
J. Cryptol. (2009) 22: 572–615
DOI: 10.1007/s00145-009-9044-3

New Approaches for Deniable Authentication∗

Mario Di Raimondo†

Dipartimento di Matematica ed Informatica, Università di Catania, Catania, Italy

diraimondo@dmi.unict.it

Rosario Gennaro
IBM T.J. Watson Research Center, Yorktown Heights, NY, USA

rosario@watson.ibm.com

Communicated by Moni Naor

Received 30 May 2006 and revised 16 April 2009
Online publication 28 May 2009

Abstract. Deniable Authentication protocols allow a Sender to authenticate a mes-
sage for a Receiver, in a way that the Receiver cannot convince a third party that such
authentication (or any authentication) ever took place.

We present two new approaches to the problem of deniable authentication. The
novelty of our schemes is that they do not require the use of CCA-secure encryption
(all previous known solutions did), thus showing a different generic approach to the
problem of deniable authentication. These new approaches are practically relevant as
they lead to more efficient protocols.

In the process we point out a subtle definitional issue for deniability. In particular,
we propose the notion of forward deniability, which requires that the authentications
remain deniable even if the Sender wants to later prove that she authenticated a mes-
sage. We show that a simulation-based definition of deniability, where the simulation
can be computationally indistinguishable from the real protocol does not imply for-
ward deniability. Thus, for deniability one needs to restrict the simulation to be perfect
(or statistically close). Our new protocols satisfy this stricter requirement.

Key words. Authentication, Deniability, Zero-knowledge

1. Introduction

Authentication is arguably the most important security goal in cryptography. When
communication happens over a real-life network, we need to make sure that we are
talking to the right person and not with an impostor.

Authentication, thus, has received a lot of attention in the cryptographic literature.
Authentication methods follow the usual distinction between private and public key

∗ A preliminary version of this paper appeared in the Proceedings of the 2005 ACM Conference on Com-
puter and Communication Security.

† Work done while visiting the IBM T.J. Watson Research Center.

© International Association for Cryptologic Research 2009

mailto:diraimondo@dmi.unict.it
mailto:rosario@watson.ibm.com

New Approaches for Deniable Authentication 573

techniques. In a private key scenario, two parties Alice and Bob share a secret key k and
use it to prove to each other that they are the originators of the messages. Usually this is
done by Alice sending a message m to Bob together with a tag t , which is computed as
a function of the message m and the key k. The pair m, t is verified by Bob as coming
from Alice if the tag matches the one that B can compute on his own, with m and k. The
tag is called a message authentication code and must satisfy some security properties
(namely unforgeability) in order for this technique to be meaningful.

On the other hand, in the public key scenario, message authentication has been long
associated with digital signatures [16]. In this case, Alice is publicly associated with a
public key pkA which is matched to a secret key skA known only to her. When Alice
wants to authenticate a message m, again it computes a tag t as a function of the secret
key skA and the message m. The tag in this case is called a digital signature, and again
it must satisfy some meaningful notion of unforgeability (see [27]). An interesting twist
is that the tag can be verified by anybody using the public key pkA.

This last property is a very useful feature of digital signatures, as it provides the cru-
cial non-repudiation property. Once Alice signs a message, she is bound to it. Every-
body can verify that she signed it. This is very useful when digital signatures are used
for contracts or commerce transactions, where conditions must be enforced in case of a
dispute.

On the other hand, this feature raises important privacy issues. What if Alice wants
to say something very private to Bob, in a way that Bob believes it comes from her, but
also in a way that Bob cannot convince a third party that Alice said such a thing? Or
even that Alice spoke to Bob at all? Clearly digital signatures do not allow Alice to do
this.

Notice that message authentication codes do not provide for non-repudiation, as the
tag could be easily computed by the receiver. In other words, once Bob gets m, t from
Alice, he is convinced that it comes from her (as apart from Bob she is the only one who
can compute t), but Bob can’t show this to Charlie and convince him that it comes from
Alice, as Bob could have computed t on his own.

But what if Alice and Bob don’t have a shared secret key? They could, in principle,
run a key exchange protocol (see, for example, [4,16]). At the end of such a protocol,
Alice and Bob hold a shared secret key k, and then they could use it to authenticate
messages. But since most of the known key exchange protocols use digital signatures to
authenticate the parties running them, at the end Bob can still convince Charlie that he
spoke to Alice, even if not specifically about the subject of the conversation.1

DENIABLE AUTHENTICATION. The issue of deniability in public key authentication
was brought forward and formalized by Dwork, Naor and Sahai, in their ground-
breaking paper on concurrent zero-knowledge [19]. The paradigm suggested in [19]
is to replace the non-interactive transmittal of a digital signature, with an interactive
communication protocol between Alice and Bob on input a message m. At the end of
the protocol, Bob is convinced that Alice wants to authenticate m to him, but will not be

1 In fact, careful use of digital signatures in key exchange protocols may prevent Bob even from proving
that he spoke to Alice, though Alice could not deny that she was “alive” and talking to somebody at some
point. See [17] for their analysis of the deniability properties of the SIGMA key exchange protocol [35].

574 M. Di Raimondo and R. Gennaro

able to convince a third party as his view of the communication can be easily produced a
posteriori even without the knowledge of Alice’s secret key skA. This property is called
deniability.

This protocol should maintain some meaningful unforgeability property, i.e., it should
be hard for an adversary to convince Bob that Alice wants to authenticate a message m.

Dwork et al. point out that, since we are introducing interaction, we should consider
what happens in a concurrent scenario, i.e., one in which an adversary may schedule
executions of protocols and delay messages in arbitrary ways. That is, unforgeability
and deniability should still hold against such a powerful attacker. This turned out to be
a very powerful attack model, especially when considering zero-knowledge protocols.

The basic solution for deniable authentication based on encryption can be summa-
rized as follows (this protocol appeared first in [34], though similar protocols appear
also in [18,19]). Bob chooses a random key k and encrypts it under Alice’s public key.
Alice decrypts such key and uses it to MAC the message m. Bob’s belief that Alice is
really authenticating m comes from the fact that she is the only one able to decrypt k. On
the other hand, Bob could create the whole transcript on his own, so the authentication
is deniable.

Dwork et al. prove the unforgeability of the above scheme in a concurrent setting.
The assumption required to prove security is that the encryption scheme must be se-
cure against adaptive chosen-ciphertext attack (CCA2) [18,42]. Informally, an encryp-
tion scheme E is said to be CCA2-secure if the secrecy of a message m, encrypted
as c = Epk(m), holds up even if an adversary is allowed to obtain decryption of any
ciphertext of her choice (except, of course, c). It should be clear why this property is
needed in the above scheme: Alice is, in effect, acting almost like a decryption oracle,
on ciphertexts that are under the control of Bob, whenever asked to authenticate a mes-
sage (the “almost” comes from the fact that Alice does not answer directly k, but rather
MACk(m)).

Deniability for this basic protocol, however, cannot be proven via a black-box sim-
ulation. In order to make the above scheme black-box simulatable, a basic challenge–
response sub-protocol is added in [19]. However, this introduces a rewinding step in
the proof, which causes the deniability property to hold only if copies of the protocol
are performed sequentially, and not concurrently. In order to overcome this problem,
Dwork et al. introduce timing assumptions on the network to limit the number of con-
current executions that can be performed by the adversary in the network. We refer to
the above solution as the CCA-paradigm for deniable authentication.

OTHER APPROACHES. In the literature, there are alternatives that require the re-
ceiver/verifier to have a public key: Designated Verifier Proofs [32] create signatures
that convince only the intended recipient (using his public key); Ring Signatures [45]
allow a member of an ad hoc group to sign a message on behalf of the group, i.e., it is
impossible to trace the actual signer inside the group. This solution can be used to create
deniable signatures by choosing the sender and the receiver as members of the group:
the signature is deniable as the receiver could have created it, too. Naor in [41] observes
that in ring signatures the public keys should be registered with a proof-of-knowledge
of the corresponding secret-key: Suppose that the receiver B registers a public key pkB

that is equal (or derived through a suitable one-way function) to A’s one. If the ring

New Approaches for Deniable Authentication 575

signature has been created using these two public keys, the involvement of A in the sig-
nature process is hardly deniable, since B has a way of proving that he does not know
its own secret key.

Naor in [41] also presents Deniable Ring Authentication combining the encryption-
based approach of Dwork et al. with Ring Signatures: one member (or a proper sub-
structure) of a group can sign a message in a deniable way towards a receiver that is
not required to have a public key. This solution can be considered as an extension of the
CCA-paradigm of Dwork et al.

The requirement of a registered public key for both parties creates a less general
model that does not fit in all practical applications (e.g., the Internet, where most users
do not have public keys). Thus, we can conclude that in the most general setting, where
only the prover is required to own a public key, all the known solutions follow the CCA-
paradigm.

1.1. What If the Sender Changes Her Mind?

In the definition of deniable authentication, we assume that the Sender wants to preserve
his privacy, and thus prevent the Receiver from proving to a third party that he received
a message from the Sender. However, there are scenarios in which deniability is actually
a concern to the Receiver’s privacy.

Consider the following example. Alice and Bob are involved in some shady trans-
action, like drug-dealing or money laundering. Alice wants to make sure that her com-
munications to Bob cannot be later linked to her, so she uses deniable authentication.
Bob, thinking that such communication is indeed deniable, stores all the messages on
his hard disk. Later the operation is busted by the police and Alice and Bob end up in
jail, and Bob’s computer is seized. Alice is offered a sweet deal in exchange for her
cooperation in linking Bob to the crime (Bob is claiming the messages on his hard disk
are not coming from Alice, that he never talked to her, actually does not even know her,
they are all simulations!!). Alice produces some piece of secret information (her secret
key, for example) that indeed shows that the transcripts on Bob’s hard disk are actually
authentic and not simulations. Bob ends up in jail, cursing himself for dropping out of
crypto class in graduate school.

The above example shows that deniability is not just a concern of the Sender, but also
of the Receiver. What we would like to happen is that if the Sender acts honestly during
the protocols, she should not be able at a later stage to claim the messages as authentic.
We call this property forward deniability, as it has some affinity to the notion of forward
secrecy.2

We would like to point out that the above CCA-based paradigm is indeed forward
deniable. However, the issue of forward deniability has not been discussed in the lit-
erature, and indeed we show that some proposed deniable protocols are not forward
deniable (see below).

2 In forward secrecy, if a party’s key is compromised, only the secrecy of future messages is compromised,
while past messages are still safe. Here, if the Sender is “compromised” at some time t , he will not be able to
revoke the deniability from transactions happened before time t .

576 M. Di Raimondo and R. Gennaro

1.2. Our Contribution

NEW APPROACHES. The first question we asked was: “Are there other approaches to
concurrent deniable authentication, besides the CCA paradigm?”.3 We provide a posi-
tive answer to this question. We show that deniable authentication can be constructed
out of different primitives.

The question is interesting for both theoretical and practical reasons. On the theoret-
ical front, it is not clear why build authentication protocols, why encryption must be
needed at all. One of our solutions uses a special kind of non-malleable commitment
scheme, thus showing that deniable authentication, while linked to non-malleability, is
not linked to encryption. The practical reason is that by creating new paradigms for de-
niable authentication we may end up with more efficient protocols or protocols based
on weaker computational assumptions. This is indeed what we do in this paper.

We present two new schemes for deniable authentication. The first scheme eliminates
the need for an encryption scheme altogether. We build deniable authentication proto-
cols, using special kinds of trapdoor commitment schemes (the multi-trapdoor commit-
ments of Gennaro [21]). The protocols using this approach are incredibly simple and
efficient: The cost of the protocol is twice that of a regular digital signature.4

The second scheme can be seen as an improvement of the CCA-paradigm when im-
plemented with the Cramer–Shoup’s CCA schemes in [12]. Namely, we use some spe-
cific properties of the projective hash functions [12] used in those schemes to build a
new kind of deniable authentication. The scheme can still be thought as the encryption
of a random key which is then used to MAC the message; however, it is not clear how
to argue that the encryption module is CCA-secure. The net result is that we save one
modular exponentiation compared to the CCA-paradigm solution, and the transcripts
are shorter.

IMPROVED EFFICIENCY AND REDUCTIONS. Our schemes are very efficient, and re-
quire four rounds. They can be proven secure in a concurrent setting, but the proof of
deniability requires timing assumptions.

On the other hand, the proof of unforgeability holds even without timing assumption:
While this is not a new feature of our schemes (the CCA-paradigm enjoys it too), it is
still remarkable, as this proof in our commitment-based protocol uses rewinding as well,
but in a way that does not compromise security in unbounded concurrent executions.

An interesting feature of the commitment-based protocol is that in a realistic multi-
user setting (like the one we consider in this paper) the security reduction depends lin-
early on the number of players in the network while for the CCA-paradigm protocols
the dependency is linear in the number of sessions. The latter can be a much higher para-
meter and thus the improvement is not just a mere theoretical feature, but it is important

3 As stated in Sect. 1, we are investigating in the general setting where only the prover is required to have
a registered public key.

4 We note that we are only considering strong deniability in which Alice can deny to have ever authenti-
cated anything to Bob. For weak deniability, where Bob can prove to have spoken to Alice but not the content
of what Alice authenticated, signature schemes are sufficient as we pointed above in the Introduction, and
thus weakly deniable schemes can be done at the cost of a single signature. In the following, when referring
to deniability, we will always refer to the strong one.

New Approaches for Deniable Authentication 577

in practice as it guarantees security with much smaller parameters and consequently
improved efficiency.

FORWARD DENIABILITY. Finally, we present a formal definition of forward deniabil-
ity. We argue that deniability obtained by proving that the protocol is computational
zero-knowledge protocols is not forward deniability. We also prove that statistical zero-
knowledge protocols (including our new proposals) are forward deniable.

To prove our schemes, we present a unifying model to define deniable authentication.
To prove that our protocols are secure authenticators we use the model introduced by
Bellare et al. [4]. We then integrate the notion of deniability and forward deniability to
it by adding the required simulation properties.

1.3. Related Work

As we said above, the first solution is based on the notion of multi-trapdoor commit-
ments [21]. These commitments were inspired by the work on non-malleability by Di
Crescenzo, Ishai and Ostrovsky [14], and a series of works that followed their paradigm
(e.g., [13,15,33,39]). In our solution, we exploit in a novel and original way their non-
malleability properties in order to obtain deniable authentication. We note that some
of the constructions of simulation-sound commitments presented in [39] (namely the
ones that achieve information-theoretic privacy of the message) can also be used in our
construction.5

The second solution exploits the properties of ε-universal projective hash functions
[12], to relax the requirement on the key establishment mechanism in the CCA para-
digm. It is somewhat related to a recent improvement to the Cramer–Shoup CCA en-
cryption proposed by Kurosawa and Desmedt [37]. They consider the hybrid version of
the Cramer–Shoup cryptosystem described in [47]. There the encryption scheme is split
in a Key Encapsulation Module (KEM) where the Cramer–Shoup encryption scheme is
used to encrypt a random key, and a Data Encapsulation Module where the message is
encrypted and MAC’ed using the above key. Kurosawa and Desmedt note that in this
scenario it is not strictly necessary that the KEM is CCA-secure, and indeed they show
how to convert the Cramer–Shoup KEM into one which is still sufficient for the over-
all CCA-security of the hybrid encryption, yet it is not CCA-secure itself (as shown in
[31]). The net result is an improvement in the efficiency of the overall scheme (espe-
cially when considering the improved proof of security presented in [22]). In doing so,
however, Kurosawa and Desmedt introduced a stronger requirement on the projective
hash functions used in the scheme.

