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We introduce limiting strategies that are insensitive to the quality of the mesh. This is
because they are based on the time history of a single cell.

I. Introduction

Some form of nonlinear limiting is of course compulsory for any numerical method that can be applied
with better than first order accuracy. But the famous Godunov theorem that proclaims this says nothing
about what form that nonlinearity should take. Broadly three approaches have been taken

• Artificial viscosity,

• Flux-corrected transport,

• Gradient limiting.

Of these, artificial viscosity was first employed by von Neumann and Richtmyer. It has been adopted in
a sophisticated form by Jameson, but the general experience is that the adjustable parameters are not
universal. We do not consider this possibility.

Flux Corrected Transport was introduced by Boris and Book. The idea is to have available two different
schemes, one that is accurate and another that is believed not to introduce spurious features, but is necessarily
first-order and diffusive. For efficiency it should be very similar to the accurate scheme in its structure. If
we were to take one step with the cautious scheme and then add back in the missing terms everywhere we
would of course obtain the accurate result. Flux Corrected Transport adds back the missing terms in full
only when it is safe to do so according to some criterion. Because they are added to the flux, they take from
one cell and add to another in such a way as to sharpen existing gradients.

Gradient limiting originated with the MUSCL scheme proposed by van Leer7 In a finite volume scheme
the data consists solely of cell average values, and in order to obtain better than first-order results, more than
this is needed. In the original version only a gradient was added, by constructing two more or less equally
plausible candidate gradients and then taking a nonlinear average, such as the harmonic mean, that is biased
toward the smaller alternative. van Leer gave an appealing graphical interpretation of this, allowing a visual
proof that this procedure could not create overshoots. This results in a reconstruction that is generally
discontinuous across cell boundaries. Most writers, including van Leer, have taken these discontinuities
literally, introducing Riemann solvers to resolve them. This is not harmful in one dimension, because it
simply results in waves that travel either left or right, not differently from other waves in the solution.
However, in more than one dimension, taking the discontinuous reconstruction to be genuine, introduces
strong one-dimensional waves that travel perpendicular to the arbitrary cell boundary, and may have no
counterpoint in the actual flow. Various authors have generalized this procedure to include higher-order
reconstructions, in which the higher derivatives are also evaluated in a way that is biased toward caution.

A further classification of limiting turns on how much information is available about constraints on the
solution. For example, neither density nor pressure may be negative, and speeds may not exceed the speed
of light. In one-dimensional hyperbolic systems, if they are linear, the Riemann invariants may not take on
new values. In pure advection problems, the value at (x, t) is bounded by the values along the particle path
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traced backward through that point. Where bounds are available, the limiter can be designed to respect
them. However, in many, perhaps most, situations no a priori bounds are available. For example, waves
in many dimensions may focus and produce pressures enormously greater than those initially present, even
with linear physics.a Limiting is made much more difficult if no limits are available.

In this paper we will introduce three novel kinds of limiter. One is designed around the existence of
bounds; the others are not. They do share a common feature, however, in that both derive their information
from extremely compact regions of space, in one case, just a single point. We believe that such an approach
is necessary if the object of designing ”high-order” methods is to allow the use of coarse grids. Another
strong point is that any influence of the mesh geometry is minimized.

One incidental point is that we do not regard very small overshoots, around one percent, as unacceptable.
Perhaps there are examples where such a small overshoot might trigger a premature reaction, say, but
generally the effect of other modeling errors, ignorance of physical constants, or simply truncation error, are
likely to be at least equally blameworthy. Therefore we put more stress on maintaining a compact stencil
than on exactly satisfying bounds

II. Limiting from the Past; the Active Flux scheme.

This scheme, like the Discontinuous Galerkin method, has a very compact stencil. It was introduced by
van Leer as Scheme V in his1977 paper.? The reconstruction within a cell depends only on local data, and
is therefore independent of neighboring cells. It would be nice to have a limiter that shared these properties.
We will consider the simple case of linear advection in one dimension.
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Figure 1. ν < 0.5
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Figure 2. ν > 0.5

Figure 3. One dimensional characteristic coordinate

The degrees of freedom assigned to each cell in this method the cell average value, denoted in Figure(??)
as Q at the time level n∆t and the interface fluxes at each time level (P,R at time level n∆t). To advance
to the time level (n + 1)∆t, the unlimited scheme makes a parabolic reconstruction of this data. Then
characteristics are traced backward from the new time level to determine by interpolation the new value on
the right boundary (we are supposing a > 0) and by integration the amount of substance that will cross that
boundary. The method is third-order, explicit, fully discrete, and maximally stable. Because the method
has well-matched dispersion and dissipation properties, the oscillations that it produces are small, as we will
see, but in most applications do need to be removed by limiting.

