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NEW APPROACHES TO BAYESIAN CONSISTENCY?

By STEPHENWALKER
University of Bath

We use martingales to study Bayesian consistency. We derive sufficient
conditions for both Hellinger and Kullback—Leibler consistency, which do
not rely on the use of a sieve. Alternative sufficient conditions for Hellinger
consistency are also found and demonstrated on examples.

1. Introduction. Let X1, X2, ..., taking values in(Z", %), be independent
and identically distributed random variables from some fixed but unknown (the
true) density functionfp, with corresponding distribution functiofy. Let Fy be
the corresponding-fold product measure o02™, #") and letFj° denote the
infinite product measure.

With fo being unknown, the Bayesian constructs a prior distribufibon €2,
the space of density functions @", %). This prior combines with the data to
define the posterior distributiofi”, assigning mass

[y Ra(HTLES)

1 M"(A) =
@ @ J Ry (HTI(AS)

to the set of densitied, where

Ry(f) =[] 5 X/ fo(X).

i=1

The predictive density is given by

fulr) = f FOT@f).

Here, and throughout, we assume that all relevamtre, in fact, densities with
respect to the Lebesgue measure.

This paper is concerned with Hellinger and Kullback—Leibler consistency. For
example, for Hellinger consistency, the required result we are aiming for is

M"({f:H(f, fo)>¢e})—0 a.s[F§°]
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forall ¢ > 0, whereH (f, fo) is the Hellinger distance betwegnand fy, given by

H(f, fo) = {/(ﬁ—m)z}l/z.

Previous studies of Hellinger consistency [see, e.g., Barron, Schervish and
Wasserman (1999) and Ghosal, Ghosh and Ramamoorthi (1999)] deal with the nu-
merator and denominator in the expressioniéK A) separately. Briefly, ifT puts
positive mass on all Kullback—Leibler neighborhoodg@{which will be referred
to as the Kullback—Leibler property fdi), then the denominator is eventually
bounded below by exp-nc) for all ¢ > 0. SettingA = {f: H(f, fo) > ¢}, for
somee > 0, with constraints on the prior, ensuring sufficiently low mass on den-
sities which track the data too closely, the numerator can be eventually bounded
above by exp—né), for somes > 0. Consequently, with the appropriate conditions
in place,IT"(A) — 0 a.s., with exponential rate, for all> 0.

To be more explicit, the basic ideas of current approaches are based on the
introduction of an increasing sequence of $é{sa sieve, and to consider

M"(A) = "%, N A) + T (4 N A).

Putting sufficiently low mass on densities which track the data too closely, that is,
the densities 1%y, involves ensuring thdl (¢¢) < exp(—né) for all largen and

for some¢ > 0. This results iM1"(¥4;) < exp(—n&*) a.s. for all large: for some

&* > 0. The aim then is to fin/, such that

/ R.(f)TI(df) <exp(—nd)  a.s.
AN,

for all largen for somes > 0. Approaches differ in the precise form €f which
guarantees the above. For example, Ghosal, Ghosh and Ramamoorthi (1999) have
J(n,%,) < np, for all largen, for somep, > O for all n > O, whereJ is the L,
metric entropy.

We also deal with the numerator and denominator separately but study the
numerator via different techniques which include the use of martingales. We do
not use sieves. To fix the notation, define

() = f FOIT ()

to be the predictive density with posterior distribution restricted, and normalized,
to the setd, let h(f, fo) =1— [ /ffo= H>(f, fo)/2 be a slight variation on the
Hellinger distanced, and note thak( f, fo) < 1. Also definel, = [ R, (f)I1(df)

and D(f, fo) = [ folog(fo/f) to be the Kullback—Leibler divergence between
f and fp. The Kullback—Leibler property is given by

I({f:D(f, fo)<e}) >0
for all ¢ > 0. Sincefp is unknown, the condition is

({f:D(f.g) <¢}) >0



2030 S. WALKER

for all densitiesg and alle > 0. This is possible to achieve using nonparametric
priors. See Barron, Schervish and Wasserman (1999) and Ghosal, Ghosh and
Ramamoorthi (1999).