Our work, which was done independently from [37], follows a related path for the
case of deniable authentication. But our solution is conceptually simpler, again because
we remove the need to encrypt anything. Instead of using the projective hash functions
to establish a random key (which is the source of the stronger requirement in [37]), we
use it directly as a message authenticator. Thus, the original notion of ε-universality in
[12] suffices.

5 If we use the generic construction of simulation-sound commitments based on one-way functions, deni-
ability is only achieved in the computational sense, and thus no forward deniability is obtained. On the other
hand, the number-theoretic constructions yield statistical ZK and forward deniability.

578 M. Di Raimondo and R. Gennaro

COMPARISON WITH KATZ’S PROTOCOLS. The CCA-paradigm for deniable authen-
tication can also be considered in the context of interactive CCA-secure encryption
protocols (exploiting the fact that since deniable authentication already introduces in-
teraction, then we can use interaction also inside the encryption step). We point to the
results of Katz [33] in this area. The protocols presented there, exploit the interactive
nature of the encryption step, in order to get solutions which are more efficient than the
ones based on the basic CCA-paradigm. In order to achieve interactive CCA-security,
Katz uses proofs of plaintext knowledge for semantic secure encryptions (or even trap-
door permutations in some cases), combined with a non-malleable commitment scheme.

Our solutions show that if one strengthens the commitments used by Katz to be multi-
trapdoor ones, then the commitments themselves yield efficient deniable authentication
protocol. Thus we dispense with using encryption altogether. The tradeoff is that we
use stronger computational assumptions: While the protocols in [33] can be proven
secure based on the regular RSA and Computational Diffie-Hellman assumptions, the
efficient instantiations of our protocols require either the Strong RSA, DSA, or Strong
DH assumptions.

The efficiency of our protocol6 is basically the same as the ones in [33]. However,
our protocol does not require one-time signature schemes, making the communication
much shorter than in [33]. Finally, our security reduction is more efficient as it depends
only on the number of parties in the network, while Katz’s depends on the total number
of sessions.

RECENT WORK. After the publication of the preliminary version of this paper, in [17]
we proved that the basic authentication protocol based on encryption (i.e., the one from
[18,34] without the challenge-response subprotocol) is not deniable under the mere as-
sumption that E is CCA-secure (by showing an example of an encryption scheme E

which is CCA-secure but when used inside the protocol yields a non-repudiable proof
of authentication). On the other hand, [17] proves that the required assumption on E to
prove deniability of this protocol is plaintext-awareness.

In [17], the notion of deniable key exchange is also presented as an extension of the
notion of deniable authentication from [19].

1.4. Practical Applications

Deniability is an important privacy-enabling feature of cryptographic protocols and as
such has many important practical applications.

The practical importance of this concept can be seen by the weight that deniability
issues have played in the design of Internet key exchange protocols (see, for example,
[30,34,40]).

Another typical example where deniability is important is for electronic elections.
There, while it is important that both parties (the voting authority and the voter) au-
thenticate each other (for the authority to know that the voter has the right to vote, for
the voter to know that her vote will be counted), it is also mandatory to prevent either

6 The protocol in Fig. 2 when instantiated with concrete number-theoretic commitments compared to the
one in [33] based on a similar assumption, i.e., comparing the [33] protocol based on RSA (resp., CDH) with
ours based on Strong RSA (resp., Strong DH or DSA).

New Approaches for Deniable Authentication 579

party from walking away with a non-repudiable proof of what the actual vote was (the
message being authenticated). This application, in particular, shows the importance of
forward deniability: if the voter (sender) is authenticating her vote to the authority, not
only the latter should not be able to prove to a third party how the voter voted, but even
more importantly the voter herself should not be able to do so at a later stage, to prevent
coercion and vote-selling.

Finally, we point out that deniable authentication has applications in electronic com-
merce as well. As pointed out by Aumann and Rabin [1,2], the use of deniable authen-
tication, instead of regular signatures, can be used to communicate confidential terms
of a transactions (such as price offers) without fear that such terms could be shown to a
third party in an effort to obtain better terms (such as a better price offer).

2. The Model

This section introduces the model used in the paper for the analysis of the authentication
protocols. It was introduced by Bellare et al. [4] as a new modular approach to prove the
security of authentication and key exchange protocols. Here we reuse and extend that
idea for the analysis of protocols for deniable authentication.

This model deals with two kinds of network: an ideal authenticated network and a
more realistic unauthenticated network. The former models a simplified peer-to-peer
network of authenticated links in which the powers of adversary are limited to man-
age the delivery of the messages exchanged by the parties (it can’t inject or manipulate
messages) and to corrupt some of them. The latter has characteristics of a real network
(with unauthenticated links) in which the adversary has full powers on the communica-
tion channels, so it can change and forge new messages.

The task to prove any kind of properties (like secrecy) of a protocol in a simplified
world like our authenticated model is simpler than in a real network. To obtain a ver-
sion of the protocol that works in a realistic unauthenticated network, we can use special
protocol compilers named authenticators that, informally, take a protocol for (ideally)
authenticated networks and turn it into a protocol that has similar input-output charac-
teristics in an unauthenticated network. Proceeding this way permits modularizing the
analysis of the properties of protocols. In [4], this was applied to prove the full security
of Key Exchange protocols.

2.1. Definitions and Main Theorems

Here we recall some definitions, the adversarial model and the main theorems from [4].
Further, we introduce an extension to formalize the deniability of a protocol.

MESSAGE-DRIVEN PROTOCOLS. A message-driven protocol π is an iterative process
that is initially invoked by a party with some initial state that includes the protocol’s
input, randomness and the party’s identity. Once invoked, the protocols waits for an
activation that can happen for the arrival of a message from the network or an external
request (from other processes run by the same party). Upon activation, the protocol
processes the incoming data together with its current internal state, generating a new
internal state (like a finite-states machine), as well as generating outgoing messages to

580 M. Di Raimondo and R. Gennaro

the network and external requests to other protocols (or processes) run by the party.
In addition, a cumulative output is generated. Once the activation is completed, the
protocol waits for the next activation.

THE AUTHENTICATED-LINKS MODEL (AM). There are n parties P1, . . . ,Pn, each
running a copy of a message-driven protocol π . The computation consists of a se-
quence of activations of π within different parties. The adversary A is a probabilis-
tic polynomial-time algorithm that controls and schedules these activations. That is, A
can decide which is the next party to activate and which incoming message or external
request the activated party is to receive. Upon the completion of an activation, the out-
going messages and external requests and the output generated by the protocol become
known to A. The new internal state remains unknown to A.

In the authenticated-links model, A is restricted to delivering messages faithfully.
That is, we assume that each message carries the identities of the sender Pi and of
the intended recipient Pj . When a message is sent by a party, it is added to a set M of
undelivered messages. Whenever A activates a party Pj on some incoming message m,
it must be that m is in the set M and that Pj is the intended recipient in m. Furthermore,
m is now deleted from M .7 Note that A can change the order of delivery and can choose
to not deliver at all some messages.

The adversary A can corrupt parties at wish. Upon corruption, A learns the entire
current state of the corrupted party Pi and can add to the set M any fake messages, as
long as Pi is specified as the sender of these messages. A special symbol in the output
of Pi is generated to signal his corruption. A will control all the sequent activations of
Pi . We refer to an adversary as described here as an AM-adversary.

Briefly, the global output of a running protocol is the concatenation of all the out-
puts of the parties,8 together with the output of the adversary (derived from all the
information gathered during the process). Let AUTHπ,A(�x, �r) denote the global out-
put of a running of the protocol π with the n parties and the adversary A with input
�x = x1 · · ·xn and random input �r = r0r1 · · · rn (r0 for A; xi and ri for party Pi , i > 0).
Let AUTHπ,A(�x) denote the random variable describing AUTHπ,A(�x, �r) when �r is uni-
formly chosen.

THE UNAUTHENTICATED-LINKS MODEL (UM). Basically, the unauthenticated-links
model of computation is similar to the previous one, with the exception that here the
adversary U , referred to as a UM-adversary, is not limited to deliver messages that are
in M . Instead, it can activate parties with arbitrary incoming messages (even with fake
messages that were never sent).

Further, here the protocol π is augmented with an initialization function I that models
an initial phase out-of-band and authenticated information exchange between the parties
(like the creation of public and secret keys in asymmetric cryptosystems and the trustful
exchange of public keys).

7 This implies that no message appears twice. Alternatively, one can add message-IDs to messages to make
them unique.

8 This implies that also the identities of corrupted parties are part of the global output.

New Approaches for Deniable Authentication 581

The random variables UNAUTHπ,U (�x, �r) and UNAUTHπ,U (�x) are defined analo-
gously to AUTHπ,A(�x, �r) and AUTHπ,A(�x), but with the computation carried out in
the unauthenticated-links model.

EMULATION OF PROTOCOLS. When we say that a protocol π ′ in the unauthenticated-
links model emulates a protocol π in the authenticated-link model, we want to capture
he idea that running π ′ in an unauthenticated network has the same effect as running π

in an authenticated network. Formally speaking:

Definition 1. Let π and π ′ be message-driven protocols for n parties. We say that
π ′ emulates π in unauthenticated networks if for any UM-adversary U there exists an
AM-adversary A such that for all inputs x,

AUTHπ,A(�x)
c≈ UNAUTHπ ′,U (�x), (1)

where
c≈ denotes ‘computationally indistinguishable’.

This definition implies that the combined distributions of the outputs of the parties,
the adversary’s output and the identities of corrupted parties should be indistinguish-
able on the two sides of (1). In general, this condition captures the required notion of
“security equivalence” between the protocols in the sense that any consequences of the
actions of the strong UM-adversary against executions of the protocol π ′ can be imi-
tated or achieved by the weaker AM-adversary against the runs of protocol π without
requiring the corruption of more (or different) parties.

AUTHENTICATORS. An authenticator is a ‘compiler’ that takes for input protocols de-
signed for authenticated networks, and turns them into ‘equivalent’ protocols for unau-
thenticated networks.

Definition 2. A compiler C is an algorithm that takes for input descriptions of proto-
cols and outputs descriptions of protocols. An authenticator is a compiler C where for
any protocol π , the protocol C(π) emulates π in unauthenticated networks.

In particular, authenticators translate secure (in some well-defined sense) protocols in
the authenticated model in secure protocols in the unauthenticated-links model.9

Bellare et al. [4] introduced also a natural way to construct full-fledged authenticators
using simpler methods to authenticate a single message. Consider the banal protocol
message transmission MT that transport a message from a party to another. Speak-
ing in terms of message-driven protocol, upon activation within Pi on external request
(Pj ,m), party Pi sends the message (Pi,Pj ,m) to party Pj and outputs ‘Pi sent
m to Pj ’. Upon receipt of a message (Pi,Pj ,m), Pj outputs ‘Pj received m

from Pi ’.

9 In the Introduction, we claim that our deniable authentication protocols don’t require that both parties
have a public key. Sender’s public key is sufficient for the aim of authentication of the message. In the ambit
of the model, a simulation of the authenticated channels of the UM-model is possible only where the party
who sends the message has a public key.

582 M. Di Raimondo and R. Gennaro

Suppose that λ is a protocol that emulates MT in unauthenticated networks (we call
such protocols MT-authenticators). We can construct a compiler Cλ that transforms any
protocol π into another that uses the sub-protocol λ for the transmission of each mes-
sage. In other words, the sub-protocol λ acts as a layer of transmission: Instead of send-
ing messages to the network, λ is activated for delivery of all the messages, and instead
of receiving incoming messages from the network, the messages are taken from the λ’s
output. In [4], there is a theorem proving that this technique yields valid authenticators.

Theorem 3. Let λ be an MT-authenticator (i.e., λ emulates MT in unauthenticated
networks), and let Cλ be a compiler constructed based on λ as described above. Then
Cλ is an authenticator.

For further details on the model, see the original paper [4].

2.2. Extension for Deniable Methods

This paper focuses on deniable methods of authentication. A protocol for the authenti-
cation of a message is a protocol between a party A (who sends the message and proves
its identity) and a party B that assures the latter of the integrity of the message and the
identity of the sender A. Informally, we say that an authentication protocol is deniable if
the transcript of its execution does not allow B to prove to a third party the participation
of A. That is, the transcript of the interaction cannot be used as evidence that A took
part in the protocol (i.e., A or B can later deny that the authentication took place).

For example, digitally signing a message m with the secret key of A is a valid tech-
nique for message authentication but it is completely non-deniable: Only A could pro-
duce a valid signature, and it is a proof for third parties.

To define deniable authentication we use the simulatability notion from [19] and com-
bine it with the notion of an MT-authenticator:

Definition 4. We say that an MT-authenticator λ is deniable if, for any receiver B ,
there exists a simulator S (B)

λ that given a message m sent by a party A to B produces a
transcript of a session of λ for m that is indistinguishable from a real one.

Note that the simulator S (B)
λ can’t use the private information of the parties (i.e.,

private keys). This is enough to prove that the transcript of any session of λ can’t be
used by third parties to verify the participation of the involved participants. In fact,
anyone could produce realistic transcripts of λ using the simulator S (B)

λ .
There are, as usual, three flavors of the above definition depending of what kind

of indistinguishability the simulator achieves. We say that a deniable authenticator is
perfectly or statistically zero-knowledge if the real and simulated transcripts follow dis-
tributions which are either identical or statistically close. We say that a deniable authen-
ticator has computational zero-knowledge if the real and simulated transcripts follow
distributions which are computationally indistinguishable (see [26,28] for definitions of
the various types of indistinguishability).

Remark. In [19], the authors do not specify what kind of indistinguishability they
require, but it is clear from the context that they consider computational zero-knowledge

New Approaches for Deniable Authentication 583

protocols to be deniable. In [43], computational zero-knowledge is explicitly mentioned
as sufficient for deniable authentication. On the other hand, Katz in [33] explicitly limits
deniable authentication protocols to be statistical ZK.

The same concept can be applied to a generic authenticator. Given a deniable MT-
authenticator λ, we say that the authenticator Cλ built as in Theorem 3 is a deniable
authenticator.10

2.3. Forward Deniability

If we look at the example in Sect. 1.1, we see that deniability is not just a concern of
the sender, but also of the receiver. In order to ensure forward deniability, we need to
make sure that at the end of a real execution, the sender does not inherit a “witness” of
the fact that the transcript is real.

Basically, it must be hard for Alice to present a “witness” of the fact that a particular
transcript is real. Given a sender A and a receiver B using a deniable MT-authenticator λ,
for Definition 4 there exists a simulator S (B)

λ that produces transcripts that are indistin-
guishable from the real ones. If this indistinguishability holds in a perfect or statistical
way, our authenticator must be forward deniable, too. Indeed, there does not exist any
witness that the sender A can show to prove that his transcript is real.

