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NEW APPROACHES TO BAYESIAN CONSISTENCY1

BY STEPHEN WALKER

University of Bath

We use martingales to study Bayesian consistency. We derive sufficient
conditions for both Hellinger and Kullback–Leibler consistency, which do
not rely on the use of a sieve. Alternative sufficient conditions for Hellinger
consistency are also found and demonstrated on examples.

1. Introduction. Let X1,X2, . . . , taking values in(X ,B), be independent
and identically distributed random variables from some fixed but unknown (the
true) density functionf0, with corresponding distribution functionF0. Let Fn

0 be
the correspondingn-fold product measure on(X n,Bn) and letF∞

0 denote the
infinite product measure.

With f0 being unknown, the Bayesian constructs a prior distribution� on �,
the space of density functions on(X ,B). This prior combines with the data to
define the posterior distribution�n, assigning mass

�n(A) =
∫
A Rn(f )�(df )∫
Rn(f )�(df )

(1)

to the set of densitiesA, where

Rn(f ) =
n∏

i=1

f (Xi)/f0(Xi).

The predictive density is given by

fn(x) =
∫

f (x)�n(df ).

Here, and throughout, we assume that all relevantf are, in fact, densities with
respect to the Lebesgue measure.

This paper is concerned with Hellinger and Kullback–Leibler consistency. For
example, for Hellinger consistency, the required result we are aiming for is

�n
({f :H(f,f0) > ε}) → 0 a.s.[F∞
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for all ε > 0, whereH(f,f0) is the Hellinger distance betweenf andf0, given by

H(f,f0) =
{∫ (√

f − √
f0

)2
}1/2

.

Previous studies of Hellinger consistency [see, e.g., Barron, Schervish and
Wasserman (1999) and Ghosal, Ghosh and Ramamoorthi (1999)] deal with the nu-
merator and denominator in the expression for�n(A) separately. Briefly, if� puts
positive mass on all Kullback–Leibler neighborhoods off0 (which will be referred
to as the Kullback–Leibler property for�), then the denominator is eventually
bounded below by exp(−nc) for all c > 0. SettingA = {f :H(f,f0) > ε}, for
someε > 0, with constraints on the prior, ensuring sufficiently low mass on den-
sities which track the data too closely, the numerator can be eventually bounded
above by exp(−nδ), for someδ > 0. Consequently, with the appropriate conditions
in place,�n(A) → 0 a.s., with exponential rate, for allε > 0.

To be more explicit, the basic ideas of current approaches are based on the
introduction of an increasing sequence of setsGn, a sieve, and to consider

�n(A) = �n(Gn ∩ A) + �n(G c
n ∩ A).

Putting sufficiently low mass on densities which track the data too closely, that is,
the densities inG c

n , involves ensuring that�(G c
n ) < exp(−nξ) for all largen and

for someξ > 0. This results in�n(G c
n ) < exp(−nξ∗) a.s. for all largen for some

ξ∗ > 0. The aim then is to findGn such that∫
A∩Gn

Rn(f )�(df ) < exp(−nδ) a.s.

for all largen for someδ > 0. Approaches differ in the precise form ofGn which
guarantees the above. For example, Ghosal, Ghosh and Ramamoorthi (1999) have
J (η,Gn) < nβη for all largen, for someβη > 0 for all η > 0, whereJ is theL1
metric entropy.

We also deal with the numerator and denominator separately but study the
numerator via different techniques which include the use of martingales. We do
not use sieves. To fix the notation, define

fnA(x) =
∫

f (x)�n
A(df )

to be the predictive density with posterior distribution restricted, and normalized,
to the setA, let h(f,f0) = 1− ∫ √

ff0 = H 2(f, f0)/2 be a slight variation on the
Hellinger distanceH , and note thath(f,f0) ≤ 1. Also defineIn = ∫

Rn(f )�(df )

and D(f,f0) = ∫
f0 log(f0/f ) to be the Kullback–Leibler divergence between

f andf0. The Kullback–Leibler property is given by

�
({f :D(f,f0) < ε}) > 0

for all ε > 0. Sincef0 is unknown, the condition is

�
({f :D(f,g) < ε}) > 0
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for all densitiesg and allε > 0. This is possible to achieve using nonparametric
priors. See Barron, Schervish and Wasserman (1999) and Ghosal, Ghosh and
Ramamoorthi (1999).