The limiting strategy is to retain a memory of the previous time step, between (n − 1)∆t and n∆t. At
the previous time level the cell average was at V, and the boundary values were at U and W. Also, boundary
values at (n + 1

2 )∆t were found at S and T. All of these values are, in the exact solution, derived from the
same function of the characteristic coordinate ξ = x− at. We may make use of them, therefore, to confirm
the legitimacy of our reconstruction. We refer to the figure 3 to choose the data that would give the strongest
confirmation.

aA useful practical heuristic is to repeat the calculation on a differently spaced grid. If the wavelength of the oscillations
scales with the mesh spacing, then they are spurious, otherwise they are real. It could be feasible to automate this test.
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The natural choices depend on whether the Courant number is less than or greater than 0.5. Such choices
are shown in table ??. These choices of alternative stencils are based on their effective range in the coordinate
ξ. We would ideally want these to occupy a range similar to that of the default stencil.

Table 1. Possible alternative stencil choices

Stencil ν < 0.5 ν > 0.5

n, Default PQR PQR

n− 1 UVW UVW

Alternate 1 PSU SUV

Alternate 2 RTW RTW

A. Maximum Principle Satisfying (MPS) Limiter

Our first limiting process makes a straightforward application to this data of the method proposed by
Zhang and Shu,10,11 who have proposed limited high-order schemes for scalar conservation laws in one- and
multidimensions, assuming that there exists some ”maximum principle” that

m = max
j
un+1
j ≤ un+1

j ≤ max
j
unj = M (1)

For example, in our case, in a scalar conservation law, M and m are maximum and minimum values observed
at the previous time level. They must not be taken from the previous cell averages, because that would
correspond to the TVD criterion that limits the scheme to second-order accuracy. They are estimated instead
from the reconstruction of the previous data. We replace the piecewise natural quadratic reconstruction u(ξ)
with a limited reconstruction ũ(ξ) that satisfies known local a priori bounds.

ũ(ξ) = θ (u(ξ)− ūn) + ūn (2)

with the scaling coefficient

θ = min

(∣∣∣∣ M − ūnMp − ūn

∣∣∣∣ , ∣∣∣∣ m− ūnmp − ūn

∣∣∣∣ , 1) (3)

where maxima and minima of the numerical solution and approximation polynomial are defined respectively
as

m = min(uj,numerical), M = max(uj,numerical) (4)

and
mp = min(unj (ξ)), Mp = max(unj (ξ)). (5)

The approximation polynomial extrema are sampled at Gaussian quadrature locations.

B. Results

The Zalesak9 suite of test profiles is presented in Fig. 6 after advancing by one circuit at ν = 0.5. One striking
feature is that the unlimited solution is already quite good, perhaps for some purposes even acceptable; this
obviously makes the task of the limiter much easier. Even the notoriously difficult ”semi-ellipse” profile is
handled very well.

C. Modified reconstruction (RS) limiter

Here we take a very different approach. While retaining the interpretation of the cell data as an average
value plus two boundary values, we make a reconstruction that is not a straightforward single parabola. To
keep the process of interpolation straightforward, the new reconstruction is some combination of parabolas
and straight lines.

We begin by observing, after some easy algebra, that the default reconstruction (the parabola that exactly
matches the given cell average and boundary values) will have an internal extremum if the parameter

R =
uR − ū
ū− uL

(6)
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Figure 4. Zalesak test cases calculated on a mesh of 80 cells after one circuit at ν = 0.5.

lies outside the rangeb 1/2 < R < 2. If the value of R is in fact inside these bounds then there is no internal
extremum and the default reconstruction is accepted. If it is outside, then we examine the alternative stencils
to see whether the existence of such an extremum can be justified. At the moment we have only an empirical
criterion for this. We calculate the second derivative from three alternative stencils, obtaining a total of
four possible second derivatives. If any of these agrees with the default curvature to within a factor of two,
we accept the extremum as genuine. If not, we ”flatten” the reconstruction, which is modified as shown in
the following figure.If 1/5 < R < 5 the flattened reconstruction is monotone. Otherwise, it has a reduced
extremum except in the case R = −1.
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R=1 R=2 R=5 R=10 R=−10 R=−1

Figure 5. Modified reconstructions. For 1 < R < 2 the default reconstruction is accepted.If an internal
extremum with 2 < R < 5, the reconstruction is a constant region plus a parabola. For 5 < R <∞ or 0 < R < 1/2
the reconstruction is a parabola plus a straight line tangent.

