogue logics with cooperation and negotiation ap-
proaches. Dialogues are used to perform viewpoints nego-
tiation, to establish responsibilities of participants, and to
construct an overall specification in a cooperative manner
among the participants. The viewpoint architecture in-
cludes viewpoint, commitment store, working area, event
store and dialogue kernel. A viewpoint is a logical partici-
pant in the dialogue. A physical participant in a dialogue
may present many logical viewpoints. Each viewpoint has a
commitment store which holds it’s commitments within the
dialogue. The dialogue scheme is presented in terms of
three constructs: acts, events, and commitments.

Easterbrook [12] proposes a framework for representing
conflicting viewpoints in a domain model. A viewpoint
in his framework is a self-consistent description of an area
of knowledge representing the context in which a role is
performed. In evolving viewpoints, a new viewpoint will
need to be split if it causes inconsistency. The new view-
point and its negation are placed in different descendants of
the original viewpoint, so that each remains self-consistent
individually. The detection of conflict might be based on
detection of logical inconsistencies. Thus, a hierarchy of
viewpoints is established as the elicitation proceeds. The
inheritance structure implies that the higher an item in the
hierarchy, the more widely agreed it is. One of the aims of
using viewpoints is to reduce the need for consistency
checks. This approach allows many viewpoints to be com-
bined into a single domain model without necessary re-
solving conflicts between them. Conflicts are treated as an
important part of the domain, and are to be represented
and understood.

Robinson [33] and Robinson and Fickas [34] propose an
approach, called Oz, to requirements negotiation. There are
three steps involved in Oz: conflict detection, resolution
generation, and resolution selection. The conflict detector of
Oz does a pairwise comparison across all specifications. It
does so by matching up design goals from perspectives and
by comparing their plans. The specifications and conflicts
will be passed to conflict resolver which will provide ana-
lytic compromise and heuristic compensation and dissolu-
tion for each conflict. Compensation is to add similar but
conflict free requirements to negotiations, while, dissolution
is to replace conflicting items potentially less contentious
items. Finally, the resolver will provide guidance for search
control by choosing intermediate alternatives and auto-
mated negotiation methods. Each method can be applied in
any sequence to derive resolutions. The nonconflicting
specifications are jointed into a single specification by
merger of Oz.
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Furthermore, our notion of conflicting and cooperative
degrees can be interpreted as taking the distance-wise
view between any two individual requirements; whereas,
Yen et al. [43] addressed the same issue from the probability
aspects of conflicting and cooperative relationships, that is,
computing the ratio between the total number of after state
pairs and those of conflicting or cooperative pairs. No ir-
relevant pair is considered.

6 AN EXAMPLE: ISPBEX EXPERT SYSTEM

To convey a sense of how RTA performs its trade-off analy-
sis, let’s consider the expert system ISPBEX [13] that helps
Forest Service personnel to make decisions about the
Southern Pine Beetle spots by providing treatment recom-
mendations. The requirements for the treatment recom-
mendation generated by the system represented using their
canonical forms are described below:

R1: Amount-of-Resource (Treatment Recommendation)
is SMALL;

R2: Cost-of-implementation (Treatment Recommenda-
tion) is LOW;

R3: Responsive-Time (Treatment Recommendation) is
SHORT;

R4: Negative-impact (endangered-species (Treatment
Recommendation)) is LOW;

R5: Profit (Treatment Recommendation) is HIGH;

where SMALL, LOW, SHORT, and HIGH are fuzzy sub-
sets and serve as elastic constraints on a treatment
recommendation.

The input parameters for ISPBEX are treatment month,
type of forest (general forest, wilderness), colony-condition
(active, not active), breeding season (spring, summer, fall,
winter), priority (A, B, C, D), type of trees (loblobby or
short leaf pine), characteristics of trees (age, size), and
growth distance (in degrees). The output is a proper treat-
ment recommendation. Each situation represents a set of
given conditions corresponding to the input parameters.
For our example, we consider the situation under which the
treatment month is March, the type of forest is wilderness,
SPB spot is active, endangered species are breeding, prior-
ity is high, SPB is going to impact the endangered species
colony within 60 days, and so on. Four main recommenda-
tions are possible, including Cut and Leave (C/L), Cut and
Remove (C/R), Pile and Burn (P/B), and Monitor (Mon).
A before state corresponds to the input of situation, while
an after state corresponds to a possible solution (recom-
mendation) given for the situation. The criticalities of re-
quirements are (R1, 0.3), (R2, 0.1), (R3, 0.1), (R4, 0.2), and
(R5, 0.3), which are derived by Saaty’s pairwise comparison
approach.