The layout of the paper is as follows. In Section 2 we present preliminary
results based on certain martingales. Section 3 unifies approaches to posterior
consistency via the use of these martingales and Section 4 deals with the special
case of consistency for predictive densities. Section 5 presents a specific result
for Hellinger consistency which does not use martingales and examples are
presented in Section 6. Section 7 contains a discussion and highlights areas for
future research.

2. Preliminaries. Here we will discuss fundamental concepts and ideas on
which the paperis based. Our concernis with the numefates [, R,(f)I1(df),
whereA is a set of densities, of (1). We have already established that the Kullback—
Leibler property will always deal appropriately with the denominator. The follow-
ing identity is the key:

(2) Lyy1/Ly = fua(Xnt1)/fo(Xn+1), n=0,1,...,

and it is easy to check that this holds. From here we can go in one of two direc-
tions. The first option is based on martingales and takes{f:d(f, fo) > ¢},
where d metricizes weak convergence, and is the Hellinger or the Kullback—
Leibler distance. The second option, in the case of the Hellinger distance, is to
split { f: H(f, fo) > €} into a countable number of disjoint s€ta ;} based on
Hellinger balls,A; = {f: H(f, fj) < &} for some suitable set of densiti¢g;}

and somes > 0. This is possible due to the separability@fwith respect to the
Hellinger metric.

The two approaches share similarities, both use (2), but are otherwise different.
The first covers a range of types of consistency, whereas the second seems suited
only to Hellinger consistency. To set the scene for the first option we consider
measurable functiong,, linked to a distance measufesuch that

E{T4(Lnt1/Ln)|:Fn} = —d(fua, f0),

where 7, = o (X1, ..., Xp). If Ty(y) = /y — 1, thend(f, fo) = h(f, fo) and

if Ty(y) =logy, thend(f, fo) = D(f, fo). Other cases arise; for example, if

T,(y)=1—-1/y,thend(f, fo) = [foz/f — 1, which is they -squared distance.
Now consider the martingal@fy, -%x) given by

N

My =Y {T4(Ln/Ln-1) +d(fu-14. f0)}.
n=1

A well-known result for such martingales [see Loéeve (1963)] is that if

®) Y n~2Var{Ty(Ly/La-1)} < 00,

n
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thenMy /N — 0 a.s. Consequently, if

Iimninf d(fua, fo) >0 a.s,

then

1 N
limsup— T;(L,/L,— 0 a.s.
S pNnX::l d(Ly/Ly-1) <

For both cases df;(y) = ,/y — 1 and7;(y) =logy, the above implies that there
exists as > 0 such thatLy < exp(—N§) a.s. for somes > O for all large N.

This result can be achieved @ (y) = ,/y — 1 by making use of the fact that an
arithmetic mean is greater than or equal to a geometric mean, and it is clearly true
for T;(y) =logy. It is worth writing this down formally.

LEMMA 1. LetL,= [, R,(HI(df)and Ty(y) = /y — 1 or T;(y) =logy.
If (3) holdsand

Iimninf d(fna, fo) >0 as.,

then Ly < exp(—N$) a.s. for some§ > O for all large N.

This result, namelyLy < exp(—N§) a.s. for somes > 0 for all large N,
combined with the Kullback-Leibler property fai, leads toI1”(A) — 0 a.s.
This follows since the Kullback—Leibler property impliég > exp(—Nc¢) a.s. for
all large N, for anyc > 0. Hence, we can choosex< §.

3. Posterior consistency. In this section we unify posterior consistency based
on Lemma 1. Here we will drop the subscripfrom T'.

