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Abstract

Consider the standard multiple linear regression model y = xβ+ε. If the correlation
matrix xtx is ill-conditioned, the ordinary least squared estimate (ols) β̂ of β is not the
best choice. In this paper, multiple regularization parameters for different coefficients
in ridge regression are proposed. The Mean Squared Error (MSE) of a ridge estimate
based on the multiple regularization parameters is less than or equal to the MSE of
the ridge estimate based on [2]. The proposed approach, depending on the condition
numbers, leave’s zero for the largest eigenvalue of xtx and gives the largest value for
the smallest eigenvalue of xtx. Furthermore, if xtx is nearly a unit matrix, xtx is not
an ill-conditioned one. The proposed approach gives approximately the same results
as the ols estimates. The proposed approach can also be modified to give other new
ridge parameters. The modified approach depends on the eigenvalues of xtx and differ
from the ridge parameter proposed by [5] by a factor. The body fat data set has severe
multicollinearity and is used to compare different approaches.
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1 Introduction

Consider the standard multiple linear regression model

y = xβ + ε (1)

where yn×1 is a vector of responses, xn×p is the design matrix of rank p, βp×1 is a vector
of unknown parameters, ε ∼ Nn (0, σ2In) , and In is the identity matrix of rank n. The ols
estimator of β is

β̂ = r−1
xx rxy, (2)
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where rxx = xtx is the correlation matrix of x variables and rxy = xty is the correlation

vector between y and each x variables. It is known that β̂ is an unbiased estimator for β
and has minimum variance. The variance of β̂ is given by

var
(
β̂
)

= σ2r−1
xx . (3)

If rxx is not nearly a unit matrix, multicollinearity may exists in the design matrix which
in this case, rxx matrix is an ill-conditioned one. From Eq. (2) and (3), the ols estimator β̂
will give an inaccurate estimate for β and inflate its variance. Therefore, the ols estimator
β̂ of β is not the best choice. One of the solutions of the multicollinearity problem is the
ridge regression method, which was proposed by [2]. Based on the ridge regression method,
estimate β by

β̃ = (rxx + kIp)
−1 rxy. (4)

For some ridge parameter k ≥ 0, from Eq. (4) simply add positive constant k to the main
diagonal of the correlation matrix rxx. However, the approach will be adopted by adding
different constants to the main diagonal of rxx. In this case, estimate β by

β̃ = (rxx + diag (k1, k2, . . . , kp))
−1 rxy, (5)

where diag is the diagonal matrix with k1, k2, . . . , kp on the main diagonal and ki ≥ 0, i =
1, 2, . . . , p. It is clear that Eq. (2) and (4) are special cases from Eq. (5) with the choices
k1 = k2 = . . . = kp = 0 and k1 = k2 = . . . = kp = k, respectively.

The main problem in ridge regression is the method of choosing the ridge parameter(s).
[2] showed that such parameter exists and the MSE of the ridge parameter β̃ of β is less
than the MSE of the ols β̂ of β. [2] proposed a method for choosing the ridge parameter(s).
Which is described in detail in the next section. [5] proposed another approach for choosing
the ridge parameter k. [8] modified the two different approaches proposed by [2] and [5]. [10]
proposed methods for estimating the ridge parameter(s). [4] proposed different estimators
of the ridge parameter k and compared ,via simulation, with estimators proposed by [6], [5],
and [10].

In case of the multinomial logit model, [9] considered several estimators for estimating
the ridge parameter k. Based on the simulations, when the correlation between the inde-
pendent variable increases the MSE increases. At the same time, increasing the sample size
decreases the MSE even when the correlation between the independent variables is large. The
non-Gaussian error terms and the highly collinear predictors are considered by [14] which
compared the least squares ridge estimation and the Least Absolute Deviations (LAD) ridge
estimation of the Seemingly Unrelated Regression Equations (SURE) models through the
MSE. [3] considered linear regression having both heteroskedasticity and collinearity prob-
lems. The main result states thats the heteroskedasticity-robust variances can be improved
and the resulting bias is minimized by using the matrix perturbation method. A strong con-
sistency of the ridge estimates is established by [13]. The only requirement for the error term
to be iid with absolute moment of order r (0 < r ≤ 1). [7] proposed a quasi-stochastically
constrained least squares estimator and provide the expectation of this estimator, demon-
strate its consistency and asymptotic normality.
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2 Ridge Parameter

