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Abstract. A symmetric key cryptosystem based on logarithmic signatures for finite
permutation groups was described by the first author in [6], and its algebraic properties
were studied in [7]. In this paper we describe two possible approaches to the construction
of new public key cryptosystems with message space a large finite group G, using
logarithmic signatures and their generalizations. The first approach relies on the fact
that permutations of the message space G induced by transversal logarithmic signatures
almost always generate the full symmetric group SG on the message space. The second
approach could potentially lead to new ElGamal-like systems based on trapdoor, one-
way functions induced by logarithmic signature-like objects we call meshes, which are
uniform covers for G.
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1. Introduction

At the writing of this paper, only a few known public key cryptosystems remain unbroken.
Most of these are based on the perceived difficulty of certain problems in particular large
finite abelian groups. Whether the underlying group is the multiplicative group of units
in the ring Zpq, where p and q are primes, the multiplicative group of a finite field, or a
cyclic component of an elliptic curve, the theoretical foundations for many of the known
systems lie in the intractability of problems closer to number theory than group theory.

In this paper we describe how, in principle, we can use finite groups to build two
new public key cryptosystems. When the underlying groups are permutation groups,
composition of two permutations can be done in one machine cycle in specially designed
hardware, and therefore the new systems are potentially fast. In addition to the data rate
difference, there is a fundamental difference between the known systems and the ones
we propose. While the former are based on large cyclic groups, our systems are based
on large non-solvable groups of much higher structural complexity than that of a cyclic
group.

In Section 2 we present some preliminaries. In Section 3 we discuss transformations
and a brief classification scheme for logarithmic signatures. We also present a basic
result from [7] which states that, almost always, permutations induced by transversal
logarithmic signatures generate the full symmetric group S|G|. In Section 4 we discuss
our first proposed public key system MST1 which is based on the fact that one-way
permutations induced by non-transversal logarithmic signatures can be factorized as the
product of permutations induced by transversal logarithmic signatures. Such a factor-
ization constitutes a trapdoor. We propose algorithms for finding such trapdoors in the
same section. In Section 5 we define what we call an [s, r ]-mesh in an arbitrary group
G, propose our second public key system MST2, and discuss its security.

We stress that these systems are currently hypothetical, in the sense that we do not
have efficient algorithms for parameter generation for secure versions of the proposed
systems. However, we hope that the techniques introduced in this paper may eventually
lead to the realization of new, practical public-key cryptosystems.

2. Preliminaries

We define the degree of an abstract finite group G to be the least integer n such that
log |G| ≤ �n log n�. For permutation groups, however, the degree n has the usual mean-
ing, that is, the degree of G is the number n of points permuted by the elements of G. If
G is a group and x ∈ G, the centralizer in G of x , denoted by CG(x), is the set of all
elements of G which commute with x . It is immediate that CG(x) is a subgroup of G.
We denote by G[Z] the collection of all finite sequences in G, and view the elements of
G[Z] as single-row matrices with entries in G. Under ordinary tensor product of matrices,
G[Z] is a monoid. The following example illustrates the operation:

[x1, x2, x3] ⊗ [y1, y2] = [x1 y1, x1 y2, x2 y1, x2 y2, x3 y1, x3 y2].

We simplify notation, however, and for X, Y ∈ G[Z] we write X · Y or XY for X ⊗ Y .
If X = [x1, x2, . . . , xr ] ∈ G[Z], the length r of X is denoted by |X |, and X denotes the
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element
∑r

i=1 xi in the group ring ZG. It is immediate that X Y = X Y and |X Y | =
|X | |Y |, for any X, Y ∈ G[Z].