3.1. Weak consistency. Here we haveA = {f :dw(/f, fo) > &}, wheredy
metricizes weak convergence of probability distributions, thatysf,, fo) — O
ifand only if [ g(x) f, (x) dx — [ g(x) fo(x) dx for all continuous and bounded
Now H(f,4, fo) > €* for all largen a.s. for some* > 0 since eventuallyf, 4
does not lie in a weak neighborhood fif and so neither does it lie in a Hellinger
neighborhood offp. Hence, taking’ (y) = ,/y — 1, we have

4) > n=2Var{T(Ly/La-1)} < 00

automatically as &,/L,_1) = 1. Hence, both conditions of Lemma 1 are
satisfied and so the Kullback—Leibler property is sufficient for weak consistency.
This is, of course, known; see Schwartz (1965).
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3.2. Hellinger consistency. Here we retainT(y) = ,/y — 1 and consider
A={f:H(f, fo) > ¢}. While, as in Section 3.1, we remain with (4) being true,
we do not automatically have limin# ( f,4, fo) > 0 a.s. Hence, we have only
one of the conditions of Lemma 1 being satisfied automatically.

THEOREM 1. If IT hasthe Kullback—Leibler property, then
m"A)—0 as
for all sets A for which liminf,, H(f,,4, fo) > 0as.

This extends Walker (2003) who showed thaflfhas the Kullback—Leibler
property andH (f, 4, fo) > y for all n a.s. for somes > 0, thenIT"(A) — O a.s.
This result was then used to obtain the Hellinger consistency result of Ghosal,
Ghosh and Ramamoorthi (1999).

3.3. Kullback—Leibler consistency. In view of the importance of the Kullback—
Leibler property to Bayesian consistency, it would make sense to find addi-
tional sufficient conditions for posteriors to accumulate in all Kullback—Leibler
neighborhoods offp. There are also practical reasons. A Bayesian approach to
parametric prediction advocated by Walker and Gutiérrez-Pefia (1999) entails
minimizing D(f,, f,). Here f, is a parametric family of densities anf, is
a nonparametric predictive density. For large sample suitability of this procedure
it is important thatD( f,,, fo) — 0 a.s. Further motivation for Kullback—Leibler
consistency is given in Barron (1988) who cites universal data compression and
stock market portfolio selection as applications where this type of consistency
is important.

For the martingaleMy we now take 7'(y) = logy and considerA =
{f:D(f, fo) > ¢}. In this case neither of the conditions of Lemma 1 holds
automatically.

THEOREM 2. If IT hasthe Kullback—Leibler property and
(5) > n=2Var{log(L,/Ly-1)} < 00,
n
then IT"(A) — 0 a.s. for all sets A for which liminf, D(f,4, fo) > 0a.s.

To examine Theorem 2 further, we writg, = IT"(A)1I,,, giving

N
My =log Iy +log{TT" (A)/TI(A)} + Y D(fu-14. fo)-
n=1

If T has the Kullback—Leibler property, thevi—tlogZy — 0 a.s. This follows
sincel, > exp(—nc) a.s. for all largen for any ¢ > 0 and, because(E,) = 1,
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we havel, < exp(nc) a.s. for all largen for anyc > 0. So,My /N — 0 a.s. and
MY (A) < exp(—Nc) a.s. for some > 0 for all largeN together imply that

(6) I|m inf — Z D(fu-14, fo) >c  a.s.
Hence, Theorem 2 could be written as follows:

THEOREM 2*. If IT has the Kullback-Leibler property and (5) holds, then
IM"(A) < exp(—nc) a.s. for all largen if and only if (6) holds.

If A={f:D(f, fo) > ¢}, then one anticipates that limjnD(f,, fo) > ¢ a.s.
However, it is difficult to establish when limigfN~ 12 _1D(fu-14, f0) >0
a.s., yet, wherll has the Kullback-Leibler property and (5) holds, which is
not a particularly demanding condition, it does become a necessary condi-
tion for Kullback—Leibler consistency with exponential rate. It should also be
pointed out that Theorem*2equally applies to Hellinger consistency when
A={f:H(f, fo) > ¢} and the necessary condition also applies.