To begin with, in Fig. 2, we first input requirements in
their canonical forms, and define their corresponding
membership functions by selecting a type of function (e.g.,
trapezoid, triangle and user defined), the number of parti-
tions, and their related fuzzy terms.

The next step is to describe the possible solutions corre-
sponding to the requirements (see Fig. 3). Experts will then
be requested to fill in the value for each solution w.r.t every

Fig. 2. Define membership functions.

Fig. 3. Solutions description.

Fig. 4. Values assignment.
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requirement. The criticalities (i.e., weights) of requirements
are also derived. For example (see Fig. 4), the expert needs
to assign the amount-of-resource in terms of man/month
required for each solution such as C/L, C/R, etc. After the
inputs, the conflicting and cooperative degrees will then be
calculated, which are used to derive the relationships
among the requirements.

Fig. 5 shows the relationships for our example. It is obvi-
ous that R1 and R2 are weak conflicting (i.e., cp < cf and cp
+ cf < 1), and R1 and R5 are weak cooperative because cf <
cp and cp + cf < 1. Note that R2 and R4 are counterbalance
due to cp = cf = 0.43; meanwhile R1 and R3 are irrelevant
because cp = cf = 0.

Finally, to aggregate those requirements to form an over-
all requirement, we first convert those requirements into
their DNF forms and build up the extended hierarchical
aggregation structure. Based on the discussion in Section 4,
the fuzzy and operator is applied to aggregate the re-
quirements connected by conjunction, and the fuzzy or op-

erator to aggregate the requirements connected by disjunc-
tion. The criticalities of requirements are also aggregated
using the fuzzy and or fuzzy or operator. In the example (see
Fig. 6), we assume that R1 and R4 are connected by the
conjunctive operator, and R2, R3, and R5 are connected by
the conjunctive operator. The two aggregated sets are con-
nected by the disjunctive operator.

Fig. 7 illustrates the result of the trade-off analysis, in-
cluding membership functions for each requirement, the
requirements hierarchy, and the final evaluation of the de-
gree of satisfaction w.r.t. each solution. The degrees of satis-
faction of the overall requirement for the four solutions are,
respectively, (0.25, 0.18, 0.28, 0.17). Therefore, RTA will rec-
ommend the selection of the treatment P/B in our example.

7 CONCLUSION

In this paper, a Requirements Trade-off Analysis technique
(RTA) is proposed to formally model vague requirements.
Conflicting and cooperative degrees between any two indi-
vidual requirements are first formulated. Relationships
between individual requirements are identified based upon
their conflicting and cooperative degrees. Requirements are
converted into the disjunctive normal form to obtain a uni-
form representation of the requirements, and then arranged
into an extended hierarchical aggregation structure, where
requirements in each disjunction are expanded to form a
requirements hierarchy. A requirements hierarchy is estab-
lished based on the notion of criticality and the cooperative
degree. Parameterized aggregation operators, fuzzy and/or,
are selected to combine individual requirements. A com-
promise overall requirement can be obtained through the
aggregation of individual requirements based on the hier-
archical requirements.

RTA offers several important benefits:

•� RTA provides a framework for formally analyzing
and modeling conflicts between requirements, and for
users to better understand their requirements.

Fig. 5. Display relationships.

Fig. 6. Convert requirements into DNF.
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•� Incorporating parameterized fuzzy and/or operators
in the extended hierarchical aggregation structure
helps in reflecting the intended relationships between
requirements.

•� The extended hierarchical structure makes easy the
obtaining of a compromise overall requirement.

RTA can be considered as one of the attempts towards
the formulation of what we called Trade-Off Requirements
Engineering. In order to further extend this research area,
our future work consists of several tasks:

1)� to investigate the possibility of integrating RTA with
the traditional requirements analysis and design ap-
proaches to complement each other, and

2)� to formally model nonfunctional requirements based
on RTA.
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