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Abstract: The strategic fluorination of oxidatively vulnerable sites in bioactive compounds is a
relatively recent, widely used approach allowing us to modulate the stability, bio-absorption, and
overall efficiency of pharmaceutical drugs. On the other hand, natural and tailor-made amino
acids are traditionally used as basic scaffolds for the development of bioactive molecules. The
main goal of this review article is to emphasize these general trends featured in recently approved
pharmaceutical drugs.
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development; tailor-made amino acids

1. Introduction

Modern pharmaceutical drugs feature tremendous molecular variety in terms of size,
shape, and chemical functionalities. Nevertheless, thorough structural analysis allows us
to find two clear similarities: a framework derived from a parent amino acid (AA), and the
presence of fluorine [1,2]. Being ubiquitous naturally occurring compounds, AAs have tra-
ditionally played an important role in areas of life sciences, such as the development of new
pharmaceuticals, medicinal formulations, biosensors, and drug delivery systems [3–10].
Indeed, in the modern paradigms of medicinal chemistry and drug discovery, tailor-made
AAs [11] are indispensable components increasingly found in newly marketed pharma-
ceutical products [12–18]. Thus, over 30% of small-molecule drugs contain residues of
tailor-made AAs or amino-alcohols and di-amines derived from them [12–18]. In contrast
to AAs, the building blocks of life, fluorine is essentially a xenobiotic element [19–21],
with nearly zero footprint in biochemical evolution. Nevertheless, since the discovery of
fludrocortisone in 1953 [22–24]—the first Food and Drug Administration (FDA)-approved
fluorine-containing drug—the idea of introducing fluorine into biologically active com-
pounds has attracted the close attention of the pharmaceutical industry. Nowadays, over
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30% of marketed drugs contain at least one fluorine atom [25–32]. Quite naturally, chem-
istry practitioners constantly pay very special attention to the records relevant to new
pharmaceutical drugs, particular aspects of their structural design, and therapeutic areas.
Considering the current role of tailor-made AAs and fluorine in the development of modern
drugs, one may agree that the discussion of compounds featuring these two traits might
be of keen interest to the appropriate scientific community. The goal of this review article
is to profile 10 (Figures 1 and 2) out of 22 FDA-approved small-molecule drugs, all new
tailor-made AA-derived/fluorine-containing drugs introduced to the market in 2022. For
each compound, the general mode of biological activity and synthetic routes are presented.

Figure 1. Fluorine-containing drugs approved by the FDA in 2022.
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Adagrasib (1, MRTX849; Krazati), a potent and selective KRAS inhibitor of the RAS 
GTPase family, was developed by Mirati Therapeutics as an anticancer compound to treat 
non-small cell lung cancer (NSCLC). The molecule specifically targets cysteine 12 residue, 
the most common KRAS mutation [33], and the compound inhibits the downstream sig-
naling pathway and demonstrates anti-tumor activity. In February 2022, the FDA ac-
cepted a new drug application filing for adagrasib (1) for the treatment of patients with 
previously treated KRASG12C-positive NSCLC. Further, in December 2022, the FDA 
granted accelerated approval to adagrasib for the treatment of KRASG12C-mutated 
NSCLC patients who have received at least one prior systemic therapy [34–41]. 

A series of analogs with tetrahydropyrimidine moieties have been reported in the 
literature to act as irreversible covalent inhibitors of KRASG12C [35,36]. Compound 11 
was reported as an irreversible covalent inhibitor binding cysteine12 in the binding pocket 
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2. Fluorine-Containing Drugs

2.1. Adagrasib (KrazatiTM)

Adagrasib (1, MRTX849; Krazati), a potent and selective KRAS inhibitor of the RAS
GTPase family, was developed by Mirati Therapeutics as an anticancer compound to treat
non-small cell lung cancer (NSCLC). The molecule specifically targets cysteine 12 residue,
the most common KRAS mutation [33], and the compound inhibits the downstream signal-
ing pathway and demonstrates anti-tumor activity. In February 2022, the FDA accepted a
new drug application filing for adagrasib (1) for the treatment of patients with previously
treated KRASG12C-positive NSCLC. Further, in December 2022, the FDA granted acceler-
ated approval to adagrasib for the treatment of KRASG12C-mutated NSCLC patients who
have received at least one prior systemic therapy [34–41].