The layout of the paper is as follows. In Section 2 we present preliminary
results based on certain martingales. Section 3 unifies approaches to posterior
consistency via the use of these martingales and Section 4 deals with the special
case of consistency for predictive densities. Section 5 presents a specific result
for Hellinger consistency which does not use martingales and examples are
presented in Section 6. Section 7 contains a discussion and highlights areas for
future research.

2. Preliminaries. Here we will discuss fundamental concepts and ideas on
which the paper is based. Our concern is with the numeratorLn = ∫

A Rn(f )�(df ),
whereA is a set of densities, of (1). We have already established that the Kullback–
Leibler property will always deal appropriately with the denominator. The follow-
ing identity is the key:

Ln+1/Ln = fnA(Xn+1)/f0(Xn+1), n = 0,1, . . . ,(2)

and it is easy to check that this holds. From here we can go in one of two direc-
tions. The first option is based on martingales and takesA = {f :d(f,f0) > ε},
where d metricizes weak convergence, and is the Hellinger or the Kullback–
Leibler distance. The second option, in the case of the Hellinger distance, is to
split {f :H(f,f0) > ε} into a countable number of disjoint sets{Aj } based on
Hellinger balls,Aj = {f :H(f,fj ) < δ} for some suitable set of densities{fj }
and someδ > 0. This is possible due to the separability of� with respect to the
Hellinger metric.

The two approaches share similarities, both use (2), but are otherwise different.
The first covers a range of types of consistency, whereas the second seems suited
only to Hellinger consistency. To set the scene for the first option we consider
measurable functionsTd , linked to a distance measured , such that

E{Td(Ln+1/Ln)|Fn} = −d(fnA,f0),

whereFn = σ(X1, . . . ,Xn). If Td(y) = √
y − 1, thend(f,f0) = h(f,f0) and

if Td(y) = logy, then d(f,f0) = D(f,f0). Other cases arise; for example, if
Td(y) = 1− 1/y, thend(f,f0) = ∫

f 2
0 /f − 1, which is theχ -squared distance.

Now consider the martingale(MN,FN) given by

MN =
N∑

n=1

{Td(Ln/Ln−1) + d(fn−1A,f0)}.

A well-known result for such martingales [see Loève (1963)] is that if∑
n

n−2 Var{Td(Ln/Ln−1)} < ∞,(3)
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thenMN/N → 0 a.s. Consequently, if

lim inf
n

d(fnA,f0) > 0 a.s.,

then

lim sup
N

1

N

N∑
n=1

Td(Ln/Ln−1) < 0 a.s.

For both cases ofTd(y) = √
y − 1 andTd(y) = logy, the above implies that there

exists aδ > 0 such thatLN < exp(−Nδ) a.s. for someδ > 0 for all largeN .
This result can be achieved forTd(y) = √

y − 1 by making use of the fact that an
arithmetic mean is greater than or equal to a geometric mean, and it is clearly true
for Td(y) = logy. It is worth writing this down formally.

LEMMA 1. Let Ln = ∫
A Rn(f )�(df ) and Td(y) = √

y − 1 or Td(y) = logy.
If (3) holds and

lim inf
n

d(fnA,f0) > 0 a.s.,

then LN < exp(−Nδ) a.s. for some δ > 0 for all large N .

This result, namely,LN < exp(−Nδ) a.s. for someδ > 0 for all large N ,
combined with the Kullback–Leibler property for�, leads to�n(A) → 0 a.s.
This follows since the Kullback–Leibler property impliesIN > exp(−Nc) a.s. for
all largeN , for anyc > 0. Hence, we can choosec < δ.