4. Predictive consistency. Here we takeA = Q so that f,4 = f,, the
predictive density. AlsoL,, = I,,, the denominator of (1). Hence,

N
My =Y {TUy/1n-1) +d(fu-1. f0)}-

n=1

LEMMA 2. If IT has the Kullback—Leibler property and 7'(y) = ,/y — 1 or
T(y) =logy, then

1 N
— > TUy/lh-1) >0  as
N n=1

PROOFE This is obvious with7 (y) = logy since N~tlogly — 0 a.s. as
N — oo when Tl has the Kullback-Leibler property. Wheh(y) = /y — 1,
we know thatMy /N — 0 a.s. and so

—ZT(I/In )+ — Zh(f,, Lf)—0 as.
Now

N
N TUn/ ) = I —150  as.
n=1

Z[rk
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and so
1 N
— > T(y/I,-1)—>0  as.
N
n=1
ash > 0, completing the proof. O

If we take7 (y) = ,/y — 1, thenMy /N — 0 a.s. and, from Lemma 2, we have

1 N
~ Y H(fu-1.fo0—>0 as.
n=1

This result is found in Walker (2003). The following theorem applies by
considerindgl' (y) =logy.

THEOREM 3. If IT has the Kullback—Leibler property and
(7) > n~?Var{log(l,/I-1)} < 0o,

n

then

1N
N Z (fn-1, fo0 >0 as.

It is straightforward to demonstrate that (7) holds when

Srll,lp{EXn/foz/fn} < 00.

Here Ex» is the expectation with respect ' = (X1, ..., X,,) taken indepen-
dently from fo. See Section 6.4 for an example illustrating a nhonparametric prior
for which sup{Ex» [ f2/fu} < co.

5. Hellinger consistency. To introduce the ideas here, consider the discrete
prior which puts mas§l; on the density functiorf;, fork =1, 2, .... In this case
the posterior mass assignedfiois given by
0 Ra(fi)k
Y R(HT,
If we assume the prior has the Kullback—Leibler property, then the additional
condition for Hellinger consistency turns out to be

> VT < o0
k
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REMARK 1. The result provides information concerning the counterexample
appearing in Barron, Schervish and Wasserman (1999), which shows that the
Kullback—Leibler property forIl is not sufficient for Hellinger consistency.
The prior in this case puts positive mass on single densities and, for each iNteger
has sets of these densitieg, for which I1(#y) > n/N2 for somen > 0.
Clearly, then

> VII(Py) = o0.
N

Now €2 is separable; that is, we can co¥erith a countable set of Hellinger balls
of radiuss for any$ > 0. Therefore,

A={f h(f, fo)> ¢}

can be covered by the countable union of disjoint sefs whereA; C A% =
{f:h(f. fj) <38}, and{f;} is a set of densities such thiatf;, fo) > ¢. We can
takes < ¢ so thath(fya;, fo) > ¥ > 0, wherey = ¢ — 4. This follows since

h(fna;s fo) = h(fj. fo) = h(fua;. fj)
andh(fna;, fj) <.

THEOREM4. If IT has the Kullback—Leibler property and

Y VTI(A)) < o0,
j

then

mA) -0 a.s.

PrRoOOE Now

n"A) =) M"(A) <) VI'(A))
j J

— ;/fA Ro(HTAS)/I,.

Asj :\/ | R,

then

Ant1j = Anjyf fun; Xns1)/ foXn41);
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see Section 2, equation (2), which includes the case when0 and Ag; =

«/H(Aj). So,
E(An+1j|yn) = Anj{l_ h(anjv fO)} <(1- V)Anj

and, hence, & ,;) < (1 —y)"VII(A;). Therefore,
pri > " Ayj > exp(—nd) ¢ <expind)(1—y)" Y ~TI(A))
J J

and so if

> VTI(A)) < oo,
j

then

ZA"J < exp(—nd) a.s.
J

for all largen, for anyd < —log(1 — y). The Kullback-Leibler property forl
ensures thaf,, > exp(—nc) a.s. for all largen, for any ¢ > 0. This completes
the proof. O

Clearly, if the priorIT puts masgT; on the densityf; fork =1, 2, ..., then the
required condition is simply

> VT < o0,
k

which is straightforward to arrange in practice.