A series of analogs with tetrahydropyrimidine moieties have been reported in the
literature to act as irreversible covalent inhibitors of KRASG12C [35,36]. Compound 11
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was reported as an irreversible covalent inhibitor binding cysteine12 in the binding pocket
of KRAS. The pharmacokinetic limitations of 11 led to the development of adagrasib
(1) (Figure 3). The rational drug discovery approach to identify the title compound 1
began with the observation that removal of the hydroxyl group from 11 resulted in a
fivefold improvement in oral bioavailability. Further, optimization to increase potency was
performed after visualizing the crystal structure of the dehydroxy analog complexed to
KRASG12C wherein a bound water molecule was complexed to Gly10 and Thr58, and
the displacement of this water could lead to an increase in potency. Further optimization
led to the 8-chloro analog with an IC50 value of 1 nM. The title compound 1, having a
2-fluoroacrylamide group, provides increased half-life across species due to a decrease in
GSH metabolism while maintaining potency (IC50 = 5–14 nM).
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Figure 3. Structural comparison of 11 and adagrasib (1).

The synthesis of adagrasib (1) is shown in Scheme 1 [35,36]. The first step is the
condensation of the starting material 12 and urea to provide the bicyclic dione core, which
is followed by chlorination with POCl3 to provide 13. The Buchwald coupling reaction is
employed, wherein the C2 prolinol side chain is attached, followed by benzyl hydrogenoly-
sis to give compound 14. The intermediate 14 is converted to 8-chloronaphthyl substituted
intermediate 15, which then undergoes displacement of trifluoromethanesulfonate (OTf)
by (S)-2-(piperazin-2-yl)acetonitrile (16) to afford the intermediate 17. Finally, amidation
of compound 17 with propylphosphonic anhydride (T3P) as the coupling reagent affords
adagrasib (1).

2.2. Lenacapavir (SunlencaTM)

Lenacapavir (2) is a first-in-class human immunodeficiency virus (HIV) drug known
as a capsid inhibitor that can be used in combination with other antiretroviral drugs as
a twice-yearly treatment strategy developed by Gilead Sciences. It was approved by
the FDA in December 2022 for HIV-1 inhibition to treat adults with multi-drug-resistant
HIV infection, and it functions by preventing HIV from multiplying, thereby reducing
virion levels in the body [42–51]. It contains a difluorobenzyl ring that occupies the
same phenylalanine-glycine binding pocket as polyadenylation specificity factor subunit
6 (CPSF6) and nucleoporin 153 (Nup153), which establishes extensive hydrophobic and
hydrogen bonding interactions, thereby interrupting the capsid protein interactions with
Nup153 and CPSF6 [52–56].
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Scheme 1. Synthesis of adagrasib (1).

The synthesis of lenacapavir (2) is shown in Scheme 2 [57]. The starting bicyclo[3.1.0]-
hexan-3-one (18) is treated with lithium hexamethyldisilazide (LIHMDS) and reacted with
ethyl 2,2,2-trifluoroacetate to give the enolate 19, which undergoes a cyclization reaction
with hydrazinoacetic acid in HCl to afford pyrazole intermediate 20. The intermediate 20 is
oxidized by N-hydroxyphthalimide and NaClO2 to yield compound 21, which is subjected
to a deoxyfluorination reaction to afford 22 after chiral SFC separation. On the other hand,
imine 23 undergoes an addition reaction to yield chiral intermediate 24, which is subjected
to a Sonogashira coupling reaction with 3-methyl-3-(methylsulfonyl)but-1-yne, affording
the alkyne intermediate 25. Then, Suzuki coupling of 25 with borate 26 gives alkyne
27, which couples with the intermediate 22 in the presence of 2-(7-azabenzotriazol-1-yl)-
N,N,N′,N′-tetramethyluronium hexafluorophosphate (HATU) and diisopropylethylamine
(DIPEA) to afford the targeted lenacapavir (2).
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2.3. Oteseconazole (Vivjoa™)