3. Posterior consistency. In this section we unify posterior consistency based
on Lemma 1. Here we will drop the subscriptd from T .

3.1. Weak consistency. Here we haveA = {f :dW(f,f0) > ε}, where dW

metricizes weak convergence of probability distributions, that is,dW(fn, f0) → 0
if and only if

∫
g(x)fn(x) dx → ∫

g(x)f0(x) dx for all continuous and boundedg.
Now H(fnA,f0) > ε∗ for all largen a.s. for someε∗ > 0 since eventuallyfnA

does not lie in a weak neighborhood off0 and so neither does it lie in a Hellinger
neighborhood off0. Hence, takingT (y) = √

y − 1, we have∑
n

n−2 Var{T (Ln/Ln−1)} < ∞(4)

automatically as E(Ln/Ln−1) = 1. Hence, both conditions of Lemma 1 are
satisfied and so the Kullback–Leibler property is sufficient for weak consistency.
This is, of course, known; see Schwartz (1965).



2032 S. WALKER

3.2. Hellinger consistency. Here we retainT (y) = √
y − 1 and consider

A = {f :H(f,f0) > ε}. While, as in Section 3.1, we remain with (4) being true,
we do not automatically have lim infn H(fnA,f0) > 0 a.s. Hence, we have only
one of the conditions of Lemma 1 being satisfied automatically.

THEOREM 1. If � has the Kullback–Leibler property, then

�n(A) → 0 a.s.

for all sets A for which lim infn H(fnA,f0) > 0 a.s.

This extends Walker (2003) who showed that if� has the Kullback–Leibler
property andH(fnA,f0) > γ for all n a.s. for someγ > 0, then�n(A) → 0 a.s.
This result was then used to obtain the Hellinger consistency result of Ghosal,
Ghosh and Ramamoorthi (1999).

3.3. Kullback–Leibler consistency. In view of the importance of the Kullback–
Leibler property to Bayesian consistency, it would make sense to find addi-
tional sufficient conditions for posteriors to accumulate in all Kullback–Leibler
neighborhoods off0. There are also practical reasons. A Bayesian approach to
parametric prediction advocated by Walker and Gutiérrez-Peña (1999) entails
minimizing D(fn,fλ). Here fλ is a parametric family of densities andfn is
a nonparametric predictive density. For large sample suitability of this procedure
it is important thatD(fn,f0) → 0 a.s. Further motivation for Kullback–Leibler
consistency is given in Barron (1988) who cites universal data compression and
stock market portfolio selection as applications where this type of consistency
is important.

For the martingaleMN we now take T (y) = logy and considerA =
{f :D(f,f0) > ε}. In this case neither of the conditions of Lemma 1 holds
automatically.

THEOREM 2. If � has the Kullback–Leibler property and∑
n

n−2 Var{log(Ln/Ln−1)} < ∞,(5)

then �n(A) → 0 a.s. for all sets A for which lim infn D(fnA,f0) > 0 a.s.

To examine Theorem 2 further, we writeLn = �n(A)In, giving

MN = logIN + log{�N(A)/�(A)} +
N∑

n=1

D(fn−1A,f0).

If � has the Kullback–Leibler property, thenN−1 logIN → 0 a.s. This follows
sinceIn > exp(−nc) a.s. for all largen for any c > 0 and, because E(In) = 1,
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we haveIn < exp(nc) a.s. for all largen for anyc > 0. So,MN/N → 0 a.s. and
�N(A) < exp(−Nc) a.s. for somec > 0 for all largeN together imply that

lim inf
N

1

N

N∑
n=1

D(fn−1A,f0) > c a.s.(6)

Hence, Theorem 2 could be written as follows:

THEOREM 2∗. If � has the Kullback–Leibler property and (5) holds, then
�n(A) < exp(−nc) a.s. for all large n if and only if (6) holds.