Let G be a finite group. Suppose that α = [A1, A2, . . . , As] is a sequence of Ai ∈ G[Z],
such that

∑s
i=1 |Ai | is bounded by a polynomial in the degree of G. Moreover, let

A1 · A2 · · · As =
∑
g∈G

agg, ag ∈ Z. (1)

Then we say that α is

(i) a pseudologarithmic signature for G if
∏s

i=1 |Ai | = |G|,
(ii) a cover for G if, for all g ∈ G, ag > 0,

(iii) a λ-quasi-logarithmic signature for G if ag ∈ {λ, λ + 1} for each g ∈ G,
(iv) a λ-logarithmic signature for G if ag = λ for each g ∈ G,
(v) a quasi-logarithmic signature for G if α is a 1-quasi-logarithmic signature for

G, and
(vi) a logarithmic signature for G if α is a 1-logarithmic signature for G.

For the most part we are concerned with objects of type (vi). Note that if α =
[A1, . . . , As] is a logarithmic signature for G, then each element y ∈ G can be ex-
pressed uniquely as a product of the form

y = q1 · q2 · · · qs−1 · qs (2)

for qi ∈ Ai .
Of course, for general covers the factorization in (2) is not unique, and the problem

of finding a factorization for a given y ∈ G is in general intractable.
Let α = [A1, . . . , As] be a logarithmic signature for G with ri = |Ai |, then the Ai are

called the blocks of α and the vector of block lengths (r1, . . . , rs) the type of α. We define
the length of α to be the integer 	 = ∑s

i=1 ri . We say that α is non-trivial if s ≥ 2 and
ri ≥ 2 for 1 ≤ i ≤ s; otherwise α is said to be trivial. A logarithmic signature is called
tame if the factorization in (2) can be achieved in time polynomial in the degree n of G;
it is called supertame if the factorization can be achieved in time O(n2). The existence
of supertame logarithmic signatures is discussed in [7]. A logarithmic signature is called
wild if it is not tame. We denote by C(G), 
λ(G), and �λ(G) the respective collections
of covers, λ-quasi-logarithmic signatures, and λ-logarithmic signatures of G. We write

 = 
1 = 
1(G), and � = �1 = �1(G).

On some occasions we represent a logarithmic signature α = [A1, . . . , As] of type
(r1, . . . , rs) by an s × r matrix

α = (ai, j ), (3)

where r = max{ri }, ai, j = Ai ( j) for 1 ≤ j ≤ ri , and ai, j = 0 for j > ri .

Proposition 2.1. In the class G of finite groups there are instances (G, α), α ∈ C(G),
where the factorization in (2) is equivalent to solving the discrete logarithm problem
in G.

Proof. Let G be a cyclic group, written multiplicatively, and let f be a generator
of G. Further, let s be the least positive integer such that 2s−1 ≤ |G| < 2s . If α =
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[A1, A2, . . . , As], where Ai = [1, f 2i−1
], then α ∈ 
1(G), and factorization with respect

to α is equivalent to solving the discrete logarithm problem (DLP) in G with respect to
the generator f .

If α = [A1, . . . , As] is a logarithmic signature for a group G, then the sequence
A1 ⊗ · · · ⊗ As contains each element of G exactly once. Thus, α induces a bijection
ᾰ: Z|G| → G. The following proposition is rather obvious.

Proposition 2.2. Suppose that α is a logarithmic signature of a finite group G, then
ᾰ is always efficiently computable. However, ᾰ−1 is efficiently computable if and only if
α is tame.

Proof. Suppose that α = [A1, A2, . . . , As] is a logarithmic signature of type (r1, r2,

. . . , rs), with Ai = [ai,1, ai,2, . . . , ai,ri ]. The canonical isomorphism τ from Zr1 ⊕ Zr2 ⊕
· · · ⊕ Zrs onto Z|G| is compatible with ⊗, and both τ and τ−1 are efficiently com-
putable (also see [7]). Thus, given x ∈ Z|G|, to compute ᾰ(x) first compute τ−1(x) =
( j1, j2, . . . , js), and then compute ᾰ(x) = a1, j1 · a2, j2 · · · as, js . So, ᾰ is efficiently com-
putable. Conversely, given α and an element y ∈ G, to determine ᾰ−1(y) it is neces-
sary to obtain the factorization (2) for y and determine the indices j1, j2, . . . , js such
that y = a1, j1 · a2, j2 · · · as, js . This is possible if and only if α is tame. Once the vec-
tor ( j1, j2, . . . , js) has been determined, ᾰ−1(y) = τ( j1, j2, . . . , js) can be computed
efficiently.