This section summarizes the approach proposed by [2]. Let

λmax = λ1 ≥ λ2 ≥ . . . ≥ λp = λmin > 0,

be the eigenvalues of the matrix rxx with corresponding eigenvectors ν1, ν2, . . . , νp, respec-
tively, and P = (ν1, ν2, . . . , νp) . [2] showed that the MSE of β̃ is given by

MSEβ̃ (k) = E
(
β̃ − β

)t (
β̃ − β

)
= γ1 (k) + γ2 (k) (6)

where γ1 (k) and γ2 (k) are the variance and squared bias of β̃, respectively, when the ridge
parameter k is used. Further, γ1 (k) and γ2 (k) are defined by

γ1 (k) = σ2

p∑
i=1

λi

(λi + ki)
2 , (7)

and

γ2 (k) =

p∑
i=1

α2
i k

2
i

(λi + ki)
2 (8)

where αi is the ith element of α = Pβ.
It is known that the ols β̂ is an unbiased estimator (with the choice k1 = k2 = . . . = kp = 0

in Eq. (5)) for β. Therefore, γ2 (0) = 0, and

MSEβ̃ (0) = γ1 (0)

= σ2

p∑
i=1

1

λi
. (9)

However, the ridge estimator β̃ of β is a biased estimator, and [2] showed that there
always exists a k > 0 such that

MSEβ̃ (k) < MSEβ̃ (0) , (10)

if

k <
σ2

α2
max

. (11)

Therefore, [2] adopted

khki =
σ2

α2
i

, i = 1, 2, . . . , p (12)
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as ridge parameters. [5] proposed the following ridge parameter

kgg =
σ2

α2
max + n−p

λmax
σ2
. (13)

Other approaches are dealing with different methods of estimation the ridge parameter k.
A new ridge parameter based on modification of MSEβ̃ (k) is proposed in the next section.

3 Proposed Approaches

In this section, two approaches are proposed for choosing the ridge parameter k = (k1, k2, . . . , kp)
t

by refining the MSEβ̃ (k) , given by Eq. (6).

From Eq. (5), recall the definition of β̃,

β̃ = (rxx + diag (k1, k2, . . . , kp))
−1 rxy

= Wrxy (14)

= Zβ̂ (15)

where W = (rxx + diag (k1, k2, . . . , kp))
−1 and Z = (Ip + r−1

xx diag (k1, k2, . . . , kp))
−1
. Fur-

ther,

Z = Ip −W diag (k1, k2, . . . , kp) . (16)

For i = 1, 2, . . . , p. Let

ξi (W ) =
1

λi + ki
(17)

ξi (Z) =
λi

λi + ki
(18)

be the eigenvalues of W and Z respectively.
Now, the bias of β̃ is given by

bias
(
β̃
)

= E
(
β̃ − β

)
= − (Ip − Z) β

= −W diag (k1, k2, . . . , kp) β. (19)

The eigenvalues of W diag (k1, k2, . . . , kp) are

ki
λi + ki

, for i = 1, . . . , p. (20)

Therefore, the matrix W diag (k1, k2, . . . , kp) is a positive definite for ki > 0 for i = 1, . . . , p.
Define γ3 (k) as the sum of the eigenvalues of W diag (k1, k2, . . . , kp) i.e.

γ3 (k) =

p∑
i=1

ki
λi + ki

(21)

4



Remark 3.1. γ3 (k) is the trace of a positive definite matrix W diag (k1, k2, . . . , kp) and can
be used to control the bias of β̃ as we can see from Eq. (19). The key point is to balance
between the bias and the variance of the ridge estimate of β, by keeping γ3 (k) falls between
γ3 (0) = 0 and γ3 (khki) = σ2

∑p
i=1 1/ (σ2 + α2

iλi) .