If A = {f :D(f,f0) > ε}, then one anticipates that lim infn D(fnA,f0) ≥ ε a.s.
However, it is difficult to establish when lim infN N−1 ∑N

n=1D(fn−1A,f0) > 0
a.s., yet, when� has the Kullback–Leibler property and (5) holds, which is
not a particularly demanding condition, it does become a necessary condi-
tion for Kullback–Leibler consistency with exponential rate. It should also be
pointed out that Theorem 2∗ equally applies to Hellinger consistency when
A = {f :H(f,f0) > ε} and the necessary condition also applies.

4. Predictive consistency. Here we takeA = � so that fnA ≡ fn, the
predictive density. Also,Ln ≡ In, the denominator of (1). Hence,

MN =
N∑

n=1

{T (In/In−1) + d(fn−1, f0)}.

LEMMA 2. If � has the Kullback–Leibler property and T (y) = √
y − 1 or

T (y) = logy, then

1

N

N∑
n=1

T (In/In−1) → 0 a.s.

PROOF. This is obvious withT (y) = logy since N−1 logIN → 0 a.s. as
N → ∞ when � has the Kullback–Leibler property. WhenT (y) = √

y − 1,
we know thatMN/N → 0 a.s. and so

1

N

N∑
n=1

T (In/In−1) + 1

N

N∑
n=1

h(fn−1, f0) → 0 a.s.

Now

1

N

N∑
n=1

T (In/In−1) ≥ I
1/(2N)
N − 1 → 0 a.s.
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and so

1

N

N∑
n=1

T (In/In−1) → 0 a.s.

ash ≥ 0, completing the proof. �

If we takeT (y) = √
y − 1, thenMN/N → 0 a.s. and, from Lemma 2, we have

1

N

N∑
n=1

H(fn−1, f0) → 0 a.s.

This result is found in Walker (2003). The following theorem applies by
consideringT (y) = logy.

THEOREM 3. If � has the Kullback–Leibler property and∑
n

n−2 Var{log(In/In−1)} < ∞,(7)

then

1

N

N∑
n=1

D(fn−1, f0) → 0 a.s.

It is straightforward to demonstrate that (7) holds when

sup
n

{
EXn

∫
f 2

0 /fn

}
< ∞.

Here EXn is the expectation with respect toXn = (X1, . . . ,Xn) taken indepen-
dently fromf0. See Section 6.4 for an example illustrating a nonparametric prior
for which supn{EXn

∫
f 2

0 /fn} < ∞.

5. Hellinger consistency. To introduce the ideas here, consider the discrete
prior which puts mass�k on the density functionfk , for k = 1,2, . . . . In this case
the posterior mass assigned tofk is given by

�n
k = Rn(fk)�k∑

j Rn(fj )�j

.

If we assume the prior has the Kullback–Leibler property, then the additional
condition for Hellinger consistency turns out to be∑

k

√
�k < ∞.
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REMARK 1. The result provides information concerning the counterexample
appearing in Barron, Schervish and Wasserman (1999), which shows that the
Kullback–Leibler property for� is not sufficient for Hellinger consistency.
The prior in this case puts positive mass on single densities and, for each integerN ,
has sets of these densitiesPN for which �(PN) > η/N2 for someη > 0.
Clearly, then ∑

N

√
�(PN) = ∞.

Now � is separable; that is, we can cover� with a countable set of Hellinger balls
of radiusδ for anyδ > 0. Therefore,

A = {f :h(f,f0) > ε}
can be covered by the countable union of disjoint setsAj , whereAj ⊆ A∗

j =
{f :h(f,fj ) < δ}, and{fj } is a set of densities such thath(fj , f0) > ε. We can
takeδ < ε so thath(fnAj

, f0) > γ > 0, whereγ = ε − δ. This follows since

h
(
fnAj

, f0
) ≥ h(fj , f0) − h

(
fnAj

, fj

)
andh(fnAj

, fj ) ≤ δ.