The result of Theorem 4 can be applied to specific priors with good results.
See next in Section 6. However, it does somewhat lack interpretation as can be
seen by the need to go frop; I1"(A) to 3_; ~/I1"(A;). On the other hand, the
appearance of square roots should not be a great surprise when dealing with the
Hellinger distance.

6. lllustrations. Here we consider some examples (6.1 to 6.3) illustrating
Theorem 4. We hav@ being covered byA1, A», ...}, which are mutually disjoint
Hellinger balls of radiug. The aim then is to show that

> VTI(Ap) < o0
k

and that this holds for all > 0. Also, Section 6.4 will illustrate Theorem 3.
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6.1. Infinite-dimensional exponential families. Here we consider the case
when f is constructed from an infinite sequence of random variablgg;. ...
The prior on thg6;} makes them independent and we assumegthatN(O, ajz).

A §-covering ofQ2 will be the union of sets of the type

{9:71]'5]' <9j <(nj+l)3j,j=l,2,...}

for a sequencé; = dy;, where the{y;} do not depend o@. Here then; are
integers and can be betweemco and-+oo. It is convenient to define

Ajn = (l’l5j, (n+l)8j).

We are then interested in the finiteness of

IR D | NCTOTY

n1=—00 ny=—00 j=1
asM — oo, which, because of symmetry, holds if
[o.ole o]
l_[ Z Vpr@; e Ajy,) < oo.
j=1n=0

Dropping the subscript temporarily, we have

Y Vpre €Ay <1+ Vpr@ € Ay)
n=0 n=1

<14 @m) Y46/0) 2y exp—5%n?/(40?))
n=1

<1+ @2m) Y46 /0) Y exps?/ (4o} — 17
<1+4"m!2n) Yo /8)2"Y?
foranym =1, 2, .... The last inequality follows from
g1/4
es/4—1

for all £ > 0. The required condition on tHe} is then that

< 4mmgt/Am m=12,...,

[T+ v /yp? % <o
j=1

for all ¥ > 0. This is achieved if

> (o /y)* Y2 < 0.
j
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To make this example specific, consider the infinite-dimensional exponential
family on [0, 1] for which

fx)= exp{Z 0jp;(x) —c(O),
j=0

where the{¢;} are an orthonormal basis dd, 1] and ¢(®) ensures thatf
integrates to 1. Such an orthonormal basis is given by

do(x)=1 and ¢;(x)=+2cogjrx)  forj>1.

To ensure thayf is a density with probability 1, it is sufficient that ; o; < co.
Then, according to Barron, Schervish and Wasserman (1999), an additional
condition sufficient for Hellinger consistency is that; jo; < co. Soitis possible

to haves; oc j~27" for anyr > 0.
For our condition, we require

Y (0j/w)® Y2 < 00

J
for some sequend@;} satisfying}_; w; < oco. This follows because we can take
8‘/' = 8*60]/ Z‘j w; SO that if|91j — 92j| < (Sj, then

sup > 01, (x) — > 62 (x)| < 5*V2,
J J

O<x<1

which implies thath(f1, f2) < 8 = 1 — exp(—8*+/2). If we putw; o 1" for
anyr > 0, then

Z(O,jjl-‘rr)Zm—l/Z <00

J

is sufficient. Therefore, we can actually hawe j~14 for any g > 0, by
choosingn large enough. This then is seen to be an improvement on the condition
provided by Barron, Schervish and Wasserman (1999).

See also Walker and Hjort (2001) who have essentially the same result of
o/ « j~1 as being sufficient for Hellinger consistency when combined with the
Kullback-Leibler property foiT.

6.2. Polya trees. Here we consider a Pdlya tree prior fh 1] with partition
the dyadic intervals. Denote the sets at levby By, for j =1, ..., 2%, Over these
sets we have independent varialdgs~ be(a, ax) for odd j andfy; 1 = 1—6;,
again for odd;. If >, ak‘l < 00, then a random density function, with respect to
the Lebesgue measure fih 1], from the prior can be obtained via

k
flx)= k”_)moo 2 [0k
j=1
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wherekj (x) describes the interval at levelin which x lies; that is,x € By (x).