MSEβ̃ (k) is minimized by [2]. Therefore, the proposed method chooses k1, k2, . . . , kp
such that the right hand side of Eq. (21) to be as small as possible. For ε > 0 define the
following function

G (k) = MSEβ̃ (k) + εγ3 (k)

= γ1 (k) + γ2 (k) + εγ3 (k) , (22)

G (k) is a direct modification of [2] by subtracting a controlled amount εγ3 (k) from
MSEβ̃ (k) , note the negative sign before the right hand side of Eq. (19), where γ1 (k) ,
γ2 (k) , and γ3 (k) are defined by Eq. (7), (8), and (21) respectively.

Remark 3.2. Minimizing G (k) is expected to give better results than minimizing MSEβ̃ (k)
since a small positive amount εγ3 (k) is subtracted from MSEβ̃ (k) by keeping G (k) > 0.

In the same time, minimizing G (k) is to choose k only and the comparisons will be based
on the MSE.

Differentiate the right hand side of Eq. (22) with respect to ki, equate to zero and solve
for ki we have

ki =
2σ2 − ελi
2α2

i + ε
, i = 1, . . . , p (23)

To grantee ki ≥ 0 for i = 1, . . . , p, Eq. (23) implies ε ≤ 2σ2/λi. Therefore, take ε = 2σ2/λmax.
Substitute this value of ε in Eq. (23), we have

ki =

[(
λmax
λi

)
− 1
]
σ2(

λmax
λi

)
α2
i + 1

λi
σ2
, i = 1, . . . , p (24)

Remark 3.3. From Eq. (24), rewrite ki as

ki =


0, i = 1

σ2

(λmaxλi
)

[(λmaxλi
)−1]

α2
i+

1
λi

[(λmaxλi
)−1]

σ2

, i = 2, 3, . . . , p

<
σ2

α2
max

. (25)

Therefore, the condition defined by Eq. (11) holds for this choice of ki.

Remark 3.4. The ridge parameters given by Eq. (24) are functions of the Condition Num-
bers = λmax

λi
. Condition numbers can be used as indication of multicollinearity, 100 ≤ λmax

λi
≤

1000 indicates a mild multicollinearity, and λmax
λi

> 1000 indicates severe multicollinearity
problem [11]. It is clear from Eq. (24), ki is approximately zero if rxx is approximately a
unit matrix, then the multicollinearity problem disappears. In this case, the ols β̂ and the
ridge estimator β̃ are approximately the same.
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Remark 3.5. From Eq. (24) it is clear that we are touching the exact problem by giving
zero for the largest eigenvalue of xtx and the largest value is given for the smallest eigenvalue
of xtx. This will be considered one of the main advantages of using the proposed multiple
regularization parameters.

From Eq. (24), rewrite ki as

ki =
λmaxσ

2

λmaxα2
i + σ2

− σ2(
λmax
λi

)
α2
i + 1

λi
σ2

=
λmaxσ

2

λmaxα2
i + σ2

− σ2λi
λmaxα2

i + σ2
, i = 1, . . . , p (26)

In case of severe multicollinearity, λmin is positive and very close to zero. Therefore, we can
ignore the term σ2λi/ (λmaxα

2
i + σ2) . In this case, Eq. (26), reduces to

k0i =
σ2

α2
i + 1

λmax
σ2
, i = 1, . . . , p (27)

Remark 3.6. The ridge parameters given by Eq. (27) are similar to the ridge parameter
proposed by [5],

kgg =
σ2

α2
max + n−p

λmax
σ2
. (28)

For the purpose of comparisons, rewrite kgg as

kggi =
σ2

α2
i + n−p

λmax
σ2
. (29)

The difference between kggi and k0i is n−p, the coefficient of σ2/λmax appears in the denom-
inator.

Further, from Eq. (27), it is clear that for

k0i <
σ2

α2
max

the condition defined by Eq.(11) is satisfied for k0i .

4 Empirical Study

In ridge regression, the body fat data set is considered by [12], [1] and others. To standardize
the model the following terms are defined.