Definition 5. Let λ be a deniable MT-authenticator between a sender A and a re-
ceiver B . We say that λ is forward deniable if the indistinguishability of the distributions
produced by the deniability simulator is perfect or statistical.

Remark. On the honesty of the Sender. In the definition above, we assume that A

behaves honestly during the executions of λ. In particular, we assume that A chooses
its random input as prescribed by the protocol. A possible way for A to prove that a
transcript is real is to modify its coin tosses in a way that is not detectable from the
outside but that will allow her later to prove that those messages were generated by her
(for example, she could choose a random string r not by directly sampling it, but by
choosing r ′ and setting r = f (r ′) where f is a hard-to-invert permutation). This kind
of behavior was termed semi-honest in [7]. Notice, however, that in the case of deniable
authentication A herself is not interested in keeping such a strategy as the presence of
such “witnesses”, if leaked, may be used to prove that she authenticated a message.

What about computational indistinguishability? In the next remark, we show that if
the simulated distribution is only computationally indistinguishable from the real one,
then there exists a witness that the sender can reveal in a later stage (violating forward
deniability).

Remark. Computational ZK and forward deniability. Consider any computational
ZK protocol for an NP-complete problem, e.g., the one for graph 3-colorability [25].

10 More formally, we should define the concept of deniable authenticator as in Definition 4 and then
straightforwardly prove that an authenticator Cλ built using a deniable MT-authenticator λ is a deniable au-
thenticator.

584 M. Di Raimondo and R. Gennaro

The common input is a 3-colorable graph and the Prover knows such a coloring. In the
first message, the Prover commits to a random 3-coloring of the graph, i.e., for each ver-
tex v, he commits to π(col(v)), where col(v) is the color of v described as an integer
in {1,2,3} and π is a random permutation over the same set. Then the (honest) verifier
asks for a random edge, and the prover decommits to the colors of the nodes compos-
ing that edge. Under the security of the commitment scheme, this is a computational
ZK protocol: The simulator for the honest verifier chooses a random edge, commits to
different random colors for the nodes on that edge, and then commits to random colors
for the other nodes. Note that since the simulator does not know the 3-coloring, the col-
oring which it commits to is not a correct 3-coloring, and that can be easily detected if
all the commitments are opened. However, since the commitments are secure, and only
the chosen edge is opened, the protocol is computational ZK. However, it is not forward
deniable.11 Indeed, the prover’s state contains the openings of the commitments, and
thus the prover can produce information showing that a real transcript is indeed real (it
contains a real 3-coloring).

This problem is shared by all the computational ZK protocols we know, and thus
shared by any protocol that proves deniability by reduction to such problems, and is
sufficient to argue that computational zero-knowledge is not sufficient to achieve for-
ward deniability. In Sect. 3.4, we show a deniable authentication protocol whose secu-
rity is based on a reduction to a NP-complete language, and for that reason not forward
deniable.

The only way in which forward deniability could be achieved is if Alice “forgets”
about how she computed the commitments, i.e., erases her internal state (apart from her
secret key) after the execution of the protocol. From the argument given in the previous
remark, it would appear in Alice’s interest to do so. However, this makes the assumption
on the model that such erasures are indeed possible. This is a very strong assumption to
make (e.g., see [29] for a survey on the difficulty of erasing data).

Thus, while we assume that Alice behaves honestly during the protocol (and has all
the motivation to do so), we also assume that it is hard for her to erase traces of her past
executions of the protocol from her memory.

3. MT-Authentication Using Multi-trapdoor Commitment Schemes

In this section, we present a family of deniable MT-authenticators that uses Multi-
trapdoor Commitment Schemes as building blocks. For each instantiation of this kind of
commitments, we obtain a different scheme of deniable authentication.

3.1. Multi-trapdoor Commitment Schemes

A commitment is the digital equivalent of a “sealed envelope”. A party commits to a
value by placing it into a sealed envelope (this is the “committing phase”), so that the
same party may later reveal the value by opening the envelope (the “opening phase”).

11 Although we defined forward deniability in the context of authentication, the definition can be extended
to any two-party protocol.

New Approaches for Deniable Authentication 585

Further, the envelope cannot be opened by another party before the opening phase (this
is known as “secrecy” or “hiding” property) and its content cannot be altered (this is
known as “binding” property).

A Trapdoor Commitment Scheme (TCS) is a commitment scheme where there ex-
ists a trapdoor the knowledge of which allows to open a commitment in any possible
way (we will refer to this also as equivocate the commitment). Obviously, this trap-
door should be hard to compute. In this way, the privacy property of the commitment
is information-theoretically guaranteed (i.e., given the commitment, the receiver even
with infinite computing power cannot guess the committed message better than at ran-
dom). On the other hand, the binding property can be only be computational (because
of the existence of the trapdoor).

A Multi-Trapdoor Commitment Scheme, introduced in [21], consists of a family of
TCS with a special binding property. Here we shall use two slightly different definitions
of these schemes: an adaptive one (not presented in [21] and inspired by the notion
of Simulation-Sound Commitments12 (SSC) in [20,39]) and the original definition by
Gennaro in [21] which we will name static. The first is a stronger definition than the
second, so the instantiations of this kind of schemes are usually less efficient, but the
meta-description of the authenticator becomes simpler. The two definitions differ only
in the binding property as we shall see.

Let us start presenting the formal definition of adaptive MTC.13 An Adaptive Multi-
Trapdoor Commitment (AMTC) Scheme consists of five randomized algorithms: CKG,
Sel, Tkg, Com, and Equiv with the following properties:

• CKG is the master key generation algorithm: Given a security parameter, it outputs
a pair (PK,TK), where PK is the master public key associated with the family of
commitment schemes and TK is the master trapdoor key.

• Sel is the algorithm that selects a particular scheme in the family: Given PK it
outputs a pk that identifies one of the schemes.

• Tkg is the algorithm that generates the trapdoors: Given the triple (PK,pk,TK) it
outputs the trapdoor information tk relative to pk.

• Com is the commitment algorithm: On input PK,pk and a message M , it outputs
C(M) = Com(PK,pk,M,R) where R are the coin tosses. To open a commitment
the sender reveals (M,R), and the receiver verifies using Com to recompute the
commitment.

• Equiv is the algorithm that opens a commitment in any possible way given an
original opening and the trapdoor: It takes as input PK,pk, a commitment C of a
message M , its opening (M,R), a different message M ′ �= M and a value T ; if
T = TK or T = tk then Equiv outputs R′, uniformly chosen among all R′ such that
C = Com(PK,pk,M ′,R′).

The notion of AMTC requires the following security properties:

Information Theoretic Security For every message pair (M,M ′), the distributions of
the commitments C(M) and C(M ′) are statistically close.

12 They use the name of Simulation-Sound Trapdoor Commitments (SSTC) for their schemes, but we
prefer to not use the attribute “trapdoor” for the observations raised in Sect. 3.4.

13 We elaborate in Sect. 3.4 on the differences between this definition and the definition of SSTC in [39].

586 M. Di Raimondo and R. Gennaro

AMTC Secure Binding Consider the following game: The adversary A is given a
public key PK for a multi-trapdoor commitment family, generated with the same dis-
tribution as the ones generated by CKG. Also, A is given access to an oracle EQ (for
Equivocator). This oracle gets as input a string (C = Com(PK,pk,M,R),M,R,M ′)
with message M ′ �= M and outputs a random R′ such that C = Com(PK,pk,M ′,R′)
(that is, the oracle creates openings with an arbitrary message M ′). The ad-
versary A wins if it outputs (pk,M,R,M ′,R′) such that Com(PK,pk,M,R) =
Com(PK,pk,M ′,R′), M ′ �= M and pk is different from all the public keys used dur-
ing queries to the oracle EQ (in other words, A must never have used the oracle EQ

to equivocate a commitment on the scheme with public key pk). We require that for
all the efficient algorithms A, the probability that A wins is negligible in the security
parameter.

The notion of (static) MTC in [21] is identical to the previous except for the property
of binding that use a different game. Roughly, the adversary must choose the public
keys to use with the oracle before seeing the master public key PK. More precisely:

MTC Secure Binding Consider the following game: The adversary A selects k public
keys (pk1, . . . ,pkk) (with k polynomial in the security parameter), then it is given
a public key PK for a multi-trapdoor commitment family, generated with the same
distribution as the ones generated by CKG. The oracle EQ still gets as input a string
(C = Com(PK,pk,M,R),M,R,M ′) with message M ′ �= M , but it outputs a ran-
dom R′ such that C = Com(PK,pk,M ′,R′) only if pk = pki for some i, other-
wise it outputs nil. The adversary A wins if it outputs (pk,M,R,M ′,R′) such that
Com(PK,pk,M,R) = Com(PK,pk,M ′,R′), M ′ �= M and pk �= pki for all i. As be-
fore, we require that for all the efficient algorithms A, the probability that A wins is
negligible in the security parameter.

In Appendix B, for the sake of completeness, we show an example of MTC scheme
based on the Strong-RSA Assumption.

3.2. AMTC-Based MT-Authenticators

Here we present a deniable MT-authenticator λAMTC based on the notion of Adaptive
Multi-Trapdoor Commitments (AMTC). First, we prove that it is a MT-authenticator
then we verify the deniability of the scheme.

Let us start from the initialization function I of the protocol λAMTC. For each
party Pi , the master key generation algorithm of the AMTC scheme is invoked ob-
taining the pair (PKi ,TKi). Further, a hash function Hi is chosen from the family of
UOWHFs such that it outputs strings with the same distribution of the algorithm Sel.14

The public key of Pi is PKi = (PKi , Hi), and the secret key is the master trapdoor key
TKi . So, the public information I0 is simply the collection of all the public keys:

I0 = PK1, . . . ,PKn

and the secret information of the player Pi is Ii = TKi .

14 For all known AMTC and MTC schemes, such hash functions exist and they are efficiently computable.

New Approaches for Deniable Authentication 587

Next, when activated, within party Pi and with external request to send message m to
party Pj , protocol λAMTC invokes a two-party sub-protocol λ̂AMTC between Pi and Pj .
Since the sub-protocol λ̂AMTC involves only two parties, we use the names A and B

instead of Pi and Pj for simplicity. In this context, with (PK, H) and TK we indicate
the public and secret keys of A.

The protocol λ̂AMTC works as follows: First, A uses the hash function H to se-
lect a specific scheme from the family of AMTC schemes in the following way:
pk = H(m,B), where m is the message to send and B is the identity of the receiver.
After that a random string a is selected from the space of the messages of the AMTC
scheme, and another random string r is chosen. The commitment algorithm associ-
ated to the public key pk is used to commit the string a with coin tosses r obtaining
C = Com(PK,pk, a, r). Finally, A sends ‘message:m,C’ to B and outputs ‘A sent
message m to B’.

Upon receipt of ‘message:m,C’ from A, party B chooses a random string c (for
challenge) from the space of the messages of the AMTC scheme and sends it to A as
‘challenge:m,c’.

Upon receipt of ‘challenge:m,c’ from B , party A uses the master trapdoor key
TK to equivocate the commitment C so that the message committed becomes the chal-
lenge string c. He computes r ′ = Equiv(PK,pk,C, a, r, c,TK) so that (c, r ′) becomes
another opening of the commitment C (remember that the first opening is (a, r)).
A replies to B with ‘reply:m,r ′’.

When B receives the reply, he simply checks if the pair (c, r ′) is an opening for
the commitment C, that is if C = Com(PK,pk, c, r ′). Note that B can compute the
specific public key pk by himself using the hash function H. If the check is correct,
then B accepts m and outputs ‘B received m from A’. Otherwise, B rejects
this message and terminates this invocation of λ̂AMTC.15 Note that the length of strings
to commit a, c should be long enough so it’s infeasible to guess them (for example,
80 bits). A pictorial representation of a complete invocation of λ̂AMTC for a message m

can be seen in Fig. 1.

Theorem 6. If the underlying commitment scheme is an AMTC, then the protocol
λAMTC emulates protocol MT in unauthenticated networks.

Proof. To prove that λAMTC emulates correctly the protocol MT in an unauthenticated
network, we need to show that all the things that an adversary can do against λAMTC
in an unauthenticated world can be done against the simple protocol MT in a hypotheti-
cal authenticated environment (the vice versa is straightforward). More specifically, let
U be a UM-adversary that interacts with λAMTC. We want construct an AM-adversary
such that AUTHmt,A() ≈ UNAUTHλAMTC,U (),16 that is, their respective views are indis-
tinguishable.

Adversary A runs U on the following simulated interaction with a set of n “fake” par-
ties P ′

1, . . . ,P
′
n running λAMTC. Note that A interacts with n “real” parties P1, . . . ,Pn

15 One does not need to send the message m in each of the flows of the protocol. A can send it in the first
flow only, or even in the last flow only.

16 Note that the MT protocol ignores its input, so we consider only the empty input.

588 M. Di Raimondo and R. Gennaro

Fig. 1. MT-Authenticator λ̂AMTC between A and B .

running the protocol MT in an authenticated-link environment. First, A invokes the
initialization function I of λAMTC so that each simulated party P ′

i has a pair of keys
(PKi, SKi). Next, when U activates some imitated party A′ for sending a message
m to imitated party B ′, adversary A activates the dual party A in the authenticated
network to send m to B . Moreover, A continues the interaction between U and the im-
itated parties running λAMTC. When some imitated party B ′ outputs ‘B ′ received
m from A′’, adversary A activates corresponding party B in the authenticated-links
model with incoming message m from A. If U corrupts some imitated party A′ in its
world, A corrupts the dual party A and hands the corresponding information to U (in-
cluding the private information as the A’s secret key that A knows). Finally, A outputs
whatever U outputs.

Now we need to show that the output of A is indistinguishable from the output of U .
It is easy to see that outputs are identical unless the following event happens. Let B de-
note the event that imitated party B ′ outputs ‘B ′ received m from A′’, where A′
is uncorrupted and the message (m,A′,B ′) is not currently in the set M of undeliv-
ered messages.17 In other words, B is the event where B ′ outputs ‘B ′ received m

from A′’, and either A wasn’t activated for sending m to B , or B has already had the
same output before. In this case, we say that U broke party A′. This is the only thing that
our A cannot simulate without breaking the definition of AM-adversary. If the event B
does not happen, it’s straightforward to see that the simulation run by A is perfect and

that AUTHmt,A()
d≈ UNAUTHλDDH,U () (where

d≈ denotes ‘equally distributed’).
The remaining step is to prove that the probability of the event B is negligible. As-

sume that event B occurs with non-negligible probability δ. We construct an adversary
E (for Equivocator) that breaks the security of the AMTC scheme with non-negligible
probability (related to δ).