THEOREM 4. If � has the Kullback–Leibler property and∑
j

√
�(Aj) < ∞,

then

�n(A) → 0 a.s.

PROOF. Now

�n(A) = ∑
j

�n(Aj) ≤ ∑
j

√
�n(Aj )

= ∑
j

√∫
Aj

Rn(f )�(df )/In.

If

�nj =
√∫

Aj

Rn(f )�(df ),

then

�n+1j = �nj

√
fnAj

(Xn+1)/f0(Xn+1);
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see Section 2, equation (2), which includes the case whenn = 0 and �0j =√
�(Aj ). So,

E(�n+1j |Fn) = �nj

{
1− h

(
fnAj

, f0
)}

< (1− γ )�nj

and, hence, E(�nj ) < (1− γ )n
√

�(Aj). Therefore,

pr

{∑
j

�nj > exp(−nd)

}
< exp(nd)(1− γ )n

∑
j

√
�(Aj)

and so if ∑
j

√
�(Aj) < ∞,

then ∑
j

�nj < exp(−nd) a.s.

for all largen, for anyd < − log(1 − γ ). The Kullback–Leibler property for�
ensures thatIn > exp(−nc) a.s. for all largen, for any c > 0. This completes
the proof. �

Clearly, if the prior� puts mass�k on the densityfk for k = 1,2, . . . , then the
required condition is simply ∑

k

√
�k < ∞,

which is straightforward to arrange in practice.
The result of Theorem 4 can be applied to specific priors with good results.

See next in Section 6. However, it does somewhat lack interpretation as can be
seen by the need to go from

∑
j �n(Aj) to

∑
j

√
�n(Aj). On the other hand, the

appearance of square roots should not be a great surprise when dealing with the
Hellinger distance.

6. Illustrations. Here we consider some examples (6.1 to 6.3) illustrating
Theorem 4. We have� being covered by{A1,A2, . . . }, which are mutually disjoint
Hellinger balls of radiusδ. The aim then is to show that∑

k

√
�(Ak) < ∞

and that this holds for allδ > 0. Also, Section 6.4 will illustrate Theorem 3.
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6.1. Infinite-dimensional exponential families. Here we consider the case
whenf is constructed from an infinite sequence of random variables,θ1, θ2 . . . .

The prior on the{θj } makes them independent and we assume thatθj ∼ N(0, σ 2
j ).

A δ-covering of� will be the union of sets of the type

{θ :njδj < θj < (nj + 1)δj , j = 1,2, . . . }
for a sequenceδj = δγj , where the{γj } do not depend onδ. Here thenj are
integers and can be between−∞ and+∞. It is convenient to define

Ajn = (
nδj , (n + 1)δj

)
.

We are then interested in the finiteness of

∞∑
n1=−∞

· · ·
∞∑

nM=−∞

M∏
j=1

√
pr

(
θj ∈ Ajnj

)

asM → ∞, which, because of symmetry, holds if

∞∏
j=1

∞∑
n=0

√
pr(θj ∈ Ajn) < ∞.

Dropping the subscriptj temporarily, we have

∞∑
n=0

√
pr(θ ∈ An) ≤ 1+

∞∑
n=1

√
pr(θ ∈ An)

≤ 1+ (2π)−1/4(δ/σ )1/2
∞∑

n=1

exp{−δ2n2/(4σ 2)}

≤ 1+ (2π)−1/4(δ/σ )1/2[exp{δ2/(4σ 2)} − 1]−1

≤ 1+ 4mm!(2π)−1/4(σ/δ)2m−1/2

for anym = 1,2, . . . . The last inequality follows from

ξ1/4

eξ/4 − 1
≤ 4mm!ξ1/4−m, m = 1,2, . . . ,

for all ξ > 0. The required condition on the{σj } is then that

∞∏
j=1

{1+ ψ(σj/γj )
2m−1/2} < ∞

for all ψ > 0. This is achieved if∑
j

(σj/γj )
2m−1/2 < ∞.
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To make this example specific, consider the infinite-dimensional exponential
family on [0,1] for which

f (x) = exp

{ ∞∑
j=0

θjφj (x) − c(�)

}
,

where the{φj } are an orthonormal basis on[0,1] and c(�) ensures thatf
integrates to 1. Such an orthonormal basis is given by

φ0(x) = 1 and φj(x) = √
2cos(jπx) for j ≥ 1.