The standardized jth observation of the ith predictor variable is

xij =
Xij − X̄i√
n− 1SXi

, (30)
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and the standardized jth observation of the response variable is

yj =
Yj − Ȳ√
n− 1SY

, (31)

where

SXi =

√√√√ n∑
j=1

(
Xij − X̄i

)2
/ (n− 1),

SY =

√√√√ n∑
j=1

(
Yj − Ȳ

)2
/ (n− 1),

for i = 1, . . . , p and j = 1, . . . , n. The standardized model in matrix form is given by

y = xβ + ε (32)

with the usual assumptions. Where

x =

 x11 . . . xp1
... . . .

...
x1n . . . xpn

 , y =

 y1
...
yn

 , and β =

 β1
...
βp

 .

Recall from Eq. (5), the ridge estimate of β is

β̃ = (rxx + diag (k1, k2, . . . , kp))
−1 rxy (33)

and the ridge estimate of y is

ỹ = xβ̃. (34)

The error sum of squares for ridge regression is

SSEridge =
n∑
i=1

(yi − ỹi)2 ; (35)

The body fat data set consists of (n = 20) observations and (p = 3) predictor variables. The
predictor variables are X1 : triceps skinfold thickness, X2 : thigh circumference, and X3 :
midarm circumference. The response variable Y : the body fat. The correlation between
the variables X1 and X2 is 0.92384 and the pvalue for testing H0 : ρx1x2 = 0 is less than
0.0001. Further, λ1 = 2.0664727, λ2 = 0.9328007, λ3 = 0.0007266, λ1/λ2 = 2.21534, and
λ1/λ3 = 2844.030691. Therefore, this data set has severe multicollinearity.

For the body fat data set, compute γ1 (k) , γ2 (k) , and MSEβ̃ (k) for k = 0, khki , kggi , ki
and k0i . Where γ1 (k) , γ2 (k) , and MSEβ̃ (k) , are variance, squared bias , and the MSE of

β̃ and defined by Eq. (7), (8), and (6) respectively.
Under simple random sampling without replacement design, simulate m random samples

of sizes n = 5, 6, . . . , 10, 12, . . . , 18. For i = 1, . . . ,m, compute γ
(i)
1 (k) , γ

(i)
2 (k) , MSE

(i)

β̃
(k) ,

for the same choices of k.
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Simulate m = 5000 random samples for n = 5, 6, . . . , 10, 12, 14; m = 4845 for n = 16;
and m = 190 for n = 18.

Based on the ridge parameter k estimate σ2 by

σ̃2
ridge (k) = SSEridge/ (n− p) , (36)

be the ridge estimator of σ2. Let γ1 (k) , γ2 (k) , and MSEβ̃ (k) be the averages of γ
(i)
1 (k) ,

γ
(i)
2 (k) , MSE

(i)

β̃
(k) , computed from m simulated random samples. The results are summa-

rized in Table (1).

4.1 Results and Conclusions

From Table (1) we have the following results:

1. The results from the body fat data set are summarized by:

(a) MSEβ̃ (ki) < MSEβ̃ (khki) < MSEβ̃ (k0i) < MSEβ̃ (kggi) < MSEβ̃ (0) .

(b) γ1 (ki) < γ1 (khki) < γ1 (k0i) < γ1 (kggi) < γ1 (0) .

(c) γ2 (0) < γ2 (kggi) < γ2 (ki) < γ2 (k0i) < γ2 (khki) .

2. The simulation results from the body fat data set are summarized by:

(a) For n = 5, . . . , 10 :

MSEβ̃ (ki) < MSEβ̃ (kggi) < MSEβ̃ (k0i) < MSEβ̃ (khki) < MSEβ̃ (0) .

For n = 12, 14 :

MSEβ̃ (ki) < MSEβ̃ (k0i) < MSEβ̃ (khki) < MSEβ̃ (kggi) < MSEβ̃ (0) ,

and MSEβ̃ (k) follows the same pattern as the data set for n = 16, 18.