The modified reconstruction preserves both the cell average and the boundary values. Results from this
method at ν = 0.5 are displayed in Figure ??. They are hard to distinguish from the first strategy, and we
conclude from this that rigorous bounds are not required to produce acceptable behavior. To demonstrate
that both methods produce results that are largely independent if Courant number, plots for ν = 0.4, 0.8 are
provided that show both methods on the same graph. Again, the methods are hard to distinguish, either
one would work well in practice.

III. Limiting in the future; the Lax Wendroff method

One view of limiting is that every method has a default stencil, but sometimes we are not confident that
the information contained in it describes a well-resolved feature and is therefore to be trusted. To check on
this, we need to look outside the default stencil. and the usual way to do this is to look at neighboring data.
Another way is to take a tentative step forward in time and then revaluate the time derivative. The new
value will be taken from data that has been modified by neighbors of the default stencil. It does not tell us

bNote that taking the reciprocal or Rjust gives the same data in reverse order. As R passes through 0 (or infinity) the
sequence of patterns sufferes no discontinuity.
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Figure 6. Zalesak test cases calculated on a mesh of 80 cells after one circuit at ν = 0.5.
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Figure 7. Zalesak test cases calculated on a mesh of 80 cells after one circuit at ν = 0.4 (left), and ν = 0.8
(right).

what the neighbors are, but it does tell us what effect they have.

A. Choice of problem

We will illustrate this approach with the linear acoustic system

∂tp+ c∇v =0

∂tv + c∇p =0 (7)

This is perhaps the simplest problem that displays realistically the fundamentally multidimensional phenom-
ena of wave spreading and wave focussing that prevent a priori estimates of bounds, or indeed of anything
much. The only additional information that we can glean is that ”energy” c E = 1

2 (p2 + v · v) is conserved

∂tE =c(p∂tp+ v · ∂tv)

= − c(p∇ · v + v · ∇p)
= −∇ · (pv) (8)

We can design numerical methods that are energy-decreasing, but unfortunately this criterion admits the
regular Lax-Wendroff scheme, which certainly admits unwanted oscillations. However, different kinds of
constraint can be enforced. For example, solutions to (7) preserve their initial vorticity ∂tω = 0, where
ω = ∂xv − ∂yu, and a discrete vorticity is preserved if the velocity updates are performed using pressure
fluxes evaluated at the vertices.4

We have experimented with a simple heuristic, in which we regard successive terms in the Lax-Wendroff
expansion as terms in the Taylor series, which indeed they are. If they diminish quickly, we will naively
assume that the series converges and make use of it.

cSome might prefer to describe this as entropy conservation.
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The series development of (??) is that

u(t) = (I− cA∆t+ 1
2c

2A2 + 1
6c

3A3 . . .)u(0) (9)

where

A =

 0 ∂x ∂y

∂x 0 0

∂y 0 0

 , A2 =

 ∂2
x + ∂2

y 0 0

0 ∂2
x ∂2

xy

0 ∂2
xy ∂2

y

 , A3 = ∇2A

A numerical method must provide some discrete form of these matrices. If we stop at second order and insist
on the obvious symmetries, there are four free parameters and the numerical update is

un+1 = un −T∆un

T∆ =


ν2

2 (δ2
x(1 + α2δ

2
y) + δ2

y(1 + α2δ
2
x)) −νµxδx(1 + φ1δ

2
y) −νµyδy(1 + φ1δ

2
x)

−νµxδx(1 + α1δ
2
y) ν2

2 δ
2
x(1 + φ2δ

2
y) ν2

2 µxµyδxδy

−νµyδy(1 + α1δ
2
x) ν2

2 µxµyδxδy
ν2

2 δ
2
y(1 + φ2δ

2
x)

 (10)

It can be shown that vorticity will be preserved if φ2 = α1 = 1/4 and that the dispersion will be isotropic
to third order if, in addition φ1 = 1/12 It was found that α2 = 1/8 provided a good balance between isotropy
and stability. The benefits gained by these choices can be appreciated from Figure 8. The results from the
original Lax-Wendroff method5 using a five-point stencil are shown for an initial-value problem consisting of
a Gaussian pressure perturbation applied to a stationary flow. The exact solution should be axisymmetric
but it is not easy to achieve this on a square grid. Also shown are results using the optimized parameter set
just described. Although the scatter is much reduced, other faults remain, including overshoots and spurious
features, which it is the task of a limiter to deal with. The problem that we want to address is how to achieve
that without giving up the isotropy that has been achieved.
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Figure 8. By selecting the free parameters in the Lax-Wendroff method, the anisotropic scatter of the original
version can be greatly reduced, although isotropic oscillations remain.