CONSTRUCTION OF E . Given the master public key PK∗ for a Adaptive Multi-Trapdoor
Commitment Scheme and access to relative equivocator oracle EQ, the adversary E runs
U on the following simulated interaction with a set of parties running λAMTC. First, E

17 See Sect. 2.1 for the details about the definition of an AM-adversary.

New Approaches for Deniable Authentication 589

chooses and distributes keys for the imitated parties according to function I , with the ex-
ception that the public key associated with some party A∗, chosen at random, is replaced
with the pair (PK∗, H∗) where PK∗ is the input key and H∗ is a hash function as de-
scribed in I . Next, E continues the simulated interaction. If during the simulation U asks
to corrupt party A∗ then the simulation aborts and E fails. If A∗ is required to reply to a
‘challenge:m,c’ from a party B (where A∗ sent a first message ‘message:m,C’
using the specific commitment scheme associated with pk = H∗(m,B) with opening
(a, r)) then E uses the oracle EQ to equivocate C. The oracle EQ is given as input the
commitment C, the first opening (a, r) and the challenge c (that with high probability
is different than a). It returns a randomness r ′ such that (c, r ′) is another opening of C,
so A∗ can reply with ‘reply:m,r ′’.

If some party D outputs ‘D received m∗ from A∗’ and A∗ was not activated
to send m∗ to D (or if D has already output this value before), this means that U broke
on party A∗ using the message m∗. Since D outputs ‘D received m∗ from A∗’,
he collected from the adversary a first message ‘message:m∗,C’ and a replying mes-
sage ‘reply:m∗, r ′’ to his challenge c. This means that we have a commitment C

(related to the public key pk = H∗(m∗,D)) and a first opening (c, r ′). To obtain a sec-
ond opening E can rewind the simulator that runs U (which is under his control) to the
point in which D sent its challenge c for the broken session and then use a different
‘challenge:m∗, c̄’ with c̄ �= c. Now suppose that U runs for at most t steps (t poly-
nomial in the security parameter). The two mutually-exclusive events that can occur
are:

• The adversary U breaks another time the same session between A∗ and D with
message m∗ (but this time with challenge c̄).

• This time U doesn’t break the same session (or doesn’t break anyone). To detect
this event the simulator can wait until the running time limit t . In this case, E
rewinds another time the simulation and draws a different random challenge c̄.
This until the previous event occurs.

Later we analyze the expected running time of this simulation. At this point, we can
assume that U breaks the same session after the rewind: This means that he forges
another ‘reply:m∗, r̄ ′’ where the pair (c̄, r̄ ′) is a second opening for C. Now E can
stop the simulation and output the commitment C and the two different openings (c, r ′)
and (c̄, r̄ ′). Note that the public key pk of the broken commitment scheme was never
used during the invocations to the oracle EQ. In fact, the pair (m,B) is different for each
session (recall that all the messages coming from a party are all different) and the hash
function H∗ used to draw the AMTC scheme for every session is collision-resistant.

Now we compute the expected-running time of the iterated simulation process. Con-
sider the exact instant in the simulation when the message ‘message:m∗,C’ is ex-
posed. Related to this instant, there is a fixed well-defined probability p that the adver-
sary U will break that particular session. We can see it as:

p = number of challenges c on which U can reply

number possible challenges
.

590 M. Di Raimondo and R. Gennaro

When E rewinds the simulation, this probability related to the session (A∗,m∗,D)

is almost the same.18 Let p′ be this probability, so p′ ∼ p. If the probability that we
draw a second challenge on which E can reply is p′, the expected-number of times we
need to iterate the rewind is exactly 1

p

′
. It follows that the expected-running time of the

simulation is

t + p

(
1

p

′)
t ∼ 2t.

Another way to see this is the following. If the probability p is small, we need to
reiterate the rewinds many times, but this event can happen only with the same small
probability p. If the probability p is big, we need to rewind few times, and this happens
more probably.

U ’s view in the simulation (conditioned to the event that it does not fail) is exactly
the same of a real interaction with an unauthenticated network. In fact, A∗ is randomly
chosen. If the number of parties in the simulation is n, the probability that E guesses
the party broken by U is 1

n
, so the probability of success of the equivocator E is δ

n
(a non-negligible quantity) with an expected-running time of 2t . This actually breaks
the security of the AMTC scheme.

An alternative way to think of the equivocator E is the following. We say that the
message ‘message:m∗,C’ is good if the associated p is bigger than 1/2. If the mes-
sage is good, by rewinding � times (where � is polynomial in the security parameter)
we get a different opening with overwhelming probability (≥ 1 − 2−�). On the other
hand, the first break will happen on a bad (i.e., not good) message ‘message:m∗,C’
with probability at most 1/2. So we rewind exactly � times, and the success probability
is bigger than δ

2n
(1 − 2−�) which is still non-negligible. �

Remark. Note that in the proof of this theorem (exactly as in the following Theorem 8)
the equivocator E has to guess the party broken by U among n parties; this implies that
the probability to break the AMTC is reduced by a factor of 1

n
. This is a better result than

other reductions (like in Katz’s [33]), where this factor is 1
l
, with l being the number

of total sessions that all the parties open. Such a quantity can be much higher than the
number of peers in a real network and this fact leads to more secure protocols and to
smaller security parameters.

IMPLEMENTATIONS. The number-theoretic constructions of simulation-sound commit-
ments in [39] can be shown to be AMTCs and thus can be used in our protocol. They
are based on the Strong RSA assumption and the security of the DSA signature scheme.
We can’t, however, use the generic construction based on one-way function as that does
not satisfy the notion of AMTC (see Sect. 3.4).

3.2.1. Deniability

λAMTC is deniable for an honest receiver. Indeed, in that case the simulator could:
(i) compute the public key pk associated to the particular commitment scheme of the

18 In fact, in each iteration, we need to consider all the challenges on which U can reply except the
challenges used in the previous rewinds.

New Approaches for Deniable Authentication 591

Fig. 2. Deniable MT-Authenticator Den-λ̂AMTC between A and B .

session as pk = H(m,B); (ii) choose at random the challenge string c and the random-
ness r ′; (iii) compute the commitment C = Com(PK,pk, c, r ′).

But for a dishonest verifier the way in which λAMTC authenticates the messages is
actually not deniable. Here is a strategy from a dishonest verifier B who tries to get a
transcript that A can’t later deny. B could compute c = hash(C) for some complicated
hash function hash after seeing the original commitment C. Now the above simulator
will be in trouble as it chooses c before seeing C.

We modify the protocol in order to make it deniable. We assume that the public key
of A contains the public key t for a regular trapdoor commitment scheme. The idea is
to have B use t to commit to the challenge in advance. The protocol appears in Fig. 2.

Theorem 7. Protocol Den-λ̂AMTC is a forward deniable authenticator if used sequen-
tially.

Proof. Before we prove deniability, let us make sure that the protocol is still an au-
thenticator. The proof of Theorem 6 is identical except for the handling of event B.
There we showed that if event B happened with substantial probability then we could
construct an equivocator E that would break the security of the AMTC.

E performed an “extraction” procedure in which it asked party A∗ two different chal-
lenges on the same AMTC C. However, this time the challenges are committed in ad-
vance using T C, but that’s not a problem as we can give to E the trapdoor t so that it can
open the corresponding γ in any way possible. The rest of the proof remains unchanged.

The deniability simulator works using standard zero-knowledge techniques. For any,
possibly dishonest, receiver B , it gets m,γ from B and computes pk = H(m,B) and
C′ = Com(PK,pk, a, r) for random a, r . Then B opens c. At this point, the simulator
rewinds it to the previous step and places C = Com(PK,pk, c, r ′) for random r ′. If B

does not decommit on this value of C, the rewinding step is repeated19 until B decom-
mits to c and the simulator places c, r ′ on the last message. The expected running time
of this kind of simulator is polynomial as analyzed in [24].

19 If B decommits to a different value then we can break the security of T C.

592 M. Di Raimondo and R. Gennaro

The simulated transcript is perfectly indistinguishable, so forward deniability holds,
too. �

Remark (Concurrent Executions). First, we point out that the modified protocol Den-
λAMTC remains an authenticator even if used in a concurrent setting. This is remarkable,
as we are using rewinding in the proof of its unforgeability. On the other hand, the
rewinding in the proof of deniability is more troublesome and in a concurrent setting
the adversary can create a scheduling which will result in a running time exponential
in the number of open sessions (see [19]). Thus we can only use the protocol with a
logarithmic number of such sessions open at any time, and this can be enforced by
using timing assumptions as in [19]. Notice that if the parties are not concerned about
deniability then unbounded number of executions can be performed concurrently.

3.3. Some MTC-Based MT-Authenticators

In Sect. 3.1, we presented also the original definition of Static Multi-Trapdoor Com-
mitment (MTC) schemes. It is a weaker definition than AMTC, in fact, the proposed
implementations of MTC schemes are more efficient. Gennaro [21] introduced two ef-
ficient implementations of MTC schemes: one based on the Strong RSA Assumption
and another on a stronger variant of the DDH Assumption introduced by Boneh and
Boyen [5] over gap-DDH groups. These schemes are about twice as fast as the AMTCs
in [39].

We show that the previous AMTC-based authenticator can be still proven secure us-
ing an MTC scheme.

Looking at proof of Theorem 6, we can easily see why such proof does not hold with
MTCs. We construct an adversary E that, given access to the adversary U and to the
oracle EQ, can break the security of the commitment scheme. In particular, E uses this
oracle EQ to reply to the opening requests that arrive to party A∗ (for which we don’t
known the master trapdoor key TK).

When given access to an MTC oracle EQ we need to know in advance the public keys
pki for these invocations. Remember that the public key pk used during the session is
determined by the message m and by the identity of the receiver B as pk = H(m,B),
thus we can’t guess the messages that A∗ will be asked to send during the simulation.

The first, most obvious, idea is to use a chameleon hash function (see [36]) in the pub-
lic key of each player. We recall that a chameleon hash function H is a collision-resistant
hash function, with a trapdoor tH whose knowledge allows one to find arbitrary colli-
sions. More specifically, H takes two arguments: a message M and a random string R.
Given h = H(M,R),M,R,M ′, tH, it is easy to find R′ such that (i) h = H(M ′,R′) and
(ii) R′ is uniformly distributed among all the random strings with that property.

In the above λAMTC protocol we use H as follows. We set M = (m,B) and choose a
random R to compute pk = H(M,R). We add R to the first message flow. Now we can
prove the protocol secure even if we are using an MTC family instead of a AMTC.

Indeed, the proof proceeds similarly to Theorem 6, i.e., we construct an equivocator
E which will use the UM-adversary U .

As in the previous proof, let A∗ be the party chosen at random among the n parties.
H∗ is the hash function of A∗. The main difference is that E is given the trapdoor
information tH∗ .

New Approaches for Deniable Authentication 593

In the proof of the above theorem, we set the AMTC master key PK∗ to be the public
key of A∗ and then asked to equivocate specific public keys pk∗ as they come. Here,
instead, since we are using a MTC family, we need to fix these specific public key in
advance.

Let q be a polynomial upper bound to the number of messages that A∗ is requested to
send. We choose q random public keys (pk1, . . . ,pkq) as pki = H∗(αi, βi) where αi,βi

are randomly chosen. We declare that these are the keys we want to equivocate on, and
we get in return PK∗ the master key for a MTC scheme, and the oracle EQ which will
equivocate commitments related to the pki keys.

When A∗ receives the ith request to send a message mi to a party Bi , E uses tH∗
to find randomness Ri for which H(Mi,Ri) = pki (where again Mi = (mi,Bi)). After,
when A∗ receives the challenge from Bi , E can invoke the equivocator oracle EQ to
open the commitment as requested. The rest of the simulation proceeds as in the original
proof.

Remark. What we described above is basically a generic way to build AMTC com-
mitments out of MTC ones via mapping the specific public keys through a chameleon
hash function (indeed, the AMTC schemes in [39] can be thought as the composition of
a chameleon hash with a MTC scheme).

However, we only know how to build chameleon hashing using expensive public
key operations. In Appendix C, we show two alternative assumptions that can be made
on H to avoid using chameleon hashing, and without changing the protocol. In the
first method, we use the Random Oracle model (a non-standard approximation of the
real model). The other method, introduces a strong (but well defined) computational
assumption on H (an assumption modeled after a similar one used in [23]).

Finally, in the next section, we show another very efficient MT-authenticator using
MTC schemes and one-time signatures, which can be proven secure in the standard
model and just assuming basic collision-resistance for H.

3.3.1. MT-Authenticator Based on MTC and One-Time Signatures Schemes

In this section, we introduce another version of MTC-based MT-authenticator that, using
one-time signatures, can be proven to be secure in the standard model. This construc-
tion, together with efficient implementations of MTC schemes, leads to very efficient
solutions for the problem of deniable message authentication. The cost to pay is slightly
longer transcripts because of the one-time signature scheme. We shall denote this pro-
tocol with λMTC&Sig.

ONE-TIME SIGNATURES. A signature scheme consists of a triple of algorithms: Gen
the key generator which on input the security parameter outputs a pair of keys (vk, sk);
Sign to sign a message using the secret sign key sk and Ver to verify a signature using
the public verification key vk. Our construction requires a one-time signature scheme
which is secure against chosen message attack. Informally this means that the adversary
is given the public verification key vk and a signature on a message of his choice (chosen
after seeing vk). Then it is infeasible for the adversary to compute a signature on a
different message.

594 M. Di Raimondo and R. Gennaro

One-time signatures can be constructed more efficiently than general signatures since
they usually do not require complex operations like modular operations (see [38] for
further details).

THE PROTOCOL. The initialization function I of the protocol λMTC&Sig is identical to
the λAMTC’s one in Sect. 3.2 except that now we are using a Multi-trapdoor Commit-
ment (MTC) scheme. Each party Pi has a public key (PKi , Hi) and a secret key TKi ,
where PKi and TKi are, respectively, the master public key and the master trapdoor key
of a family of MTCs and Hi is a chosen UOWHF with output distributed as the output
of the algorithm Sel for the selection of a commitment.

The two-party sub-protocol λ̂MTC&Sig between two generic parties A and B is the
following. Let (PK, H) and TK be the public and secret keys of A.

First, A uses the algorithm Gen for the generation of the keys of the one-time sig-
nature scheme obtaining a pair (sk, vk). A signature of the pair (m,B) is computed
using the secret sign key sk: sig = Signsk(m,B). Then a specific member of the fam-
ily of MTC schemes is selected applying the hash function H to the verification key
vk as pk = H(vk). Exactly as in the other protocol, a random string a is selected from
the space of the messages of the MTC scheme and another random string r is chosen.
A commitment of the string a with coin tosses r is computed as C = Com(PK,pk, a, r).
Finally, A sends ‘message:m,C, vk, sig’ to B and outputs ‘A sent message m

to B’.
Upon receipt of ‘message:m,C, vk, sig’ from A, party B checks if the signature sig

is valid according to the verification key vk. If it is, a random challenge c is chosen from
the space of the messages of the MTC scheme and the message ‘challenge:m,c’ is
sent to A. Otherwise, B rejects and closes the session.

The rest of the protocol is identical to λ̂AMTC, that is, upon receipt of ‘challenge:
m,c’ from B , party A computes r ′ = Equiv(PK,pk,C, a, r, c,TK) so that (c, r ′) is an-
other opening of the commitment C and he replies to B with ‘reply:m,r ′’. When B

receives the reply, he checks if the pair (c, r ′) is an opening for the commitment C. If it
is, then B accepts m and outputs ‘B received m from A’. Otherwise, B rejects
this message and terminates this invocation of λ̂MTC&Sig.