The following statement follows naturally:

Proposition 2.3. Let G be a finite group, let α be a wild logarithmic signature, and
let β be a tame logarithmic signature for G, then the mapping ᾰβ̆−1: Z|G| → Z|G| is a
one-way permutation.

Abusing language somewhat we use the phrase “α can be inverted” to mean that ᾰ

can be inverted efficiently, i.e., that the factorization in (2) is achievable in polynomial
time.

Definition 2.1. Two logarithmic signatures α, β of G are said to be equivalent if ᾰ = β̆.

3. Classes and Transformations

In this section we briefly discuss classes of logarithmic signatures and basic transfor-
mations on logarithmic signatures for a group G. When we discuss matters involving
computational complexity, we further assume that G is a permutation group of degree n.

Let γ : 1 = G0 < G1 < · · · < Gs−1 < Gs = G be a chain of subgroups of G,
and let Ai be an ordered, complete set of right coset representatives of Gi−1 in Gi . It
is clear that [A1, A2, . . . , As] forms a logarithmic signature for G. Such a logarithmic
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signature is called exact-transversal with respect to γ . The following proposition is an
easy corollary of a theorem by Furst et al. [2]. For the proof see [7].

Proposition 3.1. Let G be a finite permutation group of degree n, and let α be an
exact-transversal logarithmic signature of length polynomial in n. Then α is tame.

We denote the set of all exact-transversal logarithmic signatures of G by E . Recall that
the order of a permutation group of degree n, generated by a polynomial in n number of
generators, can be computed in time polynomial in n [2].

Proposition 3.2. Let G be a finite permutation group of degree n, and suppose that
α = [A1, A2, . . . , As] is a pseudologarithmic signature for G. Then there is a polynomial
time algorithm which decides whether α ∈ E .

Proof. For k = 1, . . . , s, let Vk = 〈A1 ∪ · · · ∪ Ak〉. We first check that V1 = A1, i.e.,
that A1 is a subgroup. This takes polynomial time by using [2], or simply testing closure.
Now, suppose we have verified in polynomial time that |Vk | = |Vk−1| · |Ak |. Using
the Schreier–Sims [9] or similar algorithm we build “strong generators” for Vk+1 using
A1 ∪ · · · ∪ Ak ∪ Ak+1 as the initial generating set and verify that |Vk+1| = |Vk | · |Ak+1|.
Both s and the time taken in the kth step are bounded by a polynomial in n .

Different types of transformations on logarithmic signatures have been considered in
[7] and [8]. Here, we consider just two. The first type, called the shuffle or monomial
shuffle, derives new logarithmic signatures from a given exact-transversal by changing
the coset representatives, and permuting the elements within each block. The second type
of transformation can be described as follows: Suppose that α = [A1, A2, . . . , As] ∈ �.
Let g0, g1, . . . , gs ∈ G, and consider the sequence β = [B1, B2, . . . , Bs], where Bi =
g−1

i−1 Ai gi . It is easy to see that β is a logarithmic signature for G. When g0 = gs = 1 we
say that β is a sandwich of α. When g0 = 1, β is said to be a right translation of α by
gs . If gs = 1, then β is called a left translation of α by g0. The following proposition is
proved in [7].

Proposition 3.3. Let α and β be two logarithmic signatures of G, both of type (r1, r2,

. . . , rs). Then α and β are equivalent if and only if one is a sandwich of the other.