Oteseconazole (3) is an effective oral antifungal agent developed by Mycovia Phar-
maceuticals [58]. It can inhibit cytochrome P450 (CYP51), thus affecting the formation and
integrity of fungal cell membranes. The binding strength of oteseconazole to CYP51 is gen-
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erally similar to that of other azole antifungal agents, including fluconazole, which inhibits
CYP51 activity in a manner consistent with tight binding inhibition. However, compared
with other azole antibacterial agents, oteseconazole does not show inhibitory activity of
human CYP51 [59,60]. Study results have confirmed the effectiveness of oteseconazole in
the treatment of the initial episode of vulvovaginal candidiasis (VVC) and strengthened
its effectiveness and safety in the treatment of recurrent vulvovaginal candidiasis (RVVC)
compared with the current standard-care drug, fluconazole, for VVC [61]. Oteseconazole is
a chiral compound that contains a difluoromethyl-pyridine unit, a tetrazole heterocyclic
moiety, and a difluorophenyl group at the carbinol center (Figure 4). Structure–activity
relationship (SAR) studies by Viamet Pharmaceuticals Inc. disclosed that the substitution
of trifluoroethyl ether by a chloro group led to decreased inhibitory activity against Tri-
chophyton rubrum (T. rubrum) (T. rubrum MIC values of <0.001 and 0.004 for compounds
3 and 28, respectively) [62]. On April 26, 2022, the FDA approved the oral antifungal drug
Vivjoa (oteseconazole) to reduce the incidence rate of RVVC in women [58].
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The preparation of oteseconazole (3) is shown in Scheme 3 using 2,5-dibromopyridine
(29) as the starting material [63]. Cu-promoted coupling reaction of 2,5-dibromopyridine
with bromodifluoroacetate affords ethyl 2-(5-bromopyridin-2-yl)-2,2-difluoroacetate (30),
which undergoes a substitution reaction with a lithium reagent in situ generated from
1-bromo-2,4-difluorobenzene (31), providing the ketone intermediate 32. Then, the asym-
metric Henry reaction of ketone 32 gives the nitro compound 33, which is subjected to a
Pt-catalyzed reduction reaction. Cyclization reaction of the amine intermediate 34 with
trimethylsilylazide (TMSN3) affords the intermediate 35. Finally, Suzuki coupling re-
action of compound 35 with 4,4,5,5-tetramethyl-2-(4-(2,2,2-trifluoroethoxy)phenyl)-1,3,2-
dioxaborolane (36) gives the targeted oteseconazole (3).

2.4. Vonoprazan/Amoxicillin/Clarithromycin (VoqueznaTM)

Vonoprazan (4) was developed by Takeda Corporation of Japan and approved for the
treatment of gastroesophageal reflux disease (GERD) in Japan on 16 December 2014 [64].
Vonoprazan (4) contains a fluorophenyl unit and a pyridin-3-ylsulfonyl pyrrole ring. It is
a potassium-competitive acid blocker to inhibit the acid secretion rate of gastric parietal
cells [65]. Because vonoprazan (4) has a long half-life and longer action time, it is considered
an effective long-term proton pump inhibitor (PPI) [66]. The earliest randomized double-
blind phase III experiment showed that the eradication rate of Helicobacter pylori (Hp)
in the population with a vonoprazan protocol was 92.6%, while the eradication rate of
Hp in the population with a lansoprazole protocol was 75.9% [67–69]. On 3 May 2022,
vonoprazan (4) combined with amoxicillin and clarithromycin was approved by the FDA
with the trade name VoqueznaTM for the treatment of adult Hp infection. These approvals
were supported by the results from phase 3 of the phalcon-EE double-blind trial.

The synthesis of vonoprazan (4) is shown in Scheme 4 [70], using the corresponding
α-bromoacetophenone derivative as the starting material. The first step is the condensation
reaction of 2-bromo-1-(2-fluorophenyl)ethan-1-one with ethyl cyanoacetate in the presence
of potassium carbonate, affording the intermediate 37. Then, a cyclization reaction of the
intermediate 37 via treatment with hydrochloric acid results in 5-arylpyrrole-3-carboxylic
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acid ester 38. Subsequently, the reduction of ester 38 by diisobutyl aluminum hydride
(DIBAL) followed by oxidation in the presence of tetra-n-propylammonium perruthenate
(TPAP) and N-methylmorpholine N-oxide (MNO) provides the aldehyde 39. The obtained
aldehyde intermediate 39 is sulfonylated by pyridine-3-sulfonyl chloride with NaH as a
base to generate the intermediate 40. Finally, a reductive amination reaction of intermediate
40 using methylamine hydrochloride gives vonoprazan (4).
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3. AA-Derived Drugs