A pictorial representation of a complete invocation of λ̂MTC&Sig for a message m can
be seen in Fig. 3.

Theorem 8. If the underlying commitment scheme is an MTC and the one-time sig-
nature scheme is secure against chosen message attack, then the protocol λMTC&Sig
emulates protocol MT in unauthenticated networks.

Proof. This proof follows the outline of Theorem 6: Supposing that there is a UM-
adversary U that breaks the integrity of the emulation “authenticated world vs unau-
thenticated world” with non-negligible probability δ, we can build an equivocator E for
the MTC scheme or a forger F for the one-time signature system.

Let us start with the construction of the equivocator E . He chooses a party A∗ among
the n parties of the simulation. Let q be a polynomial upper bound to the number of
messages that A∗ is requested to send. Then E invokes q times the algorithm Gen for
the generation of one-time signature keys obtaining q pairs of keys (ski , vki). Let H∗ be

New Approaches for Deniable Authentication 595

Fig. 3. MT-Authenticator λ̂MTC&Sig between A and B .

a hash function as described in the specification of λ̂MTC&Sig. For each pair (ski , vki),
a public key pki for an MTC is computed as pki = H∗(vki). These q values pki are
“declared” in the MTC secure binding game, so the oracle EQ can be invoked on them.
Now adversary E receives the master public key PK∗ of the MTC family to break.

E finalizes the setup of the simulator by choosing and distributing keys for the n

imitated parties according to function I except for party A∗ for which the pair (PK∗, H∗)
is used.

In this simulation of the unauthenticated world among parties using protocol
λMTC&Sig, E runs U . If party A∗ is invoked to send a message m to a party B , E
draws the first unused pair (ski , vki) of one-time signature keys. Thus, for the creation
of the first message ‘message:m,C’, we are using the commitment scheme associ-
ated with the precomputed public key pki = H∗(vki). As described in the protocol, E
computes: sig = Signski

(m,B) and C = Com(PK,pki , a, r) with a, r chosen at random.
The message sent is ‘message:m,C, vki , sig’.

When party A∗ receives a message ‘challenge:m,c’ from a party B , E finds the
keys (ski , vki) and pki used in connection with m. Note that E is allowed to invoke the
oracle EQ on the key pki so it can be used to create the reply to the challenge. Namely,
the oracle EQ is given as input the specific public key pki , the commitment C, the first
opening (a, r) and the challenge c. It returns randomness r ′ such that (c, r ′) is another
opening of C, so A∗ can reply with ‘reply:m,r ′’.

If some party D outputs ‘D received m∗ from A∗’ and A∗ was not activated
to send m∗ to D (or if D has already output this value before), this means that U broke
party A∗ using the message m∗. Since D outputs ‘D received m∗ from A∗’, he
collected from A∗ a first message ‘message:m∗,C, vk∗, sig∗’ and a replying message
‘reply:m∗, r ′’ to his challenge c. At this point there are two cases:

• The verification key vk∗ used by U is different than all the verification keys vki

used by A∗, this means that U has broken the commitment schemes and to find
the pair of openings we can use the rewinding technique seen in Theorem 6. Note

596 M. Di Raimondo and R. Gennaro

that the public key pk∗ = H∗(vk∗) is with high probability different from all the
public keys for which the oracle EQ is enabled to answer (this is for the collision-
resistance of H∗). Without going into details, the probability of success of E is the
same as in the proof of Theorem 6.

• vk∗ = vkj for some j and vkj was used by A∗ to authenticate in another session
a message m′ sent to a party B ′. For the properties of uniqueness assumed in our
model of message-driven protocols, we can deduce that the pair (m,B) is different
that (m′,B ′). This means that U , given the verification key vkj and a signature
on the string (m′,B ′), forged a new signature on a different string (m,B). This
breaks the security of the one-time signature system. More specifically, given this
adversary U , we could build a forger F for the one-time signature scheme. This
construction is really similar to that of the E in this proof. Starting from a veri-
fication key vk∗ and a signature on a message of his choice, F can create a sim-
ulation where all the parties have regular public/secret keys. Then he chooses at
random a session managed by the simulator where a party A∗ send a message m∗
to a party B∗. For this session, the verification key used is vk∗ and the message is
signed using the signature oracle. If U chooses to break a sequent session cloning
the verification key vk∗, we obtain a valid forger. The probability of success of
the forger F is δ

l
where l is the total number of messages delivered during the

simulation.

In both cases, we obtained an adversary for one scheme that was supposed to be
secure. �

DENIABILITY. As before this protocol is not deniable. But using the same techniques
as in Sect. 3.2.1 it can be made deniable.

3.4. On Simulation Sound Commitments

As introduced in [39], a Simulation-Sound Commitment (SSC) scheme is defined as a
commitment scheme with a single public key PK, which has a matching trapdoor TK.
The commitment algorithm takes as input a message m and a tag t , and it outputs
C = Com(PK,m, t, r) where r is the randomness used. There is also a “fake” com-
mitting algorithm that takes as input both the public key and the trapdoor and returns
a value C = FakeCom(PK,TK,m, t, r). Fake commitments for a specific tag t can be
equivocated, i.e., can be opened as any message efficiently if one knows TK. The crucial
properties of SSCs are:

• The distribution of fake commitments is indistinguishable from the distribution of
real commitments.

• No efficient adversary can create a fake commitment and opening it in two ways
for a tag t , even after having access to an oracle that creates fake commitments and
arbitrary openings for any tag t ′ �= t .

We stress that SSCs are not necessarily information-theoretic private (indeed, the
generic construction based on one-way function in [39] is not information-theoretic pri-
vate, which means that the indistinguishability in the first condition holds in the com-

New Approaches for Deniable Authentication 597

putational sense); also that the trapdoor may be needed to create and equivocate fake
commitments.

Notice that an AMTC is a stronger version of a SSC. Indeed, for an AMTC (where the
tag t is interpreted as a specific public key pk), we have information theoretic security. In
particular, fake commitments are not needed: The trapdoor information can equivocate
real commitments as well (so fake commitments are created identical to the real ones).

In [39], there are several constructions of SSCs, one based on one-way functions and
the other based on specific number-theoretic assumptions. The number-theoretic con-
structions are actually AMTCs. But the generic construction based on one-way func-
tions is not an AMTC. Indeed, in that scheme, fake commitments are only computa-
tionally indistinguishable from the real ones. This computational indistinguishability
is derived from a reduction to the ZK protocol for Hamiltonicity. More specifically, a
fake commitment contains a correct ZK proof for a Hamiltonian graph, while a real
commitment contains a simulated proof.

Consider the protocol λ̂AMTC when used with SSC. The message being authenticated
is mapped into the tag. The value C sent by the sender is computed using the fake com-
mitment algorithm, and then equivocated (both steps require use of the secret key TK).
The proof of unforgeability then follows from the fact that during the simulation one
can put fake commitments and equivocate them using the oracle, without knowing TK,
and an adversary will equivocate a different message and thus a different tag. Indeed,
the protocol remains a secure authenticator.

The proof of deniability also goes through. Indeed, the simulator without knowing
TK will compute real commitments which are computationally indistinguishable from
the fake ones, so the transcript is also (computationally) indistinguishable.20

Forward deniability, however, cannot be proven. Indeed, the Sender can prove (by
revealing how she prepared the fake commitments) that there is a real Hamiltonian
cycle contained in the fake commitments.

4. A DDH-Based MT-Authenticator

Here we show an MT-authenticator (later proven deniable) whose security is based on
the difficulty of the DDH problem in some groups.

NUMBER THEORY. In the following, we denote by Gq a cyclic group of prime order
q where multiplication and membership test can be performed efficiently. An example
is to consider two prime numbers p,q such that q|(p − 1). Then Gq is the subgroup
of Z∗

p of order q . Let g1, g2 be two generators21 for Gq . All computations are in Gq

unless otherwise noted.
We are going to assume that the well-known Decisional Diffie–Hellman Assumption

holds in Gq , namely that the DDH problem is difficult in this group. Consider the fol-
lowing distributions over G4

q :

DDH = {
(g1, g2, g

r
1, g

r
2) | r∈RZq

}
, Random = {

(g1, g2, g
r1
1 , g

r2
2) | r1, r2∈RZq

}
.

20 As in our proof the deniability, simulator uses rewinding to create a real commitment to the challenge
that the receiver will ask later.

21 The reciprocal discrete-logs of the two generators must be secret for security reasons.

598 M. Di Raimondo and R. Gennaro

The DDH Assumption claims that these two distributions are computationally indistin-
guishable, in other words, no polynomial-time algorithm given as input (g1, g2, u1, u2)

can decide if the input was drawn from DDH or Random.22

HASH FUNCTIONS. We shall use two kinds of hash functions. First, we will denote by
H a function chosen randomly in a set of Universal One-way hash functions (UOWHFs)
[42].

Also we consider a hash function H : Gq → {0,1}2k , where k is a security parameter,
such that 2−k is considered negligible. H must have the following property: The distri-
bution of H(x) when x∈RGq should be indistinguishable from the uniform distribution
over {0,1}2k . In this case, we will say that it is a smooth hash function. An example of
such a function is a function H randomly chosen over a set of 2-universal family [8];
in this case, assuming that |q| > 2k + 2δ we have that the distribution {H(x)}x∈RGq is
2−δ statistically close to the uniform one over {0,1}2k . To avoid choosing such a large
q , one could use a cryptographic hash function like SHA1, and explicitly assume that
the distribution {SHA1(x)}x∈RGq is computationally indistinguishable from the uniform
one. In the future, we shall denote by �H�(x) the first k-bits of H(x) and by
H�(x) the
remaining k-bits.

THE PROTOCOL. We construct the DDH-based MT-authenticator λDDH: The choice of
the group Gq and of the generators g1, g2 can be seen as the first phase of the initial-
ization23 function I of the protocol λDDH. To conclude the initialization phase, for each
party a pair of keys (PK,SK) is generated as follows. Consider a generic party Pi .
Random elements x1, x2, y1, y2 ∈ Zq are chosen and the group elements

c = g
x1
1 g

x2
2 , d = g

y1
1 g

y2
2

are computed. Further, two hash functions are chosen: a UOWHF H and a smooth one
H so that H : Gq → {0,1}2k . Finally, the public key of Pi is PKi = (c, d, H,H) and
the secret key is SKi = (x1, x2, y1, y2). The public information is the collection of the
information on the underlying group and of all the public keys:

I0 = p,q,g1, g2,PK1, . . . ,PKn.

Pi ’s private information consists of its secret key: Ii = SKi .
Next, when activated within party Pi and with external request to send message m

to party Pj , protocol λDDH invokes a two-party sub-protocol λ̂DDH between Pi and Pj .
Since the sub-protocol λ̂DDH involves only two parties, we use the names A and B

instead of Pi and Pj for simplicity. Going into details: First, A sends ‘message:m’ to
B (A also outputs ‘A sent message m to B’). Upon receipt of ‘message:m’
from A, party B creates a challenge for A as follows. A random r ∈ Zq is chosen and
then the following values are computed

u1 = gr
1, u2 = gr

2, α = H(m,B), v = crdrα, h1 = �H�(v),

22 This formulation is equivalent to several others and, in particular, using the substitution g1 → g,g2 →
gx,u1 → gy,u2 → gxy , one sees that it’s equivalent to distinguish Diffie–Hellman triples (gx, gy, gxy) from
non-Diffie–Hellman triples (gx, gy, gz).

23 These values could also be specific to a user’s public key, rather than common to all users.

New Approaches for Deniable Authentication 599

Fig. 4. MT-Authenticator λ̂DDH between A and B .

the message for A is ‘challenge:m,u1, u2, h1’.24 Upon receipt of ‘challenge:
m,u1, u2, h1’ from B , party A

• Checks the validity of the received challenge computing the values α = H(m,B) , v =
u

x1+αy1
1 u

x2+αy2
2 and checking that h1 = �H�(v);25

• Replies to the challenge with ‘reply:m,h2’ where h2 =
H�(v).

Finally, when B receives the message ‘reply:m,h2’ from A he proceeds as follows:
If h2 =
H�(v) (using its copy of v) then B accepts m and outputs ‘B received m

from A’. Otherwise, B rejects this message and terminates this invocation of λ̂DDH.
A pictorial representation of a complete invocation of λ̂DDH for a message m can be
seen in Fig. 4.

Theorem 9. Assume that the DDH assumption holds for the group Gq . Then protocol
λDDH emulates protocol MT in unauthenticated networks.

Proof. Up till the definition of event β , the proof is identical to the proof of Theorem 6.
We pick the proof from this point, showing that event β occurs only with negligible
probability. Assume that event B occurs with non-negligible probability δ. We construct
a DDH-distinguisher D that is capable to recognize DDH-instance with a non-negligible
probability (related to δ).

CONSTRUCTION OF D . Let (Gq,g1, g2, u
∗
1, u

∗
2) be an instance of the DDH problem,

given the adversary U (that is able to break λDDH with a non-negligible probability δ)
the distinguisher D runs U on the following simulated interaction with a set of parties
running λDDH. First, D chooses and distributes keys for the imitated parties according to
the function I with the only exception that the public common information Gq,g1, g2

is taken from the DDH-instance. Let A∗ be a party chosen at random among the n

simulated parties and let

PK∗ = (
c∗ = g

x∗
1

1 g
x∗

2
2 , d∗ = g

y∗
1

1 g
y∗

2
2 , H∗,H ∗), SK∗ = (

x∗
1 , x∗

2 , y∗
1 , y∗

2

)
24 Note that the values α,v are computed but not sent, to reduce bandwidth.
25 It’s easy to see that if the challenge is created correctly then A and B compute the same value v.

600 M. Di Raimondo and R. Gennaro

be its pair of keys, chosen according to the correct distribution. D chooses a random
m∗ among all messages m such that some party B was activated with ‘message:m’
from A∗.26 Next, D continues the simulated interaction. If during the simulation U
asks to corrupt party A∗ then the simulation aborts, and D outputs at random ‘DDH’ or
‘random’.

If party A∗ is activated with a request ‘challenge:m,u1, u2, h1’ from B with
m �= m∗, then A∗ checks the validity of the challenge, by computing α = H∗(m,B),

v = u
x∗

1 +αy∗
1

1 u
x∗

2 +αy∗
2

2 and replies with ‘reply:m,h2 =
H ∗�(v)’.
When a particular party B∗ is activated by U with incoming ‘message:m∗’, then

D computes

α∗ = H∗(m∗,B∗), v∗ = u∗
1
x∗

1 +α∗y∗
1 u∗

2
x∗

2 +α∗y∗
2 , h∗

1 = �H ∗�(v∗)

and has B∗ respond with ‘challenge:m∗, u∗
1, u

∗
2, h

∗
1’. We are embedding the in-

stance of the DDH problem into the challenge from B∗ for the message m∗.
Next, if A∗ is activated with incoming message ‘challenge:m∗, u∗

1, u
∗
2, h

∗
1’ then

the simulation aborts and the distinguisher D outputs at random ‘DDH’ or ‘random’.
Finally, if U activates B∗ with incoming message ‘reply:m∗, h∗

2’ and h∗
2 =
H ∗�(v)

(that is, the reply to the challenge is correct), then U has broken party A∗ on the message
m∗ and the distinguisher D outputs ‘DDH’. If the simulation terminates normally then
D outputs at random ‘DDH’ or ‘random’.