A logarithmic signature α for G is called transversal if and only if it is the sandwich
of an exact-transversal logarithmic signature for G. We denote the set of all transversal
logarithmic signatures of G by T .

The following proposition says that we can decide in polynomial time whether a
given logarithmic signature is transversal or not. In the proof we present an algorithm
for accomplishing the task. Recall that the order of a permutation group of degree
n, generated by a polynomial in n number of generators, can be computed in time
polynomial in n [2].

Proposition 3.4. Let G be a finite permutation group of degree n, and suppose that
α = [A1, A2, . . . , As] is a logarithmic signature for G. Then there is a polytime
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algorithm to determine whether α is transversal and, if so, determine an exact-transversal
β equivalent to α.

Proof. We describe the algorithm for s ≥ 3 and omit a proof of correctness. In the first
step replace [A1, A2, A3, . . . , As] by [B1, C2, A3, . . . , As] where B1 = A1x−1

1 , C2 =
x1 A2, and x1 = A1(1). The kth step, k = 2, . . . , s − 1, replaces [B1, B2, . . . , Bk−1, Ck,

Ak+1, Ak+2, . . . , As] by [B1, B2, . . . , Bk−1, Bk, Ck+1, Ak+2, . . . , As], where Bk = Ck

x−1
k , Ck+1 = xk Ak+1, and xk = Ck(1) . . . We finally test whether the resulting loga-

rithmic signature β = [B1, B2, . . . , Bs−1, Cs] is an exact-transversal. If β ∈ E , then
α ∈ T and the xi provide the sandwiching transformation. If β �∈ E , then α is not
transversal. If s = 2, we have a much easier task: replace α = [A1, A2] by β = [B1, C2]
where B1 = A1x−1

1 , C2 = x1 A2, x1 = A1(1) and perform the final test as for the
s ≥ 3 case.

The process of obtaining [B1, B2, . . . , Bs−1, Cs] from [A1, A2, . . . , As] by appro-
priate sandwiching is called normalization. Normalization of a transversal logarithmic
signature produces an equivalent exact-transversal.

The following is a consequence of Propositions 3.1 and 3.4.

Corollary 3.1. Any transversal logarithmic signature of a finite permutation group G
is tame.

It follows therefore that the class W of wild logarithmic signatures is a subclass of
the class NT of non-transversal logarithmic signatures of G. We are also interested in
the following definition:

Definition 3.1. A subset S of a finite group G is called periodic if S is the union of
a number of right cosets (left cosets) of a non-trivial subgroup H of G, otherwise S is
called aperiodic.

There are two other classes of signatures which are farther from being transversal
than logarithmic signatures in NT . One is the class of totally non-transversal (T NT )
logarithmic signatures. A logarithmic signature α is said to be totally non-transversal if
each block of α is not a coset of a non-trivial subgroup of G. Moreover, a logarithmic
signature is called totally aperiodic (T A) if each block is an aperiodic set in G. Clearly,
T A ⊂ T NT ⊂ NT = �\T .

We adopt the cryptographic assumption that logarithmic signatures which are far
from being transversal are difficult to invert, i.e., that logarithmic signatures in T NT
or T A are “wild-like.” Experimentation with relatively small groups shows that there
are many more T NT logarithmic signatures than transversal ones. Moreover, we know
of no theoretical reasons why in general there should exist polynomial time algorithms
to invert T NT logarithmic signatures. On the contrary, Proposition 2.1 supports our
assumption.

We now identify the elements of G with the elements in Z|G| by selecting a fixed
supertame logarithmic signature η. Then g ∈ G corresponds to η−1(g) ∈ Z|G|. Once η
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has been selected, each logarithmic signature α gives rise to a computable permutation
α̂ of Z|G| defined by α̂ = ᾰη̆−1. If F ⊂ �, we write F̂ = {α̂: α ∈ F}. The following
theorem is proved in [7]:

Theorem 3.1. If G is a finite non-hamiltonian group with |G| different from q , (1+q2),
(1 + q3), (qn − 1)/(q − 1), 2n−1(2n ± 1), 11, 12, 15, 22, 23, 24, 176, 276, where q is
a prime power and n is a positive integer, then the group 〈T̂ 〉 generated by T̂ is the full
symmetric group S|G|.