If Zkak_l/z < 00, then the prior puts positive mass on all Kullback—Leibler
neighborhoods of densitigsfor which [ glogg < co. See, for example, Barron,
Schervish and Wasserman (1999). However, according to Barron, Schervish and
Wasserman (1999), the best sufficient condition for Hellinger consistency is
a; = 8% which is not a “nice” set-up and would impede those statisticians looking
to incorporate relevant information. We improve on this using the sums of square-
roots of prior probabilities.

First, we find the covering sets &f with Hellinger balls of radius. If

exXp(—dx) < O1kj /0o < €XP(Sk),
for all j, which is equivalent to

exp(—38k) < Ok, /O < XP(Sk)
and

exp(—d&k) < (1 —0u;j)/(1 —O;) < exp(dk)
for all odd j, and for allk and)_; &y = &*, then it is easy to show that
/\/fle > exp(—358%)
and soh(f1, f2) <8 =1—exp(—&*/2). Here, for example,
k
fi@) = lim 2¢ [_]_[19111 (x)-

Therefore, lettingd, denote a generic random variable at lekele split[0, 1],
the range of, into the setsA;o = (% — by, % + by), where

by = 3{exp(8x) — 1}/{exp(sy) + 1}

and
Ay = (crexp(—18¢}, crexp{—( — 1)5;})
and
Al = (1—crexpi—( — Dk}, 1 — cp exp—18;})
for 1 =1,2,..., wherecy = 3 — by. Again, due to symmetry, that is, @k €

A,f,) = pr(6x € A;;), we are interested in the finiteness Ms— oo, of

i i [T T Ve Ay,

n11:0 n2M2M71:Ok:1j=1,3,...,2k—1
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with the convention that, ; = Ao, which is equivalent to the finiteness of

k—1
00 2

[1 [vpr<9k € Aro) + ) _Vprbr € Ayy)
=1

k=1

The difference between this and the corresponding expression for the infinite-
dimensional families is the powerf2!, which is present due to the*2!
independent variables at levelNow

I (2a)
T(ax)? Jag
< 2271 Jay [y exp(—181) {expdr) — LH{Eu (L — &)Y,
where&,; = ¢ exp{—( — 1)8;}. Here we have used the inequality
I'(2a)/T(@)* <2* Ya/x,

see Barron, Schervish and Wasserman (1999), and that<fé < % then
x(1—x) <&(1—&). Now & (1 — &) < 1/4— b? for all/ and so

Pr6 € Ay < 2% ta," exp(—118,)v/expdy) — 1(3 — p2)*/* 12

for some fixedy: > 0. Here we need only considérlarge enough for which
ay > 1. Therefore,

oo
-1
VPr@r € Aro) + > VP € Ay) <1+ @agﬂ(l _ aptyi2-112,
=1

pr(fy € Ay) = x4 1 — )%ty

exp(dy/2) — 1
We are then looking for

Z ok—1,1/4 Vexpdr) — 1
k

exp(—2a;b? .
U expiogy2) — 1 S T2ambl) <00

Now we can take; o k~1~" for anyr > 0 and for largek,
vexpl —1 512 _ p1/2+r/2
expiy/2) —1 K ‘

Also, for largek, by ~ 8, and sau; o< k314 for anyq > 0 is sufficient.

6.3. Mixture of priors. A popular type of nonparametric prior consists of
a mixture of priors,

N=Y pyMy,
N

where)"y py =1 and the{py} are fixed. Herd1y is supported by densities in
Cy C 2, sothatlly(Cy) = 1. Typically,Cy is totally bounded, that i€} y can be
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covered by a finite number of Hellinger balls of sizdor anys > 0. The number
of such balls will be denoted bk (8). More often than notCy € Cyy1 andCy
converges td2. See Petrone and Wasserman (2002), for example, who consider
random densities generated via Bernstein polynomials.