ANALYSIS OF D . First, let us highlight what the distinguisher D was trying to do in
its simulation: By choosing A∗ and m∗ at random, it was trying to guess the party that
U would break into and the message that it would use. Indeed, the only cases where
D aborts its simulation are when it’s clear that he chose the wrong party and/or the
wrong message (A∗ is corrupted or is activated to reply to the “fake” challenge). If we
denote by l the total number of messages that U delivers in its run, the probability that
D guesses the correct pair (A∗,m∗) is 1

l
.

Now consider the following cases:

• If (g1, g2, u
∗
1, u

∗
2) ∈ DDH then we observe that the “forged” message ‘chal-

lenge:m∗, u∗
1, u

∗
2, h

∗
1’ is a legitimate challenge, that is, logg1

u∗
1 = logg2

u∗
2. It’s

clear that, considering the view of U , D’s simulation is identical to the real world
(also because A∗ and m∗, and A∗’s keys, are chosen at random with a uniform dis-
tribution in their domains). In this case, the distinguisher D (considering also the
case in which it doesn’t guess the correct broken pair) outputs ‘DDH’ with proba-
bility:

Prob(D = ‘DDH′) = 1

l
·
(

Prob(B) · 1 + Prob(B̄) · 1

2

)
+

(
1 − 1

l

)
· 1

2

= 1

l
·
(

δ + (1 − δ) · 1

2

)
+

(
1 − 1

l

)
· 1

2
= 1

2
+ δ

2l
,

26 This can be done because if the total number l∗ of messages that A∗ sends and U delivers is known in
advance then D simply choose the ith message (with i∈R[1 . . . l∗]). Otherwise, D chooses m∗ in the following
way: Whenever some party B was activated with ‘message:m’ from A∗ , distinguisher D decides to choose
m∗ = m with an appropriate probability, making sure that by the end of the run all the candidate messages
have equal probability to be chosen.

New Approaches for Deniable Authentication 601

and then

Prob(D = ‘random’) = 1

2
− δ

2l
,

where δ
2l

is a non-negligible factor.
• If (g1, g2, u

∗
1, u

∗
2) ∈ Random, we prove in the following Lemma 10 that the dis-

tinguisher D says ‘DDH’ with a probability equal to 1/2 plus a negligible quantity
that here we denote with τ , so that

Prob(D = ‘DDH’) = 1

2
+ τ,

Prob(D = ‘random’) = 1

2
− τ.

Concluding, the distinguisher D solves the DDH problem with the non-negligible
advantage of (δ

2l
− τ). �

Remark. Note that in this proof the distinguisher D has to guess not only the party
broken by U , but also the message, in other words, the broken session among l total
sessions. This leads to a less efficient reduction (with respect to Theorems 6 and 8) with
a factor of 1

l
(instead of 1

n
).

Lemma 10. Suppose that (g1, g2, u
∗
1, u

∗
2) ∈ Random. Then, the distinguisher D out-

puts ‘DDH’ with probability equal to 1/2 plus a negligible quantity.

Proof. The distinguisher D says ‘DDH’ always if U breaks into A∗ with message m∗
and with probability 1/2 if D doesn’t guess the correct pair (A∗,m∗) or if U does not
break into anyone.

To create a correct reply for the challenge ‘challenge:m∗, u∗
1, u

∗
2, h

∗
1’, U must

guess v∗ and then compute h∗
2 =
H ∗�(v∗) or guess directly the value h∗

2.
Let us consider the U ’s view on the point (x∗

1 , x∗
2 , y∗

1 , y∗
2), it is the secret key of the

party A∗. Considering the information given by his public key, the point satisfies the
two equations:

log c∗ = x∗
1 + λx∗

2 , (2)

logd∗ = y∗
1 + λy∗

2 , (3)

where ‘log’ indicates the discrete-logarithm to the base g1 and λ = logg1
g2.

Consider the challenges ‘challenge:m′, u′
1, u

′
2, h

′
1’ that U submits to A∗ as party

B ′ during the simulation. We say that such a challenge is valid if r ′ = logg1
u′

1 =
logg2

u′
2. Let v′ = H ∗((cdα′

)r
′
), where α′ = H(m′,B ′). If A∗ answers a valid challenge

with h′
2 =
H ∗�(v′), this is just giving an extra equation

logv′ = r ′(x∗
1 + α′y∗

1) + r ′λ(x∗
2 + α′y∗

2),

602 M. Di Raimondo and R. Gennaro

which is linearly dependent on (2) and (3). Thus U ’s view of the point (x∗
1 , x∗

2 , y∗
1 , y∗

2)

remains the same. In Lemma 11 below, we show that A∗ answers invalid challenges only
with negligible probability. Thus for the rest of the proof of this Lemma, we assume A∗
never answers such challenges.

Since (g1, g2, u
∗
1, u

∗
2) ∈ Random, we can suppose that r∗

1 �= r∗
2 , where r∗

1 = logg1
u∗

1

and r∗
2 = logg2

u∗
2 (they are equal only with probability 1

q
). Inserting the message

‘challenge:m∗, u∗
1, u

∗
2, h

∗
1’ into the simulation, D is given some information about

the secret point, in particular, that the point satisfies also the equation:

logv∗ = r∗
1 (x1 + α∗y1) + r∗

2 λ(x2 + α∗y2). (4)

It’s clear that (2), (3) and (4) are linearly independent. This means that v∗ can take
any value and it is uniformly distributed over Gq . We are not exposing the value v∗
but U sees h∗

1 = �H ∗�(v∗) that gives information about v∗. Because of the properties
of H ∗, the value H ∗(v∗) is uniformly distributed over {0,1}2k , thus seeing the first half
does not help in predicting the second half. Thus U can guess h∗

2 only with negligible
probability 2−k . �

Lemma 11. Even after presenting ‘challenge:m∗, u∗
1, u

∗
2, h

∗
1’ to U , A∗ answers

invalid challenges only with negligible probability.

Proof. Let ‘challenge:m′, u′
1, u

′
2, h

′
1’ be an invalid challenge presented by U to

A∗. Since all the messages that come from a party must all be different, it follows that
m′ is different from m∗ or this challenge comes from a party B ′ �= B∗. Recall that
α′ = H∗(m′,B ′) and α∗ = H∗(m∗,B∗). At the end of the proof, we prove that if the
event α′ = α∗ happens with non-negligible probability, then the function H∗ is not a
secure hash function. For now, we assume that α′ �= α∗. Consider the equation:

logv′ = r ′
1(x1 + α′y1) + r ′

2λ(x2 + α′y2), (5)

where r ′
1 = logg1

u′
1 and r ′

2 = logg2
u′

2, and r ′
1 �= r ′

2 (because this challenge is invalid)

and v′ = (u′
1)

x∗
1 +α′y∗

1 (u′
2)

x∗
2 +α′y∗

2 . Since α′ �= α∗ and r ′
1 �= r ′

2, it is simple to verify
that (2), (3), (4), and (5) are linearly independent. This means that v′ is uniformly dis-
tributed over Gq and is independent from v∗, and thus h′

1 = �H ′�(v′) is independent
from h∗

1 = �H ∗�(v∗). In other words, the view of U up to this point does not help U in
any way to find the correct h′

1. Thus the probability that A∗ accepts is the probability
that U guesses h′

1, which is negligible.

BOUNDING THE PROBABILITY THAT α′ = α∗ . If our hash function H∗ were (fully)
collision-resistant, we could conclude immediately that α′ = H∗(m′,B ′) is equal to α∗
only with negligible probability, since their inputs are different.

The same conclusion, however, can be reached using the weaker assumption that
H∗ is only a UOWHF.27 If α′ = α∗ with non-negligible probability, the adversary
U can be used to break the UOWHF. We modify the simulation: When D sends

27 This argument appears already in the original Cramer–Shoup paper [10] and is due to Moni Naor.

New Approaches for Deniable Authentication 603

Fig. 5. Deniable MT-Authenticator λ̂DDH between A and B .

‘challenge:m∗, u∗
1, u

∗
2, h

∗
1’ to A∗ (the broken party), it uses α = H∗(m̂,B∗) instead

of α = H∗(m∗,B∗) where m̂ is a random message. Up until the time when a collision
occurs, U ’s view is statistically indistinguishable from the view in the original simu-
lation, so U will find a collision with the same probability as before. In this case, the
choice of (m̂,B∗) is independent from H∗ (we could fix the pair (m̂,B∗) before choos-
ing H∗). �

4.1. Deniability for λDDH

As in the previous case, protocol λDDH can be proven to be a deniable MT-authenticator
if the receiver is honest. Indeed, the simulator can be defined by choosing a random
r∈RZq and computing the appropriate values, like an honest receiver would.

The case of a dishonest receiver is more complicated. Here we do not have an attack,
but a black box simulation of the receiver fails (once the dishonest simulator sends us
‘challenge:m,u1, u2, h1’, how are we going to simulate the answer h2?).

We introduce a challenge–response mechanism where A will commit to the answer
h2 and then reveal it only after B shows that he knows h2 as well. However, at this point
it is redundant to split H(v) into two pieces, and we can just use v alone.

The protocol appears in Fig. 5. We assume that A’s public key includes an uncon-
ditionally binding commitment scheme COM (i.e., a commitment scheme that can be
opened in only one way even if you have infinite computing power, but, on the other
hand, its secrecy is computational).

Theorem 12. Protocol Den-λDDH is a forward deniable authenticator if used sequen-
tially.

Proof. Let us first check that Den-λDDH is still a secure authenticator. The proof of
Theorem 9 can be carried out with minor modification. Lemma 11 continues to hold as,
in order for U to have an invalid ciphertext accepted, it must guess v. However, in this
case U is given some “help” by seeing h = COM(v,ρ). Thus the proof of Lemma 11
holds computationally (rather than unconditionally) under the security of COM.

The deniability simulator works again by rewinding. After getting ‘challenge:
m,u1, u2’ from the receiver, we commit to a random value, and wait for the receiver

604 M. Di Raimondo and R. Gennaro

to reveal v. The receiver’s probability of revealing v must remain close to the one of
the real protocol (where the real v is committed by the sender), otherwise we can break
COM (this is basically the technique from [24]). Once we see v, we rewind the receiver
and place a correct commitment to v on the previous round and complete the simulation.

The simulated transcript is perfectly indistinguishable from a real one, so the forward
deniability holds. �

Remark (The First Step is Malleable). The above protocol shows how far we have
gone from the CCA-paradigm. We can think of u1, u2 as the “encryption” of a key, and
of v as the MAC of the message. But if we do that, then we do not know how to prove
the encryption step is CCA-secure.

Remark (Concurrent Executions). As in the previous section, the unforgeability prop-
erty of this authenticator holds in a concurrent setting (as in all the authenticators in the
CCA-paradigm). If we use timing assumptions to force only a logarithmic number of
executions to be open at any time, we achieve deniability in the concurrent setting as
well.

4.2. Generalizing to Projective Hash Functions

The previous scheme can be generalized to use projective hash functions, a tool intro-
duced by Cramer and Shoup in [12] as a generalization of their previous CCA-secure
encryption scheme based on DDH [10].

We briefly recall the notion of projective hash functions families, with some slight
change of terminology to fit it to our scenario. Let X be a set and L ⊂ X an NP-
language. Let Y be an arbitrary set. We consider a family of hash functions PHk that
map X ×Y to some set Z where k ranges in some key space K . We assume that PHk is
efficiently computable, i.e., there is some efficient algorithm that computes PHk(x, y)

when given k and x, y.
We say that this family is projective if there exists a projection key that allows to

compute PHk over the subset L × Y even without knowing k. That is, there exists a
projection function μ(·) that maps keys k into their projections s = μ(k) such that there
is an efficient algorithm which, given only s = μ(k), y ∈ Y , x ∈ L and w a witness of
x ∈ L (which exists because L is in NP), computes PHk(x, y). Notice that this algo-
rithm is not given k but just s = μ(k).

An ε-2-universal projective hash function has the additional property that for x /∈ L,
the projection key s actually says very little about the value of PHk(x, y), even after
seeing PHk(x

′, y′) for a y′ �= y. More specifically, for every x, x′, y, y′, z, z′, such that
y �= y′ we have

Probk

[
PHk(x, y) = z|s = μ(k) and PHk(x

′, y′) = z′] ≤ ε.

In [12], ε-2-universal projective hash function families are constructed under the
DDH, Quadratic Residuosity and Higher Residuosity Assumptions.

We now show how the previous scheme can be thought in terms of projective hash
functions. The set X is Gq × Gq . The set Y is M × ID, where M is the message
space, and ID is the set of possible user’s IDs. The NP-language L is the set of pairs

New Approaches for Deniable Authentication 605

Fig. 6. MT-Authenticator λ̂Proj between A and B .

(u1 = gr
1, u2 = gr

2) for r ∈ Zq . This is an NP language, and the witness for such an
element is r . The key space of the hash function is defined as Z4

q , and thus a key k is a
tuple k = (x1, x2, y1, y2).

PHx1,x2,y1,y2(u1, u2,m,B) = u
x1+αy1
1 u

x2+αy2
2 ,

where α = H(m,B). The projections of the key k = (x1, x2, y1, y2) are the values c =
g

x1
1 g

x2
2 and d = gy1g

y2
2 . Clearly, given c, d , if (u1, u2) is in L we can compute

PHx1,x2,y1,y2(u1, u2,m,B) = (cdα)r .

The proof of the protocol basically contains a proof that, thanks to the collision resis-
tance of H, the family PH is ε-2-universal.

The last property we need to construct the protocol is that pairs (x,w) can be effi-
ciently sampled. We denote by L′ the set of pairs (x,w) where w is a witness of x.

The protocol above can be generalized as follows. The public key of A is a description
of X and L, plus s = μ(k), while the secret key is k. The protocol is described in Fig. 6.
Notice that A can compute PHk as she knows k, while B can compute PHk(x,m,B)

because he sampled x together with w and he knows the projection.

Remark. In the Kurosawa–Desmedt encryption scheme [37], a strongly smooth pro-
jective hash function must be used. In this case, the output of the function is required to
be uniform not just very unpredictable. This is clearly a stronger property. In [37], this
is needed, as the output of the function is used as a key to encrypt and MAC a message.
In our case, basically, we are using the output of the function directly as a MAC thus
good unpredictability is sufficient.

The security of λ̂Proj can be proven by generalizing the proof for λ̂DDH, as follow:

Theorem 13. Assume that L ⊂ X is an hard on the average NP-language and that
PHk is a ε-2-universal projective hash function over X,L (with ε negligible), then
protocol λProj emulates protocol MT in unauthenticated networks.