Theorem 3.1 is rather technical, but has important consequences. Essentially, the
theorem says that almost always the giant group S|G| is generated by T̂ = Ê , i.e., by the
collection of permutations induced by exact-transversal logarithmic signatures. Thus,
any permutation σ ∈ S|G| can be written as the composition of permutations θ̂i induced
by transversal logarithmic signatures. Note, moreover, that the conclusion of the theorem
is independent of the choice of η ∈ T . This follows from the simple observation that for
θ ∈ T , α ∈ �, ᾰθ̆−1 = ᾰη̆−1η̆θ̆−1 = α̂θ̂−1.

Incidentally, experimentation in groups of small order shows that the conclusion of
Theorem 3.1 is true even when its hypotheses fail to hold.

4. First Potential Public Key System MST1

Suppose now that α is a wild and β a tame logarithmic signature for a finite permutation
group G. By Proposition 2.3, σ = α̂β̂−1 is a one-way permutation in S|G|. Then, by
Theorem 3.1, σ can be written as the product of a finite (hopefully small) number of
elements in Ê = T̂ and their inverses. Because the mappings induced from transversal
logarithmic signatures can be inverted efficiently, such factorizations, if they could be
efficently computed, could be used as trapdoors for a public key cryptosystem.

Suppose that a factorization of σ as the composition of elements of T̂ is known only
by Alice. Then Alice can efficiently invert σ but no one else can. Now, given the one-way
permutation σ above, the problem of factoring σ as the composition of transversal θ̂i is
in general hard, otherwise if we had a general, efficient algorithm for factoring σ , we
would in principle be able to solve DLP. This is the basis for cryptosystem MST1 we
now discuss.

Our system is described as follows: User “Alice” is given a pair of logarithmic sig-
natures (α, β) where α is in T NT and β is transversal. Alice is also given the fac-
torization of σ = α̂β̂−1 as the composition σ = θ̂1 · · · θ̂k , where the θi are exact-
transversal, and where k is a small integer ≥ 2. Alice publishes (α, β) and G as her
public key, but keeps θ1, . . . , θk as her secret key. Since the θi are transversal, Alice

can efficiently compute θ̂i
−1

, and therefore can compute efficiently σ−1. The message
and cipher space are Z |G|. To send a message m ∈ Z |G| to Alice, Bob encrypts m as
c = σ(m) = [α̂β̂−1](m) and transmits c to Alice. Upon receiving c, Alice decrypts c by
computing θ̂−1

k (θ̂−1
k−1(· · · (θ̂−1

1 (c) · · ·))) = m.

4.1. The Smallest Case

The smallest group which has non-transversal logarithmic signatures is the cyclic group
Z8. Although the order of a group to be used in actual practice would be much larger
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(say 48!), Z8 illustrates the existence of non-transversal logarithmic signatures which
are products of a small number of transversal logarithmic signatures. In particular, in Z8

there are 512 permutations of S8 induced by transversal logarithmic signatures and 640
by non-transversal, of which 384 are in ˆT NT . Any one of the 384 can be written as the
product of two transversals, and any one of the 640 can be written as the product of at
most three transversals.

4.2. Algorithms for Building a Trapdoor

An analysis of the type undertaken in the previous section is fortunately not feasible in the
general case. Even when G is the tiny group A4 of order 12 the number of permutations
of S12 induced by logarithmic signatures of A4 is |�̂| = 304,128. In the general case, to
compute and store all induced permutations in �̂, take their compositions and determine
which products, also induced by non-transversal logarithmic signatures, are (probably)
hard problems. Recall that each permutation is of degree |G|, and, in general, |G| will
be of exponential order in n.