Taking these choices to define the accurate scheme, we can construct low-order schemes by increasing
the coefficients of the second-order terms. Recall that the family of q-schemes in one dimension for linear
advection is given by

un+1 = (1− νµδ + 1
2q(ν)δ2)un

where q = ν2 is the smallest amount of dissipation that will results a stable scheme, and simultaneously the
only value that gives second-order accuracy. Recognized low-order schemes include q(nu) = |ν| (First-order
upwind), q(ν) = (1 + 2ν2)/3 (Low phase error) and q(ν) = 1.0 (Lax-Friedrichs). By analogy, we construct a
low-order two-dimensional scheme by replacing the factor ν2 by q(ν) wherever it appears in (??)

TC
∆ =


q(ν)

2 (δ2
x(1 + 1

8δ
2
y) + δ2

y(1 + 1
8δ

2
x)) −ν(1 + 1

12δ
2
y)µxµ

2
yδx −ν(1 + 1

12δ
2
x)µyδy

−νµxµ2
yδx

q(ν)
2 µ2

yδ
2
x

q(ν)
2 µxµyδxδy

−νµ2
xµyδy

q(ν)
2 µxµyδxδy

q(ν)
2 µ2

xδ
2
y

 (11)
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We are not claiming that this is in any way an optimal choice of cautious scheme, but it does have in common
with the accurate the property of preserving vorticity and having isotropic dispersion error. It would be a
shame to lose these properties in the process of limiting. We can ensure that they are not lost by making
the limited scheme a linear combinationd of schemes that all have the desired properties. In this instance
the family of schemes is described by the single parameter q(ν) but a broader basis is possible. Our limited
scheme will begin by taking one cautious time step, employing a cautious choice qC(ν) .

u∗ = un −TC
∆un (12)

and continue by adding back the remaining second-order terms, which we will call the anti-diffusive terms.

un+1 = u∗ − (T∆ −TC
∆)(κu∗ + (1− κ)un) (13)

where κ is to be determined.

B. What gets limited

We can write the antidiffusive part of the update as

q(ν)− ν2

2

[
δxF

AD + δyG
AD
]

(14)

where the FAD,GAD are antidiffusive fluxes. They are

FAD =

 (1 + 1
8δ

2
y)δxp

µy(µyδxu+ µxδyv)

0

 , GAD =

 (1 + 1
8δ

2
x)δyp

0

µx(µyδxu+ µxδyv)

 (15)

These are proportional to the pressure gradient and to the velocity divergence, which are of course, the only
quantities to bring about changes in the flow. We call them the driver quantities, and refer to them as
βu, βv, βp respectively, thus

FAD =

 (1 + 1
8δ

2
y)βu

µyβp

0

 , GAD =

 (1 + 1
8δ

2
x)βv

0

µxβp

 (16)

Looking back at (13) we can see that the drivers could be evaluated either at the old time level or after the
provisional step. This a typical situation for limiting; there is a choice of alternative estimates and we can
choose the one that reduces the potential for nonphysical solutions. First, however, we will establish the
most accurate choice.

1. A third-order option

There is a choice of κ that will give third-order accuracy. This was established by a dispersion analysis but
can be demonstrated in a non-rigorous way by analogy with the linear advection equation, for which the
proposed predictor-corrector method would give

un+1 =

(
1− νµδ +

qC

2
δ2 +

ν2 − qC

2
δ2

(
κ(1− νµδ +

qc

2
δ2) + (1− κ)

))
un (17)

=

(
1− νµδ +

ν2

2
δ2 − κν(ν2 − qC)

2
µδ3

)
un (18)

Or, representing the operators by their Fourier symbols, δ = 2i sin 1
2θ, µ = cos 1

2θ and expanding in powers
of θ,

g = (1− iν θ − 1
2 ν

2θ2 +
(

1
6 iν + 1

2 iκ ν
(
ν2 − q

))
θ3 (19)

dAlthough the scheme is a linear combination, the weighting will be determined by a linear process.
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For this to match with the true expansion (9), we must have

κ =
1− ν2

3(qC − ν2)

For particular choices of the cautious scheme, we have, for First-order upwinding, κ = (1 + ν)/(3ν), for the
Low Dispersion Error method, κ = 1, and for Lax-Friedrichs, κ = 1/3.