3.1. 177Lu Vipivotide Tetraxetan (PluvictoTM)
177Lu vipivotide tetraxetan (5), also known as 177Lu PSMA-617, is a small molecule

designed to bind with prostate-specific membrane antigen (PSMA) [71–73]. Pluvicto uses
high-affinity targeting ligands to guide effective radiotherapy to prostate cancer cells. The
specific target of this therapy comes from the “ligand” part of the therapeutic agent. The
PSMA-targeted ligand in Pluvicto is chemically connected to a therapeutic radioactive
atom called Lutetium-177 (177Lu), which releases high-energy β particles to accurately
transmit cytotoxic radiation to the disease site [74]. Different from traditional external
radiotherapy, Pluvicto is administered by systemic injection, which could directly target
multiple PSMA-positive prostate cancer sites throughout the body, including bones and soft
tissues. On March 23, 2022, FDA approved Pluvicto for the treatment of adult patients with
PSMA-positive metastatic castration-resistant prostate cancer (mCRPC) who have received
androgen receptor pathway inhibition and taxane-based chemotherapy. These regulatory
decisions were supported by the key phase III VISION study results, in which the death
risk of PSMA-positive mCRPC patients receiving Pluvicto plus standard treatment was
statistically significantly reduced [75].

177Lu vipivotide tetraxetan (5) contains several amino acid units, including gluta-
mate, lysine, 3-(2-naphthyl)-L-alanine, and trans-4-(aminomethyl)cyclohexanecarboxylic
acid. Thus, the preparation of 177Lu vipivotide tetraxetan (5) can proceed via traditional
solid-phase peptide synthesis (Scheme 5) [76,77]. First, isocyanate 41 is obtained via the
reaction of bis(tert-butyl) L-glutamate hydrochloride with triphosgene in the presence of
DIPEA at 0 ◦C. Then, isocyanate 41 is reacted with resin-immobilized (2-chloro-tritylresin,
Merck) ε-allyloxycarbonyl-protected lysine, generating the intermediate 42. Removal of
the allyloxycarbonyl-protecting group via treatment with Pd(PPh3)4 and morpholine in
CH2Cl2 affords the compound 43. Subsequently, L-2-Nal-OH and tranexamic acid are
introduced via a condensation reaction in the presence of O-(benzotriazol-1-yl)-N,N,N′,N′-
tetramethyluronium hexafluorophosphate (HBTU) and DIPEA, and the peptide intermedi-
ate 45 is obtained. Then, the reaction of intermediate 45 with DOTA-tris(tBu)ester, followed
by removal of tert-butyl and cleavage of the resin via treatment with trifluoroacetic acid
(TFA), triisopropylsilane (TIPS), and water, provides PSMA-617 (46). Finally, the reaction
of compound 46 with LuCl3 gives the target product 5.

3.2. Mavacamten (CamzyosTM)

Mavacamten (6) is an oral selective allosteric inhibitor of cardiac myosin adenosine
triphosphate (ATP) enzyme; it was the world’s first innovative therapeutic drug directly tar-
geting the pathophysiological mechanism of hypertrophic cardiomyopathy (HCM) [78–80].
It can reduce the contraction force of sarcomeres and reversibly inhibit the coupling reaction
between myosin and actin by inhibiting MYH7 mutation, which leads to an increase in
myosin ATPase activity. Mavacamten (6) can reduce the sensitivity of the myocardium to
Ca2+, which may be due to it delaying the formation of the cross bridge and accelerating the
separation of the cross bridge, so that the myocardial contractility can return to normal. At
the same time, it can also promote the whole myosin group to change into an energy-saving
super-relaxation state, and improve diastolic function and energy metabolism [81,82]. On
April 28, 2022, mavacamten (6) was approved by the FDA with the name CamzyosTM to
treat adults with symptomatic New York Heart Association (NYHA) Class II-III obstructive
hypertrophic cardiomyopathy to improve functional ability and symptoms. Camzyos is the
first and only FDA-approved allosteric and reversible inhibitor of cardiac myosin, targeting
the potential pathophysiology of obstructive HCM [83].