To ensure thatf is a density with probability 1, it is sufficient that
∑

j σj < ∞.
Then, according to Barron, Schervish and Wasserman (1999), an additional
condition sufficient for Hellinger consistency is that

∑
j jσj < ∞. So it is possible

to haveσj ∝ j−2−r for anyr > 0.
For our condition, we require∑

j

(σj /ωj )
2m−1/2 < ∞

for some sequence{ωj } satisfying
∑

j ωj < ∞. This follows because we can take
δj = δ∗ωj/

∑
j ωj so that if|θ1j − θ2j | < δj , then

sup
0≤x≤1

∣∣∣∣∣
∑
j

θ1jφj (x) − ∑
j

θ2jφj (x)

∣∣∣∣∣ < δ∗√2,

which implies thath(f1, f2) < δ = 1 − exp(−δ∗√2). If we put ωj ∝ j−1−r for
anyr > 0, then ∑

j

(σj j
1+r )2m−1/2 < ∞

is sufficient. Therefore, we can actually haveσj ∝ j−1−q for any q > 0, by
choosingm large enough. This then is seen to be an improvement on the condition
provided by Barron, Schervish and Wasserman (1999).

See also Walker and Hjort (2001) who have essentially the same result of
σ j ∝ j−1 as being sufficient for Hellinger consistency when combined with the
Kullback–Leibler property for�.

6.2. Pólya trees. Here we consider a Pólya tree prior on[0,1] with partition
the dyadic intervals. Denote the sets at levelk by Bkj for j = 1, . . . ,2k. Over these
sets we have independent variablesθkj ∼ be(ak, ak) for oddj andθkj+1 = 1− θkj ,
again for oddj . If

∑
k a−1

k < ∞, then a random density function, with respect to
the Lebesgue measure on[0,1], from the prior can be obtained via

f (x) = lim
k→∞ 2k

k∏
j=1

θkj (x),
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wherekj (x) describes the interval at levelk in which x lies; that is,x ∈ Bkj (x).

If
∑

k a
−1/2
k < ∞, then the prior puts positive mass on all Kullback–Leibler

neighborhoods of densitiesg for which
∫

g logg < ∞. See, for example, Barron,
Schervish and Wasserman (1999). However, according to Barron, Schervish and
Wasserman (1999), the best sufficient condition for Hellinger consistency is
ak = 8k which is not a “nice” set-up and would impede those statisticians looking
to incorporate relevant information. We improve on this using the sums of square-
roots of prior probabilities.

First, we find the covering sets of� with Hellinger balls of radiusδ. If

exp(−δk) < θ1kj /θ2kj < exp(δk),

for all j , which is equivalent to

exp(−δk) < θ1kj /θ2kj < exp(δk)

and

exp(−δk) < (1− θ1kj )/(1− θ2kj ) < exp(δk)

for all oddj , and for allk and
∑

k δk = δ∗, then it is easy to show that∫ √
f1f2 > exp

(−1
2δ∗)

and soh(f1, f2) < δ = 1− exp(−δ∗/2). Here, for example,

f1(x) = lim
k→∞ 2k

k∏
l=1

θ1lj (x).