Following the above specifications, lif, Ax covers, then we assume that
Cy is covered by{Ay1, ..., Ay, } and, thereforelly (Ax) =0 for k > Iy. Hence,

YV <Y | Y. pw.
k

k In>k

Consequently, if

Z\/ }_)(Mk < 00,
k

where P(M}) = > n>m, PN and My = min{N : Iy > k}, then Hellinger consis-
tency holds.

For example, ifly (8) = (c/8)"N, for somec > 0 not depending o4, as is the
case with Bernstein polynomials, then

My (8) = |logk/log(c/é)]
and, hence, we would wish that
P(My(8)) < ak=27",

for somer > 0 anda > 0, for all largek and for all§ > 0. This holds ifP(N) <
aexp(—N) for all > 0 for all large N, which holds ifN ~tlog P(N) - —oo
asN — oo.

6.4. Random histogram. Here we consider a random histogram model
on [0, 1] to illustrate Theorem 3. We take < {1, 2, ...} with probability z (m)
and construct the random density function

m
Jm(x) = Z WimL(ak—1m < X < Qi)
k=1
wherewy,, > 0, Y} wiy =m andag, =k/m, k=0,1,...,m. We will write
Agm = (ak—1m» Qkm) - \We PUtpr, = win/m and have a Dirichlétl. . . 1) prior for
Pm = (le, cee pmm)- Then

Fa) =" fum @) (m|X"),

m=1
where
m

Sam(x) = Z Wimn L(Ak—1m < X < Qi)
k=1
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andwy,, = E(wi, | X™). Also, for a nonnegative variablé, 1/EZ <E1/Z, so
[ 1w = S monix™) [ 181 fum
m
and, therefore,
Exr [ 310 =3 7 mExoin [ S/ fum:
m

NOW wimy = m(1+ ngym)/(m + n), whereny,, = 3°7_; 1(X; € Agm), @and so

Exrim / 1) fum = kgl fA BRI

It is easy to show that
E{l/(1+ Ngm)} < 1/{(1+ n)Fo(Arm)}
With ny,, . .. nm ~ Mult(n; Fo(Avy) ... Fo(Amm)), and so

2 mtn 2
Eur [ 10 = Drtn TS [ 7B Fotu)

m
<iry T ")

m

wherex = sup, fo(x), which we will assume to be finite. Therefore,
Sup{EXn/foz/fn} <00

when}, mm(m) < oo and so if the prior puts positive mass on all Kullback—
Leibler neighborhoods ofo, thenN =YY D(f,_1, fo) — O a.s.

7. Discussion. As far as Hellinger consistency is concerned, the most fruitful
sufficient conditions to date appear to be those involving the finiteness of sums
of square roots of prior probabilities. Indeed, they improve on current sufficient
conditions which have been published in the literature. In the case of Pdlya trees
the improvements are quite dramatic.

A framework for Kullback—Leibler consistency, which fits into a general
framework including weak and Hellinger consistency, has been developed using
martingales. Theorems 2¥ 2nd 3 suggest that the condition

> n~2Var{log(L,/L-1)} < 00
is highly significant and conditions under which this holds need to be understood.
Future work will investigate rates of convergence using the sums of square roots
of prior probabilities approach. The basis for this is consideratiofl’6fA,,),
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where A, = {f:h(f, fo) > €,} ande, | 0. Following the proof of Theorem 4,
we have

M"(A,) < exp(—ndy)/VI,  as.
for all largen, for any sequencé, satisfying

Zexp{—n(y,, - dn)}Kn <00,

where

K, = Z v H(Anj)
J

and {A,j} coversA, with §, size Hellinger balls and,, = ¢, — §,. Putting

8, = &,/2 soy, = €, /2 seems appropriate here. Then, for example, lower bounds
for I, in an a.s. sense are available from Shen and Wasserman (2001), using
the po (f, fo) = =L [{(fo/f)* — 1} fo metric, for 0< o < 1. To find rates, it is
required to understanki,, which will be prior specific and involve a refinement of

the work appearing in Section 6.
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