The synthetic method of mavacamten (6) is described in Scheme 6 with isopropylamine
as the starting material [84]. Isopropylamine is reacted with trimethylsilyl isocyanate to give
1-isopropylurea, which is then refluxed with dimethyl malonate and sodium methoxide
at 65 ◦C, resulting in 1-isopropyl barbituric acid (47). Chlorination of compound 47 by
POCl3 in the presence of triethylbenzyl ammonium chloride (TEBAC) at 50 ◦C affords the
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pale yellow solid 6-chloro-3-isopropylpyridine-2,4 (1H,3H)-dione (48). Finally, the desired
mavacamten (6) is obtained by stirring compound 48 with methylaniline at 90 ◦C for 24 h.
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3.3. Daridorexant (QuviviqTM)

Daridorexant (7) is a dual orexin receptor (DOR) antagonist, developed by the Swiss
biotechnology company Idorsia, that is used to treat adult patients with insomnia. Dari-
dorexant plays a hypnotic role by blocking the binding of neuropeptides orexin A and
orexin B with receptors OX1R and OX2R [85,86]. The results of a phase III clinical trial
showed that daridorexant significantly improved the total sleep time by comparison with
placebo in the first and third months of treatment [87]. Daridorexant (7) received approval
from the FDA on 7 January 2022 with the trade name Quviviq [88].

The synthesis of daridorexant is described in Scheme 7, using (S)-2-methylpyrrolidine-
2-carboxylic acid hydrochloride as the starting material [89]. First, one key triazole interme-
diate 49 is prepared via a Cu-catalyzed cross-coupling reaction of 2-iodo-5-methoxybenzoic
acid and 2H-1,2,3-triazole. On the other hand, the amino group of (S)-2-methylpyrrolidine-
2-carboxylic acid is protected by tert-butyloxy carbonyl (Boc) in the presence of trimethy-
lamine. The generated Boc-protected intermediate 50 undergoes a condensation reaction
with 4-chloro-3-methylbenzene-1,2-diamine in the presence of iPr2EtN and HATU, pro-
viding the intermediate 51. Then, intramolecular cyclization of intermediate 51 generates
imidazole intermediate 52, which is subjected to a reaction with hydrochloric acid to
give the free amine 53. The target compound daridorexant (7) is finally obtained by a
condensation reaction of intermediates 49 and 53 in the presence of DIPEA and HATU.

3.4. Gadopiclenol (EluciremTM)

Gadopiclenol (8, Elucirem, Villepinte) is a paramagnetic, extracellular, nonspecific
macrocyclic gadolinium-based contrast agent (GBCA) developed by Guerbet’s Research
and Development team. Gadopiclenol (8) is a large-membered cyclic compound, featuring
a 3,6,9-triaza-1(2,6)-pyridinacyclodecaphane unit and glutaric moiety (Figure 2). Gadopi-
clenol develops a magnetic moment when placed in a magnetic field. The magnetic moment
alters the relaxation rates of water protons in its vicinity in the body, leading to an increase
in the signal intensity of tissues and enhancing the magnetic resonance imaging (MRI)
quality for tissue differentiation in disease diagnosis. The FDA approved gadopiclenol (8)
in September 2022 primarily based on data obtained from phase III studies showing that
gadopiclenol could improve image quality in brain and body MRI at half the conventional
gadolinium dose [90].
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The precursor for the preparation of perfusion computerized tomography with aceta-
zolamide challenge (PCTA) derivatives (including gadopiclenol) is the Gd complex of PCTA
known as Gd(PCTA-tris-glutaric acid). Gadopiclenol (8) is obtained by amidation of the
above compound with isoserinol [91,92]. Gd(PCTA-tris-qlutaric acid) has three stereocen-
ters on the glutaric moieties, leading to eight possible stereoisomers. However, the chemical
structure of gadopiclenol contains a total of six stereocenters, and the exact composition of
the isomeric mixture obtained, isomer separation, and isomer characterization were not
provided or disclosed.