In this section we discuss possible algorithms for constructing trapdoors of the type
discussed in Section 4. In what follows we assume that the elements of G are identified
with the elements of Z |G| by means of a bijection η̆: Z |G| → G, where η is a supertame
logarithmic signature of G.

For a logarithmic signature α of a finite group G, �α denotes an oracle which computes
α̂, i.e., when a query i ∈ Z|G| is presented to �α , it responds with α̂(i). We proceed to
show how one can reconstruct α, or an equivalent, by a polynomial number of queries
to �α .

Proposition 4.1. Let G be a permutation group of degree n, and suppose that σ = α̂

is the permutation induced by a secret logarithmic signature α. Suppose that the type
(r1, . . . , rs) of α is known, and that oracle � = �α is public. Then a logarithmic
signature β equivalent to α can be reconstructed using a polynomial number of queries.

Proof. Let τ be the canonical isomorphism from Zr1 ⊕ Zr2 ⊕· · ·⊕ Zrs onto Z|G|, and let
η be the logarithmic signature selected so that α̂ = ᾰη̆−1. The existence of a logarithmic
signature α inducing σ is known, and so is the type of α. In what follows we determine
the entries of α or an equivalent. The logarithmic signature we seek in the form of matrix
(3) is

α =




a1,1 · · · a1,r1 0 · · · 0 0 0 · · · 0

a2,1 · · · ∗ ∗ · · · a2,r2 0 0 · · · 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
as−1,1 · · · ∗ · · · as−1,rs−1 0 0 0 · · · 0

as,1 · · · ∗ ∗ · · · ∗ as,rs 0 · · · 0




,

where the ai, j are indeterminates to be replaced systematically by elements of the group.
We begin by setting all ai, j to zero. A zero entry means that the corresponding group
element has not yet been determined. All ai, j for j > ri will remain zero. By sandwiching,
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we can now assume that a1,1 = a2,1 = · · · = as−1,1 = 1 ∈ G, the group identity. Thus
our matrix becomes

α =




1 0 · · · 0

1 0 · · · 0

· · · · · · · · · · · ·
1 0 · · · 0

0 0 · · · 0




.

Iterative step. Now select an element x ∈ Z |G| such that for τ−1(x) = ( j1, j2, . . . , js)
all but one of the ai, ji are non-zero, and for exactly one index, say jq , aq, jq = 0. We then
have

a1, j1 a2, j2 · · · as, js = ᾰ(x) = η̆(α̂(x)) = u. (4)

For simplicity, letting zk = ak, jk yields

z1z2 · · · zq−1zq zq+1 · · · zs−1zs = u. (5)

In (5) u = ᾰ(x) is known and all zi except for zq are known. We now solve for aq, jq
by

aq,iq = zq = z−1
q−1 · · · z−1

2 z−1
1 u z−1

s z−1
s−1 · · · z−1

q+1. (6)

Having computed aq, jq uniquely, we replace the zero entry in the matrix by the group
element aq, jq , and go to the iterative step for as long as there is a new element x ′ ∈ Z |G|
for which τ−1(x ′) = ( j ′

1, j ′
2, . . . , j ′

s) is such that all ai, j ′
i
are non-zero in the matrix except

for a single zero. This becomes impossible only when all ai, j , 1 ≤ j ≤ ri , have been
turned to non-zeros, i.e., to elements of G.

The above process will require exactly 1− s +∑s
1 ri passes through the iterative step,

and this is a necessary and sufficient amount of information needed to determine α.