C. Nonlinear limiting

Each driver quantity β will be written as

βlim = βn − κ(β∗ − βn)

and in smooth regions the choice of κ given above will provide third-order accuracy. By itself, this brings
about a substantial improvement. The abiding problem with second-order methods is their large phase error
combined with a lack of damping at high frequencies. The third-order method improves the phase error, so
that the lightly damped waves now propagate at the proper speeds. Figure 9 shows the great improvement
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Figure 9. Comparison of Second- and Third-Order schemes. The reference solution isa MUSCL-Hancock
method on a 600× 600 mesh

produced. It might be said that the solution is now better prepared for the limiter.
We now introduce a nonlinear dependence by writing

βlim = F0(φ, nu) + F1(κ, φ, nu)(β∗ − βn) (20)

A novelty here is the quantity φ intended as an indicator of local difficulty. The idea is that perhaps no
antidiffusion is justified in badly-behaved regions, but that in regions of less difficulty the functions F0, F1

should respectively approach 1 and κ to give the third-order result.
The argument to define φ proceeds by expanding the pressure that is used as a vertex flux as

p(t) ' pn + t∂tp+
t2

2
∂2
ttp

or, expressed in terms of the driver βp,

p(t) ' pn − ta0

h
βnp −

t2a0

h
(∂tβp)

n

It will be taken as a danger signal if the third term approaches or exceeds the second in absolute value, i.e.

φp =

∣∣∣∣∆t2a0∂tβp
a0∆tβnp

∣∣∣∣ ' ∣∣∣∣β∗
p − βnp
2βnp

∣∣∣∣ (21)
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is in some sense large.
Remembering that we are in a situation where there may be no rigorous argument available, we take

F0 = max[0, 1− f(ν)φ]

If the situation is perceived to be easy, φ will be small and F0 will be close to unity. As the situation becomes
harder, F0 is reduced, eventually to zero. Quite good results were obtained with this choice of F0 and with
F1 = κ but useful improvements were obtained by taking

F1 = κ min

(
f(ν)

φ
, 1

)
shown in Figure 10 so that large values of φ would remove some of the antidiffusive effects in this term. The
functions f(ν) were taken to be f(ν) = 3(1 − ν)/2 if the cautious scheme was first-order upwinding, and
3ν/2 for the LPE scheme. The solution obtained with these choices is shown in Figure ??.
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Figure 10. The limited solution is accurately isotropic and free of spurious features

There is obviously a lot of empiricism in these choices. Some of the experimentation that led to them is
described in the thesis of the second author.3 We wish to state however, that no choice was very critical.
Others could have been made, provided that they produced similar trends. The striking result is that we
were able to generate results that were considerably better than those produced by standard one-dimensional
arguments. Figure ?? shows results for the smooth exact solution

p(x, y, t) =
1

c
cos 2πct [sin 2πx+ sin 2πy]

u(x, y, t) =
1

c
sin 2πct cos 2πx (22)

v(x, y, t) =
1

c
sin 2πct cos 2πy

This was solved with all limiters in place, and compared with the standard MUSCL-Hancock procedure
using either the Minmod or Superbee limiters. Finally we show results for a problem in which four shockwave
are located in a box in such a way that the exact solution has them restored to their original locations after
each reflection (see Figure ??

IV. Conclusions

We have drawn attention to some novel methods of providing nonlinear limiting. Although these methods
are not yet fully mature, and can probably be improved, they have features that are desirable and worth
preserving. Chiefly, they make use of information that is spatially very compact, being based on either a
single cell or a single vertex. This avoids undue dependence on mesh smoothness and helps to preserve
properties that have been built into the base method.
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Figure 11. The limited solution converges to second-order on a smooth problem and is considerably more
accurate than standard dimensional upwinding,
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Figure 12. Four linear regions of high pressure are located so that each will give rise to a pair of waves
travelling in opposite directions. One of these waves will reflect off the wall and return to its initial location.
The other will, in the same time, arrive at the initial location of its ”partner”. The result is to restore the
initial configuration.
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Figure 13. Two solutions to problem of plane shock reflection against a background flow with vorticity. At
left is a second-order scheme without limiting. At right the limiting has produced a crisper solution without
overshoots.
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