(b) For n = 5, 6, 7 :

γ1 (ki) < γ1 (kggi) < γ1 (k0i) < γ1 (khki) < γ1 (0) ,

for n = 8, 9, 10 :

γ1 (ki) < γ1 (k0i) < γ1 (kggi) < γ1 (khki) < γ1 (0) ,

and γ1 (k) follows the same pattern as the original data set for n = 12, 14, 16, 18.

(c) For n = 5, . . . , 10, 12, . . . , 18, γ2 (k) follows the same pattern as the original data
set.

Based on the computations and simulations from the body fat data set, we can
conclude that our choice for the ridge parameter k = ki has minimum variance
and minimum MSE among all other choices for the ridge parameters.
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5 Final Conclusions

In this paper a new approach for choosing the ridge parameter k has been proposed. In
case of severe multicollinearity the proposed approach is also modified for choosing the ridge
parameter k.

In case where the correlation matrix xtx is ill-conditioned based on computations and
simulations from the real data set, the proposed approach for the ridge parameter k has a
minimum MSE and a minimum variance of β̃ among other approaches discussed in this paper.
Furthermore the proposed approach can be adopted in the case where no multicollinearity
problem exist since the proposed approach and the ols method give approximately the same
results.
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n k = 0 k = khki k = kggi k = ki k = k0i
γ1 (k) 340.87 36.96 36.91 30.93 36.93

5 γ2 (k) 000.00 23.35 23.35 23.35 23.35
MSEβ̃ (k) 340.87 60.31 60.26 54.28 60.28

γ1 (k) 113.32 10.31 10.27 8.77 10.28
6 γ2 (k) 0.00 9.35 9.34 9.34 9.35

MSEβ̃ (k) 113.32 19.65 19.61 18.11 19.63

γ1 (k) 76.22 6.31 6.30 5.55 6.30
7 γ2 (k) 0.00 6.39 6.38 6.39 6.39

MSEβ̃ (k) 76.22 12.70 12.68 11.93 12.69

γ1 (k) 57.74 4.31 4.31 3.90 4.31
8 γ2 (k) 0.00 5.03 5.02 5.03 5.03

MSEβ̃ (k) 57.74 9.34 9.33 8.93 9.34

γ1 (k) 46.34 3.03 3.04 2.79 3.03
9 γ2 (k) 0.00 3.96 3.95 3.95 3.96

MSEβ̃ (k) 46.34 6.99 6.99 6.74 6.99

γ1 (k) 39.14 2.27 2.27 2.12 2.27
10 γ2 (k) 0.00 3.39 3.38 3.39 3.39

MSEβ̃ (k) 39.14 5.66 5.66 5.51 5.66

γ1 (k) 30.47 1.41 1.42 1.34 1.41
12 γ2 (k) 0.00 2.60 2.59 2.60 2.60

MSEβ̃ (k) 30.47 4.01 4.01 3.94 4.01

γ1 (k) 24.73 0.99 1.00 0.96 0.99
14 γ2 (k) 0.00 2.20 2.19 2.20 2.20

MSEβ̃ (k) 24.73 3.19 3.19 3.15 3.19

γ1 (k) 20.88 0.69 0.71 0.67 0.69
16 γ2 (k) 0.00 2.00 1.99 2.00 2.00

MSEβ̃ (k) 20.88 2.70 2.70 2.68 2.70

γ1 (k) 18.29 0.50 0.52 0.49 0.51
18 γ2 (k) 0.00 1.87 1.86 1.87 1.87

MSEβ̃ (k) 18.29 2.38 2.38 2.36 2.38

γ1 (k) 16.10 0.31 0.33 0.31 0.32
20 γ2 (k) 0.00 1.85 1.83 1.85 1.85

MSEβ̃ (k) 16.10 2.17 2.17 2.16 2.17

Table 1: The computations are rounded into two digits after decimals. γ1 (k) , γ2 (k) , and
MSEβ̃ (k) are the means of m random samples, and for different sample sizes n = 5, . . . , 18.
When n = 20 : γ1 (k) , γ2 (k) , and MSEβ̃ (k) are computed from the data set. σ2 is estimated
by σ̃2

ridge (k) .
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