Therefore, lettingθk denote a generic random variable at levelk, we split [0,1],
the range ofθk , into the setsAk0 = (1

2 − bk,
1
2 + bk), where

bk = 1
2{exp(δk) − 1}/{exp(δk) + 1}

and

A−
kl = (

ck exp{−lδk}, ck exp{−(l − 1)δk})
and

A+
kl = (

1− ck exp{−(l − 1)δk},1− ck exp{−lδk})
for l = 1,2, . . . , whereck = 1

2 − bk . Again, due to symmetry, that is, pr(θk ∈
A+

kl) = pr(θk ∈ A−
kl), we are interested in the finiteness, asM → ∞, of

∞∑
n11=0

· · ·
∞∑

n2M 2M −1=0

M∏
k=1

∏
j=1,3,...,2k−1

√
pr

(
θkj ∈ A−

knkj

)
,
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with the convention thatA−
k0 = Ak0, which is equivalent to the finiteness of

∞∏
k=1

{√
pr(θk ∈ Ak0) +

∞∑
l=1

√
pr(θk ∈ A−

kl)

}2k−1

.

The difference between this and the corresponding expression for the infinite-
dimensional families is the power 2k−1, which is present due to the 2k−1

independent variables at levelk. Now

pr(θk ∈ A−
kl) = �(2ak)

�(ak)2

∫
A−

kl

xak−1(1− x)ak−1 dx

≤ 22ak−1√ak/πck exp(−lδk){exp(δk) − 1}{ξkl(1− ξkl)}ak−1,

whereξkl = ck exp{−(l − 1)δk}. Here we have used the inequality

�(2a)/�(a)2 ≤ 22a−1√a/π,

see Barron, Schervish and Wasserman (1999), and that ifx < ξ < 1
2, then

x(1− x) < ξ(1− ξ). Now ξkl(1− ξkl) ≤ 1/4− b2
k for all l and so

√
pr(θk ∈ A−

kl) ≤ ψ2ak−1a
1/4
k exp

(−1
2lδk

)√
exp(δk) − 1

(1
4 − b2

k

)ak/2−1/2

for some fixedψ > 0. Here we need only considerk large enough for which
ak > 1. Therefore,

√
pr(θk ∈ Ak0) +

∞∑
l=1

√
pr(θk ∈ A−

kl) ≤ 1+ ψ
√

exp(δk) − 1

exp(δk/2) − 1
a

1/4
k (1− 4b2

k)
ak/2−1/2.

We are then looking for

∑
k

2k−1a
1/4
k

√
exp(δk) − 1

exp(δk/2) − 1
exp(−2akb

2
k) < ∞.

Now we can takeδk ∝ k−1−r for anyr > 0 and for largek,
√

exp(δk) − 1

exp(δk/2) − 1
∼ δ

−1/2
k = k1/2+r/2.

Also, for largek, bk ∼ δk and soak ∝ k3+q for anyq > 0 is sufficient.

6.3. Mixture of priors. A popular type of nonparametric prior consists of
a mixture of priors,

� = ∑
N

pN�N,

where
∑

N pN = 1 and the{pN } are fixed. Here�N is supported by densities in
CN ⊆ �, so that�N(CN) = 1. Typically,CN is totally bounded, that is,CN can be
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covered by a finite number of Hellinger balls of sizeδ, for anyδ > 0. The number
of such balls will be denoted byIN(δ). More often than not,CN ⊆ CN+1 andCN

converges to�. See Petrone and Wasserman (2002), for example, who consider
random densities generated via Bernstein polynomials.

Following the above specifications, if
⋃

k Ak covers�, then we assume that
CN is covered by{A1, . . . ,AIN

} and, therefore,�N(Ak) = 0 for k > IN . Hence,
∑
k

√
�(Ak) ≤ ∑

k

√ ∑
IN≥k

pN .

Consequently, if ∑
k

√
P̄ (Mk) < ∞,

whereP̄ (Mk) = ∑
N≥Mk

pN andMk = min{N : IN ≥ k}, then Hellinger consis-
tency holds.

For example, ifIN(δ) = (c/δ)N , for somec > 0 not depending onδ, as is the
case with Bernstein polynomials, then

Mk(δ) = 
logk/ log(c/δ)�
and, hence, we would wish that

P̄
(
Mk(δ)

)
< ak−2−r ,

for somer > 0 anda > 0, for all largek and for allδ > 0. This holds ifP̄ (N) <

a exp(−Nψ) for all ψ > 0 for all largeN , which holds ifN−1 logP̄ (N) → −∞
asN → ∞.