The above process determines α uniquely (up to equivalence) and all degrees of
freedom are removed in the initial sandwiching operation which sets a1,1, a2,1, . . . , as−1,1

to 1 ∈ G.
Suppose now that a small set of transversal logarithmic signatures θ1, . . . , θk is se-

lected in E . Does there exist a non-transversal logarithmic signature γ which is the
product θ1 · · · θk? Let π = θ̂1 · · · θ̂k . Having selected the set of θi we can efficiently
compute π(x) for any x ∈ Z |G|. For each possible type (r1, r2, . . . , rs) of G, compute a
pseudologarithmic signature γ = [A1, . . . , As] for G by using the algorithm described
in the proof of Proposition 4.1. If there is a logarithmic signature which induces π for
this type, then it has to be γ (up to equivalence).

In general, γ will generate a function γ̂ : Z |G| → Z |G|. By the way in which it was
constructed, γ̂ agrees with π on a set Q of q = 1 − s + ∑s

1 ri points of Z |G|. It would
still be necessary to determine if the function γ̂ = π . Most of the time it will not be the
case that γ̂ = π , so we need a fast algorithm to test if γ̂ = π . One possible approach
that could be considered would be to test to see if γ̂ (x) = π(x) for all x ∈ S, where S
is a “small” random sample of points of Z |G|\Q. If this approach were used, however,
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it would be necessary to establish some bound on the probability of getting a wrong
answer, i.e., that γ̂ �= π even though γ̂ (x) = π(x) for all x ∈ S ∪ Q.

If we are able to conclude that γ̂ = π , then γ is indeed a logarithmic signature
for G. It is either transversal or non-transversal. However, we have a polynomial time
algorithm which decides whether a given logarithmic signature is transversal or not. If
γ is non-transversal we further test whether γ ∈ T NT . This can be done in polynomial
time by testing whether any block B of γ is a coset of some subgroup. If γ ∈ T NT ,
then we have found a trapdoor as desired. Otherwise, we repeat the above process, for
the same θi but using a different type for γ . If we have exhausted all possible types for
γ unsuccessfully, we select at random a new set of θi and repeat the process.

For an integer k ≥ 2, let Êk denote the set of all permutations of S|G| which are
compositions of k elements in Ê . Extensive computation in groups of small order provides
estimates of the probability that an element of Êk also belongs to ˆT NT . For example,
the results in [3] show that these probabilities are often significantly greater than zero.
However, we have not yet made general estimates for classes of large groups which are
likely candidates in a possible implementation of MST1. Consequently, at the present
time, we do not know whether the trapdoors indicated in the proposed scheme can be
constructed efficiently.

5. Second Potential Public Key System MST2

We now turn our attention to certain covers for arbitrary groups which are not perfectly
uniform as λ-logarithmic signatures are, but which have a high degree of uniformity, and
are obtainable by probabilistic methods.

Definition 5.1. Let r and s be positive integers, and let G be an arbitrary finite group.
A cover [A1, . . . , As] of G is called an [s, r ]-mesh if:

(i) Ai ∈ G[Z] and |Ai | = r , for each i ∈ {1, . . . , s}.
(ii) In

A1 · A2 · · · As =
∑
g∈G

ag g

the distribution of the {ag: g ∈ G} is approximately uniform.

In the spirit of (3) we represent an [s, r ]-mesh by an s × r matrix α = (ai, j ), where each
ai, j ∈ G.

We measure the degree of uniformity of a mesh by applying the standard statistical
uniformity measures to the distribution {ag: g ∈ G}, or to the probability distribution
{Pg: g ∈ G}, where Pg = ag/r s (for example, an appropriate Kolmogorov–Smirnov
statistic.)

Experimentation with matrices (ai, j ) constructed by sampling random elements ai, j

in arbitrary groups shows that [s, r ]-meshes proliferate. In practice, we may select ai, j

from a particular conjugacy class of G.
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Suppose now that α = (ai, j ) is a random [s, r ]-mesh covering a finite group G. Our
cryptographic hypothesis is that, if g ∈ G, then finding a factorization

g = a1, j1 · a2, j2 · · · as, js (7)

is, in general, an intractable problem. Let H be a second group and let f : G → H be an
epimorphism, i.e., a homomorphism of G onto H . Then β = (bi, j ), where bi, j = f (ai, j ),
is an [s, r ]-mesh for H . In general, the surjections ᾰ: Zr s → G and β̆: Zr s → H are
not bijections, but are efficiently computable.