Proof. Up till the definition of event β , the proof is identical to the proofs of Theo-
rems 6 and 9. We pick the proof from this point, showing that event β occurs only with
negligible probability. Assume that event B occurs with non-negligible probability δ.
We construct an Adversary D that, given a random element x∗ ∈ X, is able to decide if
x∗ is in the language or not with a non-negligible probability (related to δ).

606 M. Di Raimondo and R. Gennaro

CONSTRUCTION OF D . Given the adversary U (that is able to break λProj with non-
negligible probability δ) the distinguisher D runs U on the following simulated inter-
action with a set of parties running λProj. First, D chooses and distributes keys for the
imitated parties according to the protocol λProj using the sets L and X. Let A∗ be a party
chosen at random among the n simulated parties, and let k∗ be his secret key (chosen at
random) and (s∗ = μ(k∗),X,L) his public key.

As in the previous proofs, D chooses a random m∗ among all messages m such that
some party B was activated with ‘message:m’ from A∗. If during the simulation U
asks to corrupt party A∗ then the simulation aborts, and D outputs at random ‘inLan-
guage’ or ‘outLanguage’.

If party A∗ is activated with a request ‘challenge:m,x,h1’ from B with m �= m∗,
then A∗ computes PHk(x,m,B) using k, so he can check the validity of challenge and
reply with ‘reply:m,h2 =
PH ∗�(x,m,B)’.

When a particular party B∗ is activated by U with incoming ‘message:m∗’ then D
computes h∗

1 = �PHk∗�(x∗,m∗,B∗) using k∗ (and not the projection s∗ and the witness
w∗ that D doesn’t know). B∗ responds with ‘challenge:m∗, x∗, h∗

1’.
Next, if A∗ is activated with incoming message ‘challenge:m∗, x∗, h∗

1’ then the
simulation aborts and the distinguisher D outputs at random ‘inLanguage’ or ‘out-
Language’.

Finally, if U activates B∗ with incoming message ‘reply:m∗, h∗
2’ and h∗

2 =

PHk∗�(x∗,m∗,B∗) (that is the reply to the challenge is correct), then U has broken
party A∗ on the message m∗ and the distinguisher D outputs ‘inLanguage’. If the
simulation terminates normally then D outputs at random ‘inLanguage’ or ‘out-
Language’.

ANALYSIS OF D . D tries to guess the party that U will break and the message that it
will use: A∗ and m∗. If we denote by l the total number of the messages that U delivers
in its run, the probability that D guesses the correct pair (A∗,m∗) is 1

l
.

Now consider the following cases:

• If x∗ ∈ L then we observe that the “forged” message ‘challenge:m∗, h∗
1’ is a

legitimate challenge. It’s clear that, considering the view of U , D’s simulation is
identical to the real world. As in the previous theorem, in this case the distinguisher
D (considering also the case in which it doesn’t guess the correct broken pair)
outputs ‘inLanguage’ with probability:

Prob(D = ‘inLanguage′) = 1

l
·
(

Prob(B) · 1 + Prob(B̄) · 1

2

)
+

(
1 − 1

l

)
· 1

2

= 1

2
+ δ

2l
,

and then

Prob(D = ‘outLanguage′) = 1

2
− δ

2l
,

where δ
2l

is a non-negligible factor.

New Approaches for Deniable Authentication 607

Fig. 7. Deniable MT-Authenticator λ̂Proj between A and B .

• If x∗ /∈ L, we prove in the following Lemma 14 that the distinguisher D says
‘inLanguage’ with a probability equal to 1/2 plus a negligible quantity that we
here denote by τ , so that

Prob(D = ‘inLanguage′) = 1

2
+ τ,

Prob(D = ‘outLanguage′) = 1

2
− τ.

Concluding, the distinguisher D solves the membership problem related to L with
the non-negligible advantage of (δ

2l
− τ). �

Lemma 14. Suppose that x∗ /∈ L. The distinguisher D outputs ‘inLanguage’ with
a probability equal to 1/2 plus a negligible quantity.

Proof. The distinguisher D says ‘inLanguage’ always if U breaks in A∗ with mes-
sage m∗ and with probability 1/2 if D doesn’t guess the correct pair (A∗,m∗) or if U
doesn’t break anyone.

To create a correct reply for the challenge ‘challenge:m∗, x∗, h∗
1’ U must guess

the value PHk∗(x∗,m∗,B∗) or, at least, the second half of it.
When A∗ replies to challenges coming from other parties B ′, he exposes values

PHk∗(x′,m′,B ′), with x′ �= x. Thanks to the characteristic property of ε-2-universal
projective hash functions, the probability to guess the target hash value is negligible
for U .

When D inserts in the simulation the message ‘challenge:m∗, x∗, h∗
1 = �PHk∗�×

(x∗,m∗,B∗)’, this value doesn’t help U in his task for the uniform distribution of
PHk∗(x∗,m∗,B∗). Thus U can guess h∗

2 only with negligible probability. �

DENIABILITY. As before, the protocol can be proven deniable only against an honest
verifier. Against a malicious verifier, as before, we need an extra challenge response
mechanism (removing the need to split PHk(x,m,B) in two parts); the final protocol
is shown in Fig. 7.

This variant of the protocol is a forward deniable authenticator, and the proof fol-
lows the logic of Theorem 12. The proof still holds if the protocol is used sequentially

608 M. Di Raimondo and R. Gennaro

or in a concurrent setting, using timing assumptions to force a logarithmic number of
executions to be open at any time.

Appendix A. Alternative Model for the Analysis

Here we briefly describe the model for the analysis of deniable authentication protocol
adopted in [19,33]. We also show that the model we use (from [4]) is not weaker than
the one presented here. That is, we show that a protocol satisfying our definition of
deniable authenticator is valid in their model.

MODEL. There are a prover (or authenticator) P and a verifier V . P publishes a public
key PK that V knows. V concurrently interacts with P in many sessions. For each
session, following the execution of an authentication protocol, V decides whether to
accept or reject the session as an authentication of a message m. Consider an adversary
M that controls the communication of several copies of a prover P who are not aware
of each other and control the verifiers with whom they interact.

The protocol is a deniable authentication protocol if it satisfies:

Completeness For any message m, if the prover and verifier follow the protocol for
authenticating the message m, then the verifier accepts.

Soundness Suppose that the copies of P are willing to concurrently authenticate any
polynomial number of messages m1,m2, . . . , which may be chosen adaptively by the
adversary M. We say that M successfully attacks the scheme if a forger C, under
control of M and pretending to be P , succeeds in authenticating to a third party D

(running the verifier’s V protocol) a message m �= mi, i = 1,2,

We say that the scheme is unforgeable if the probability that M successfully attacks
it is negligible.

Strong Deniability Consider an adversary M as above and suppose that the copies of
P are willing to concurrently authenticate any polynomial number of messages. Then
for each M there exists a polynomial time simulator that, given black-box access to
M, outputs an indistinguishable transcript.

EQUIVALENCE. To prove that our model implies this alternative model we need to show
that a protocol in the former model (specifically a deniable MT-authenticator) is also a
deniable authentication protocol (using the above definition).

Briefly, let λ be a deniable MT-authenticator. Consider the implicit protocol between
the sender P (the prover) and the receiver V (the verifier). The completeness is straight-
forwardly verified.

For the soundness, suppose there exists an adversary M who is able to break the
soundness property of the protocol. Imagine a parallel simulation between an authen-
ticated world and an unauthenticated one using the MT-authenticator λ as connection
using the techniques of Theorem 9. Using the adversary M (running in the unauthen-
ticated world) we can build an AM-adversary A for the authenticated side. The parties
in the soundness-game (copies of P and verifiers) run in the unauthenticated side of the
simulation. We use the convention to attach to each message m the identity of the sender

New Approaches for Deniable Authentication 609

and an incremental id specific for each sender. This way the requirement that each party
should send only distinct messages is satisfied.

If M breaks the scheme in the unauthenticated world, thanks to the fact that MT-
authenticators are simulatable, it follows that A breaks the rules of the authenticated
world (sending a message not present in the set M of “undelivered messages”).

Finally, for strong deniability it is enough to note that the simulator SM is identical
to our simulator S

(M)
λ .

Appendix B. Implementations of AMTC/MTC Schemes

For the sake of completeness, we report an MTC scheme from [21] that is based on the
Strong-RSA Assumption. It can be extended to an AMTC using Chameleon Hashing:
The resulting scheme is quite similar to the construction of a Simulation-sound Com-
mitments scheme in [39]. In the same paper, there is another construction based on the
security of DSA signature scheme that can be shown to be an AMTC, too.

B.1. The RSA and Strong RSA Assumption

Let N be the product of two primes, N = pq . By φ(N) we denote the Euler function
of N , i.e., φ(N) = (p − 1)(q − 1). By Z∗

N we denote the set of integers between 0 and
N − 1 and relatively prime to N .

Let e be an integer relatively prime to φ(N). The RSA Assumption [44] states that it
is infeasible to compute e-roots in Z∗

N , i.e., given a random element s ∈R Z∗
N , it is hard

to find x such that xe = s mod N .
The Strong RSA Assumption (introduced in [3]) states that, given a random element

s in Z∗
N , it is hard to find x, e �= 1 such that xe = s mod N . The assumption differs

from the traditional RSA assumption in that we allow the adversary to freely choose the
exponent e for which she will be able to compute e-roots.

B.2. The Construction of the MTC Based on Strong RSA

We first show a basic trapdoor commitment based on RSA (see [9,11]), and later show
how to make it into an MTC. Let N be the product of two large primes p,q . Let e

be a prime such that GCD(e,φ(N)) = 1, and s a random element of Z∗
N . The triple

(N, s, e) is the public parameters. The commitment scheme is defined over messages in
[1..e − 1].

We denote the commitment scheme with ComN,s,e(·, ·) and we drop the indices when
obvious from the context. To commit to a ∈ [1..e − 1], the sender chooses r ∈R Z∗

N and
computes A = Com(a, r) = sa · re mod N . To decommit the sender reveals a, r , and
the previous equation is verified by the receiver.

Under the RSA Assumption, this scheme is an unconditionally secret, computation-

ally binding trapdoor commitment scheme. The trapdoor is the value x = s
1
e mod N .

Let us first prove that the scheme is unconditionally secret. Given a value A = sa · re

we note that for each value a′ �= a there exists a unique value r ′ such that A = sa′
(r ′)e.

Indeed, this value is the e-root of A · s−a′
.

We now show that the scheme is computationally binding under the RSA Assump-
tion. We show that an adversary A who is able to open the commitment scheme in two

610 M. Di Raimondo and R. Gennaro

ways can be used to compute e-roots. The proof uses Shamir’s GCD-trick [46]. Given
as input the values (N, s, e) we want to compute an integer x such that xe = s mod N .
We place (N, s, e) as the public parameters of the commitment scheme and run A. The
adversary returns a commitment A and two distinct openings of it (a, r) and (a′, r ′).
Thus,

A = sare = sa′
(r ′)e �⇒ sa−a′ =

(
r ′

r

)e

. (B.1)

Let δ = a − a′. Since a, a′ < e we have that GCD(δ, e) = 1. We can find integers α,β

such that αδ + βe = 1. Now we can compute

s = sαδ+βe = (sδ)α · sβe =
(

r ′

r

)αe

sβe, (B.2)

where we used (B.1). By taking e-roots of both sides we find that x = (r ′
r
)αsβ .

Finally, we show that if we know x then we can open a commitment (of which
we already know one opening), in any way we want. Assume we computed A as
Com(a, r) = sare , and later we want to open it as a′. All we need to do (as shown
above for the unconditional security) is to compute the e-root of

A · s−a′ = sa−a′ · re mod N,

which clearly is xa−a′ · r mod N .

Remark 1. The commitment scheme can be easily extended to any message domain
M by using a collision-resistant hash function H from M to [1..e − 1]. In this case,
the commitment is computed as Com(a, r) = sH(a)re . For example, it is possible to use
a collision resistant function like SHA-1 that maps inputs to 160-bit integers and then
choose e’s larger than 2160.

Remark 2. How to make the scheme into a multi-trapdoor commitment. Notice that
the scheme above is really a family of commitment schemes, one for each prime e.
The master trapdoor is the factorization of N . The specific trapdoor of each scheme is
s1/e mod N .

We only need to show that the Secure Binding condition holds, under the Strong RSA
Assumption. Assume we are given a Strong RSA problem instance N,σ . Let us now
run the MTC Secure Binding game.

The adversary is going to select k public keys which in this case are k primes,

e1, . . . , ek . We set s = σ
∏k

i=1 ei mod N and return N,s as the public key of the MTC
family. Now we need to show how to simulate the oracle E Q. But that’s easy, as we
know the ei -roots of s, so we actually know the trapdoor of the schemes in the family
identified by ei .

Assume now that the adversary equivocates a commitment scheme in the family iden-
tified by a prime e �= ei . Using the above observation we can then compute ρ = s1/e .
In turn, this allows us to solve the Strong RSA problem instance N,σ by computing an

New Approaches for Deniable Authentication 611

e-root of σ as follows. Let E = ∏k
i=1 ei . Then GCD(e,E) = 1 which means that we

can find integers α,β such that αe + βE = 1. Then

σ = σαe+βE = [σαρβ]e.
This prove that this scheme is an MTC scheme.

Appendix C. Alternative Authenticators Based on MTC

This section shows methods to make protocol λAMTC secure when using MTC commit-
ments instead of AMTC ones. Notice that in these cases also, in order to make λAMTC
deniable, we need to modify it as shown in Sect. 3.2.1.

C.1. Same Protocol with MTC and Random Oracle Proof

The only difference between the notion of AMTC and MTC schemes resides in the se-
cure binding properties. In the game that defines the MTC secure binding property,
the adversary can’t see the master public key PK until he declares the public keys
(pk1, . . . ,pkk) on which he wants invoke the equivocator oracle EQ. Instead, in the
AMTC game he can invoke EQ without any limitations.

To deal with this problem in the random oracle model is relatively simple: Let A∗ be
the party chosen at random among the n parties, and let q be a polynomial upper bound
to the number of messages that A∗ is requested to send. Suppose that H∗ is the hash
function of the public key of A∗. Note that we need to program a random oracle only
for H∗, in fact, the simulator knows the master trapdoor keys of the other parties.

We can choose q random public keys (pk1, . . . ,pkq) and program the oracle of the
hash function H∗ to map the ith different request to the oracle (for example, the string
(mi,Bi)) on the string pki . Further, in the MTC secure binding game, we declare that
we want to be able to invoke the equivocator EQ on all these public keys except for
one pkj chosen at random. Namely, we bet on this session hoping that it is the broken
session.

Finally, we saw in the proof of Theorem 6 that if the adversary U has probability δ

to break the authenticator then the built equivocator E breaks the security of the multi-
trapdoor commitment with probability δ

n
. Here, this probability is different but still

non-negligible, that is, δ
n·q .

Remark. Note that here we are using the features of the ideal Random Oracle model
only in the proof of unforgeability. The proof of deniability is identical to Theorem 7,
and it holds in the standard model.

C.2. MTC-Based Authenticator without Random Oracle

Now we show that the Random Oracle in the previous construction can be replaced by a
hash function which satisfies some strong (but well defined) computational assumptions
introduced by Gennaro et al. [23].