6.4. Random histogram. Here we consider a random histogram model
on [0,1] to illustrate Theorem 3. We takem ∈ {1,2, . . .} with probability π(m)

and construct the random density function

fm(x) =
m∑

k=1

wkm1(ak−1m < x < akm),

wherewkm > 0,
∑m

k=1 wkm = m andakm = k/m, k = 0,1, . . . ,m. We will write
Akm = (ak−1m,akm). We putpkm = wkm/m and have a Dirichlet(1 . . .1) prior for
pm = (p1m, . . . , pmm). Then

fn(x) =
∞∑

m=1

fnm(x)π(m|Xn),

where

fnm(x) =
m∑

k=1

wkmn1(ak−1m < x < akm)
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andwkmn = E(wkm|Xn). Also, for a nonnegative variableZ, 1/EZ ≤ E1/Z, so∫
f 2

0 /fn ≤ ∑
m

π(m|Xn)

∫
f 2

0 /fnm

and, therefore,

EXn

∫
f 2

0 /fn ≤ ∑
m

π(m)EXn|m
∫

f 2
0 /fnm.

Now wkmn = m(1+ nkm)/(m + n), wherenkm = ∑n
i=1 1(Xi ∈ Akm), and so

EXn|m
∫

f 2
0 /fnm =

m∑
k=1

∫
Akm

E[(m + n)/{m(1+ nkm)}]f 2
0 .

It is easy to show that

E{1/(1+ nkm)} ≤ 1/{(1+ n)F0(Akm)}
with n1m . . . nmm ∼ mult(n;F0(A1m) . . .F0(Amm)), and so

EXn

∫
f 2

0 /fn ≤ ∑
m

π(m)
m + n

m(1+ n)

m∑
k=1

∫
Akm

f 2
0 /F0(Akm)

≤ λ
∑
m

m + n

1+ n
π(m),

whereλ = supx f0(x), which we will assume to be finite. Therefore,

sup
n

{
EXn

∫
f 2

0 /fn

}
< ∞

when
∑

m mπ(m) < ∞ and so if the prior puts positive mass on all Kullback–
Leibler neighborhoods off0, thenN−1 ∑N

n=1D(fn−1, f0) → 0 a.s.

7. Discussion. As far as Hellinger consistency is concerned, the most fruitful
sufficient conditions to date appear to be those involving the finiteness of sums
of square roots of prior probabilities. Indeed, they improve on current sufficient
conditions which have been published in the literature. In the case of Pólya trees
the improvements are quite dramatic.

A framework for Kullback–Leibler consistency, which fits into a general
framework including weak and Hellinger consistency, has been developed using
martingales. Theorems 2, 2∗ and 3 suggest that the condition∑

n

n−2 Var{log(Ln/Ln−1)} < ∞

is highly significant and conditions under which this holds need to be understood.
Future work will investigate rates of convergence using the sums of square roots

of prior probabilities approach. The basis for this is consideration of�n(An),
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whereAn = {f :h(f,f0) > εn} and εn ↓ 0. Following the proof of Theorem 4,
we have

�n(An) ≤ exp(−ndn)/
√

In a.s.

for all largen, for any sequencedn satisfying∑
n

exp{−n(γn − dn)}Kn < ∞,

where

Kn = ∑
j

√
�(Anj )

and {Anj } coversAn with δn size Hellinger balls andγn = εn − δn. Putting
δn = εn/2 soγn = εn/2 seems appropriate here. Then, for example, lower bounds
for In in an a.s. sense are available from Shen and Wasserman (2001), using
the ρα(f,f0) = α−1 ∫ {(f0/f )α − 1}f0 metric, for 0< α ≤ 1. To find rates, it is
required to understandKn which will be prior specific and involve a refinement of
the work appearing in Section 6.
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