We are now ready to describe our second public key cryptosystem in the context of
[s, r ]-meshes for groups.

5.1. The Second System MST2

Alice chooses large groups G and H , an epimorphism f : G → H , and generates a
random [s, r ]-mesh α = (ai, j ) for G. Alice computes β = f (α) = (bi, j ) = ( f (ai, j )).
She makes the pair (α, β) public, but keeps f secret. If Bob wants to send a message
x ∈ H to Alice, he

(i) chooses a random integer R ∈ Zr s ,
(ii) computes y1 = ᾰ(R), y2 = β̆(R), y3 = xy2, and

(iii) sends y = (y1, y3) to Alice.

Upon receiving (y1, y3), Alice computes y2 = β̆(R) = f (ᾰ(R)) = f (y1), and from
xy2 = y3 obtains the message x = y3 y−1

2 .

5.2. Security of MST2

There are two types of attacks we can envision against MST2. The first would be to
determine a random number R from an intercepted y = (y1, y3), so that y1 = ᾰ(R).
Note that in general R is not unique, but finding any R′ such that y1 = ᾰ(R) = ᾰ(R′)
constitutes breaking the system. Finding an R such that y1 = ᾰ(R), amounts to being
able to factorize y1 with respect to α, and determine pointers ( j1, j2, . . . , js) for which

y1 = a1, j1 a2, j2 · · · as, js .

As discussed earlier this attack is conjectured to be infeasible if G is large.
A second possible attack is to infer any homomorphism f ′ ∈ HOM(G, H) such that

β = f ′(α). Finding such an f ′ would constitute breaking Alice’s key.
The security of MST2 is based on the fact that if G is an arbitrary finite group and

if {gi } is a collection of elements of G, then, in general, computing the intersection of
centralizers in G of the gi is hard.

For example, we note that the ElGamal system [1] is a special case of MST2, where the
ambient space is a large cyclic group (it is in fact the ElGamal system that inspired our
generalization). Whether we can find a practical and efficient implementation of MST2

for large non-abelian groups is still an open question. We make a few observations on
this possibility.

Consider the instance of the system where G = H is a large, non-abelian group, and
where f : G → G is conjugation by an element g ∈ G. Thus, Alice has chosen an
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[s, r ]-mesh (ai, j ) for G, and a secret element g ∈ G, and computes the second mesh
β = (bi, j ) by bi, j = ag

i, j . She publishes the two meshes α = (ai, j ) and β = (bi, j ), but

keeps g secret. Here, finding any element g′ ∈ G such that bi, j = ag′
i, j would constitute

breaking Alice’s key.
Assume that finding respective elements ui, j ∈ G such that a

ui, j

i, j = bi, j is easy. Now,
from elementary group theory we know that if x, y, z ∈ G such that z = x y , then
{w ∈ G|xw = z} = CG(x)y, where CG(x) is the centralizer of x in G. So, the set of all
elements which conjugate x onto z is a right coset of the centralizer of x in G. Thus to
make the second attack work, the cryptanalyst needs to compute an element in

� =
⋂
i, j

CG(ai, j )ui, j . (8)

This problem is polynomially equivalent to finding the intersection

� =
⋂
i, j

CG(ai, j ) (9)

which in general is known to be hard [4], [5]. However, for certain obvious choices of
the group G, the problem can be solved in polynomial time. For example, in the special
case where the group G is the symmetric group Sn in its natural representation on n
points, the resulting system MST2 is not secure. A similar situation arises if the any of
the centralizer subgroups is solvable. So it remains an open problem to construct secure
variants of MST2 in non-abelian groups.
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