In the previous section, we saw how the adversary E can program the random oracle
to obtain the previously chosen values. In the standard model, this is no longer the

612 M. Di Raimondo and R. Gennaro

case: Clearly, if H is deterministic, then the choice of the message m and of the receiver
uniquely determines the public key pk, and E has no room to play with these values. But
even if H is randomized this does not help E due to the fact that H is one-way. Thus, if
the adversary first chooses pk and then sees the pair (m,B), it cannot find randomness
r for witch pk = H(r;m,B) (even if such r exists).

To deal with this problem we need an oracle associated to the hash function that,
given the hash Y and the message M , returns a randomness R such that H(R;M) = Y .
Further, we need to assume that the presence of this oracle does not help in any way
to break the security of the commitment scheme. This technique is introduced in [23]
where the authors use this assumption relatively to the problem of Strong RSA. Here we
present the same assumption but adapted to the use of a generic commitment scheme.28

We say that a family of hash function is suitable, relatively to a particular family of
commitment schemes, if:

1. The hash functions in the family are collision-resistant.
2. For every function H in the family and for every two messages M1,M2, the dis-

tributions H(R;M1), H(R;M2), induced by the random choice of R, are statisti-
cally close.

3. There is an oracle that on input H,M,Y returns a random R such that
H(R;M) = Y .

4. The security of commitment schemes still holds in a model where there exists such
an oracle.

SKETCH OF PROOF. If we assume that the hash functions used in the MTC-based au-
thenticator are suitable, we can still prove that it emulates a protocol MT in unauthenti-
cated networks. The proof proceeds similarly to Theorem 6, i.e., we construct an equiv-
ocator E which will use the UM-adversary U . The main difference is that E operates
in a relativized model, given, in addition, access to the oracle from Condition 3 of the
suitable hash function.

As in the previous sketch of proof: Let A∗ be the party chosen at random among the
n parties, and let q be a polynomial upper bound to the number of messages that A∗ is
requested to send. H∗ is the hash function of A∗. As before, we can choose q random
public keys (pk1, . . . ,pkq) and, in the MTC secure binding game, we declare that we
want to be able to equivocate with oracle EQ the commitments related to these keys.

When A∗ receives the ith request to send a generic message mi to a party Bi , E
invokes the randomness-finding oracle for a randomness ri for which H(ri;mi,Bi) =
pki . After, when A∗ receives the challenge from Bi , E can invoke the equivocator oracle
EQ to open the commitment as requested.

The rest of the simulation proceeds as in the original proof, that is, rewinding the
simulation if U breaks party A∗ and obtaining a double opening of a commitment of the
family.29 It is important to note that, because of Condition 2 of the suitable hash func-

28 If the security of the commitment scheme is based, for example, on the Strong RSA assumption, then
our assumption is identical to the one used in the original paper.

29 The probability that U uses in the broken session a pair (m,B) with a randomness r such that
H∗(r;m,B) = pki for some i is negligible. This means that the final probability of success of the built
adversary is slightly different but still non-negligible.

New Approaches for Deniable Authentication 613

tion, the distribution that U sees in this simulation is statistically close to the distribution
it sees when interacting with real parties in unauthenticated networks.

IMPLEMENTATIONS OF SUITABLE HASH FUNCTIONS. Following the discussion
in [23], we argue that adopting this type of non-standard assumptions is reasonable.

The first of suitable hash functions can be built under standard assumptions (like Fac-
toring, RSA or Discrete Logarithm) by using Chameleon hashing [6,36] (the trapdoor
property of this hash function immediately gives you the inverting oracle). Indeed, our
Chameleon Hashing solution is basically an instantiation of this paradigm.

But even without resorting to Chameleon Hashing, we can still assume that a very
efficient cryptographic hash function, such as SHA-1, is suitable. Intuitively, what this
means is that we are assuming that finding collisions in SHA-1 is a computational task
which is “unrelated” to breaking the commitment scheme, and that finding such colli-
sions would not help in, say, inverting RSA.

References

[1] Y. Aumann, M. Rabin, Authentication, enhanced security and error correcting codes, in Advances in
Cryptology, Proc. of CRYPTO ’98. LNCS, vol. 1462 (Springer, Berlin, 1998), pp. 299–303

[2] Y. Aumann, M. Rabin, Efficient deniable authentication of long messages, in International Conference
on Theoretical Computer Science in Honor of Professor Manuel Blum’s 60th Birthday, April 20–24,
1998. Available from: http://www.cs.cityu.edu.hk/dept/video.html

[3] N. Barić, B. Pfitzmann, Collision-free accumulators and fail-stop signature schemes without trees, in
Advances in Cryptology, Proceedings of EUROCRYPT ’97. LNCS, vol. 1233 (Springer, Berlin, 1997),
pp. 480–494

[4] M. Bellare, R. Canetti, H. Krawczyk, A modular approach to the design and analysis of authentication
and key exchange protocols, in Proc. of 30th Symposium on Theory of Computing (STOC) (ACM, New
York, 1998), pp. 419–428

[5] D. Boneh, X. Boyen, Short signatures without random oracles, in Advances in Cryptology, Proc. of
EUROCRYPT ’04. LNCS, vol. 3027 (Springer, Berlin, 2004), pp. 56–73

[6] G. Brassard, D. Chaum, C. Cre’peau, Minimum disclosure proofs of knowledge. J. Comput. Syst. Sci.
37(2), 156–189 (1988)

[7] R. Canetti, U. Feige, O. Goldreich, M. Naor, Adaptively secure multi-party computation, in Proc. of
28th Symposium on Theory of Computing (STOC) (ACM, New York, 1996), pp. 639–648

[8] L. Carter, M.N. Wegman, Universal classes of hash functions. J. Comput. Syst. Sci. 18(2), 143–154
(1979)

[9] R. Cramer, I. Damgard, New generation of secure and practical RSA-based signatures, in Advances in
Cryptology, Proceedings of CRYPTO ’96. LNCS, vol. 1109 (Springer, Berlin, 1996), pp. 173–185

[10] R. Cramer, V. Shoup, A practical public-key cryptosystem secure against adaptive chosen ciphertexts
attacks, in Advances in Cryptology, Proc. of CRYPTO ’98. LNCS, vol. 1462 (Springer, Berlin, 1998),
pp. 13–25

[11] R. Cramer, V. Shoup, Signature scheme based on the strong RSA assumption, in Proc. of 6th ACM
Conference of Computer and Communication Security (1999)

[12] R. Cramer, V. Shoup, Universal hash proofs and a paradigm for adaptive chosen ciphertext secure
public-key encryption, in Advances in Cryptology, Proc. of EUROCRYPT ’02. LNCS, vol. 2332
(Springer, Berlin, 2002), pp. 45–64

[13] I. Damgård, J. Groth, Non-interactive and reusable non-malleable commitment schemes. in Proc. of
35th ACM Symp. on Theory of Computing (STOC’03), (2003), pp. 426–437

[14] G. Di Crescenzo, Y. Ishai, R. Ostrovsky, Non-interactive and non-malleable commitment. in Proc. of
30th ACM Symp. on Theory of Computing (STOC’98), (1998), pp. 141–150

[15] G. Di Crescenzo, J. Katz, R. Ostrovsky, A. Smith, Efficient and non-interactive non-malleable commit-
ment, in Proc. of EUROCRYPT 2001. LNCS, vol. 2045 (Springer, Berlin, 2001), pp. 40–59

http://www.cs.cityu.edu.hk/dept/video.html

614 M. Di Raimondo and R. Gennaro

[16] W. Diffie, M.E. Hellman, New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654
(1976)

[17] M. Di Raimondo, R. Gennaro, H. Krawczyk, Deniable authentication and key exchange, in ACM Con-
ference on Computer and Communications Security (CCS’06) (ACM Press, New York, 2006), pp. 400–
409

[18] D. Dolev, C. Dwork, M. Naor, Non-Malleable cryptography. SIAM J. Comput. 30(2), 391–437 (2000)
[19] C. Dwork, M. Naor, A. Sahai, Concurrent zero-knowledge. J. ACM 51(6), 851–898 (2004). Preliminary

version in STOC’98
[20] J. Garay, P. MacKenzie, K. Yang, Strengthening zero-knowledge protocols using signatures, in Ad-

vances in Cryptology, Proc. of EUROCRYPT ’03. LNCS, vol. 2656 (Springer, Berlin, 2003), pp. 177–
194

[21] R. Gennaro, Multi-trapdoor commitments and their applications to proofs of knowledge secure under
concurrent man-in-the-middle attacks, in Advances in Cryptology, Proc. of CRYPTO ’04. LNCS, vol.
3152 (Springer, Berlin, 2004)

[22] R. Gennaro, V. Shoup, A note on an encryption scheme of Kurosawa and Desmedt, http://eprint.iacr.org/
2004/194/

[23] R. Gennaro, S. Halevi, T. Rabin, Secure hash-and-sign signatures without the random oracle, in Ad-
vances in Cryptology, Proc. of EUROCRYPT ’99. LNCS, vol. 1592 (Springer, Berlin, 1999), pp. 123–
139

[24] O. Goldreich, A. Kahan, How to construct constant-round zero-knowledge proof systems for NP.
J. Cryptol. 9(3), 167–190 (1996)

[25] O. Goldreich, S. Micali, A. Wigderson, Proofs that yield nothing but their validity or all languages in
NP have zero-knowledge proof systems, in Proc. of 27th IEEE Annual Symposium on the Foundations
of Computer Science, vol. 38, no. 1, July 1991, pp. 691–729

[26] S. Goldwasser, S. Micali, Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984)
[27] S. Goldwasser, S. Micali, R. Rivest, A digital signature scheme secure against adaptive chosen-message

attacks. SIAM J. Comput. 17(2), 281–308 (1988)
[28] S. Goldwasser, S. Micali, C. Rackoff, The knowledge complexity of interactive proof-systems. SIAM J.

Comput. 18(1), 186–208 (1989)
[29] P. Gutman, Secure deletion of data from magnetic and solid-state memory, in Sixth USENIX Security

Symposium Proceedings, San Jose, California, July 22–25, 1996
[30] D. Harkins, D. Carrel, (eds.) The Internet Key Exchange (IKE), RFC 2409, Nov. 1998
[31] J. Herranz, D. Hofheinz, E. Kiltz, The Kurosawa–Desmedt Key Encapsulation Is Not Chosen-Ciphertext

Secure. IACR Cryptology ePrint Arhive, Report 2006/207. Available at http://eprint.iacr.org/2006/207
[32] M. Jakobsson, K. Sako, R. Impagliazzo, Designated verifier proofs and their applications, in Advances

in Cryptology, Proc. of EUROCRYPT ’96. LNCS, vol. 1070 (Springer, Berlin, 1996), pp. 143–154
[33] J. Katz, Efficient and non-malleable proofs of plaintext knowledge and applications, in Advances in

Cryptology, Proc. of EUROCRYPT ’03. LNCS, vol. 2656 (Springer, Berlin, 2003), pp. 211–228
[34] H. Krawczyk, SKEME: a versatile secure key exchange mechanism for Internet, in IEEE Symposium

on Network and Distributed System Security (SNDSS ’96) (1996)
[35] H. Krawczyk, SIGMA: The ‘SiGn-and-MAC’ approach to authenticated Diffie–Hellman and its use in

the IKE protocols, in Advances in cryptology, Proc. of CRYPTO ’03. LNCS, vol. 2729 (Springer, Berlin,
2003), pp. 400–425. Available at http://www.research.ibm.com/security/sigma.ps

[36] H. Krawczyk, T. Rabin, Chameleon hashing and signatures, in Proc. of Network and Distributed Systems
Security Symposium (NDSS) 2000 (Internet Society, 2000), pp. 143–154

[37] K. Kurosawa, Y. Desmedt, A new paradigm of hybrid encryption scheme, in Advances in Cryptology,
Proc. of CRYPTO ’04. LNCS, vol. 3152 (Springer, Berlin, 2004), pp. 426–442

[38] L. Lamport, Constructing digital signatures from a one-way function. Technical Report SRI Intl. CSL
98 (1979)

[39] P. MacKenzie, K. Yang, On simulation-sound commitments, in Advances in Cryptology, Proc. of EU-
ROCRYPT ’04. LNCS, vol. 3027 (Springer, Berlin, 2004), pp. 382–400

[40] W. Mao, K.G. Paterson, On the plausible deniability feature of Internet protocols. Manuscript
[41] M. Naor, Deniable ring authentication, in Advances in Cryptology, Proc. of CRYPTO ’02. LNCS, vol.

2442 (Springer, Berlin, 2002), pp. 481–498
[42] M. Naor, M. Yung, Public-key cryptosystems provably secure against chosen ciphertext attacks, in Proc.

of 22nd Symposium on Theory of Computing (STOC) (ACM, New York, 1990), pp. 427–437

http://eprint.iacr.org/2004/194/
http://eprint.iacr.org/2004/194/
http://eprint.iacr.org/2006/207
http://www.research.ibm.com/security/sigma.ps

New Approaches for Deniable Authentication 615

[43] R. Pass, On deniability in the common reference string and random oracle model, in Advances in Cryp-
tology, Proc. of CRYPTO ’03. LNCS, vol. 2729 (Springer, Berlin, 2003), pp. 316–337

[44] R. Rivest, A. Shamir, L. Adelman, A method for obtaining digital signature and public key cryptosys-
tems. Commun. ACM 21(2), 120–126 (1978)

[45] R. Rivest, A. Shamir, Y. Tauman, How to leak a secret, in Advances in Cryptology, Proc. of ASI-
ACRYPT ’01. LNCS, vol. 2248 (Springer, Berlin, 2001), pp. 552–565

[46] A. Shamir, On the generation of cryptographically strong pseudorandom sequences, in ACM Transac-
tions on Computer Systems (TOCS), vol. 1, no. 1, (ACM, New York, 1983), pp. 38–44

[47] V. Shoup, Using hash functions as a hedge against chosen ciphertext attack, in Advances in Cryptology,
Proc. of EUROCRYPT ’00. LNCS, vol. 1807 (Springer, Berlin, 2000), pp. 275–288

	New Approaches for Deniable Authenticationt1
	Abstract
	Introduction
	What If the Sender Changes Her Mind?
	Our Contribution
	Related Work
	Practical Applications

	The Model
	Definitions and Main Theorems
	Extension for Deniable Methods
	Forward Deniability

	mt-Authentication Using Multi-trapdoor Commitment Schemes
	Multi-trapdoor Commitment Schemes
	AMTC-Based mt-Authenticators
	Deniability

	Some MTC-Based mt-Authenticators
	mt-Authenticator Based on MTC and One-Time Signatures Schemes

	On Simulation Sound Commitments

	A DDH-Based mt-Authenticator
	Deniability for lambdaDDH
	Generalizing to Projective Hash Functions

	Appendix A. Alternative Model for the Analysis
	Appendix B. Implementations of AMTC/MTC Schemes
	The RSA and Strong RSA Assumption
	The Construction of the MTC Based on Strong RSA

	Appendix C. Alternative Authenticators Based on MTC
	Same Protocol with MTC and Random Oracle Proof
	MTC-Based Authenticator without Random Oracle

	References