The synthesis of Gd(PCTA-tris-glutaric acid) 57 and gadopiclenol (8) is shown in
Scheme 8 [92]. Pyclen (3,6,9-triaza-1(2,6)-pyridinacyclodecaphane) (54) is alkylated with
3 equiv of diethyl 2-bromopentanedioate to give hexaester 55, which is saponified to
generate the corresponding hexacarboxylic acid derivative 56. The polyacid 56 is complexed
with 1 equiv of GdCl3 for Gd(PCTA-tris-glutaric acid) 57, and the complex 57 is used in a
peptidic coupling reaction with 3 equiv of 3-aminopropane-isoserinol to yield the desired
hydrophilic and stable macrocyclic chelate gadopiclenol (8).
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3.5. Omidenepag Isopropyl (OmlontiTM)

Omidenepag (58) is a prostaglandin EP2 receptor agonist [93–97] developed by Santen
pharmaceuticals (Figure 5). The compound 59 was reported as a selective EP2 receptor
agonist containing a sulfonamide group, phenoxyacetic acid moiety, pyridin-3-ylsulfonyl
moiety, and tert-butylphenyl moiety. It was identified as the lead compound in quantitative
structure–activity relationship (QSAR) efforts [98–100]. Further, it was reported that the
phenoxyacetic acid moiety is a very critical substructure for its biological activity [101,102].
Compound 58 with a (pyridin-2-ylamino)acetic acid substructure substituted at the 6-
position of the pyridyl group showed higher h-EP2 receptor agonist activity than com-
pound 59. Omidenepag (58) containing a pyrazol-1-yl group displayed the most potent
h-EP2 receptor agonist activity compared to compound 59 [103–109]. Taking into con-
sideration the above facts, SAR efforts were made by modifying the phenoxyacetic acid,
pyridin-3-ylsulfonyl, and tert-butylphenyl moieties of compound 59. The results led to
the development of omidenepag isopropyl (9), demonstrating potent and selective activity
toward the human EP2 receptor (h-EP2) with an EC50 value of 1.1 nM. Omidenepag iso-
propyl (9) was approved by the FDA in September 2022 with the indication of reducing
elevated intraocular pressure in patients with open-angle glaucoma, and it could thus be
used as an ocular hypotensive agent for intraocular pressure (IOP).

The synthetic route for omidenepag isopropyl (9) is shown in Scheme 9 [109]. Com-
pound 60 is reacted with 1-(4-(bromomethyl)phenyl)-1H-pyrazole in the presence of NaH
in DMF under basic conditions, affording compound 61, which is then converted into
omidenepag (58) via deprotection of the Boc and the t-Bu groups under acidic conditions.
Further conversion of omidenepag (58) in the presence of hydrochloric acid gives the
desired omidenepag isopropyl (9) as a white solid.
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3.6. Phenylbutyrate–Taurursodiol (RelyvrioTM)

Phenylbutyrate–taurursodiol (10, sodium phenylbutyrate/taurursodiol) is a fixed-
dose combination oral treatment developed by Amylyx Pharmaceuticals for slowing disease
progression in amyotrophic lateral sclerosis (ALS) patients [110–118]. Taurursodiol (62),
also known as tauroursodeoxycholic acid, is the bile acid taurine conjugate and a more
hydrophilic form of ursodeoxycholic acid, produced naturally in the body (Figure 6). Tau-
rursodiol is responsible for improving mitochondrial energy production and anti-apoptotic
effects [117,118]. Sodium phenylbutyrate is a salt of 4-phenylbutyric acid (4-PBA) [113] that
is used to treat urea cycle disorders [114]; it acts as a chemical chaperone, preventing protein
aggregation [115,116]. The combination of phenylbutyrate–taurursodiol was approved for
medical use in Canada as Albrioza in June 2022 and in the USA as Relyvrio in September
2022 [119].
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Sodium phenylbutyrate is prepared by reacting phenylbutyric acid with a sodium
base [120]. Tauroursodeoxycholic acid 62 is prepared by selective precipitation of the
impurities present in the suspension obtained from the reaction of an aqueous solution of
sodium taurinate with an acetonic solution of a mixed anhydride of ursodeoxycholic acid
63 with an alkyl chloroformate (Scheme 10) [121].
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4. Conclusions

From the standpoint of chemical structure, AAs represent an ideal platform for the
rational design of modern pharmaceuticals. Thus, the presence of basic (amine) and acidic
(carboxyl) functional groups, in combination with stereogenic carbon and practically unre-
stricted structural/functional space of the side chains, offers an extraordinary background
for the design of a three-dimensional structural framework to achieve the desired biological
functionality. Accordingly, one can expect that tailor-made AAs will continue to serve as in-
dispensable building blocks in modern medicinal chemistry and drug design. As a result of
the current and future importance of tailor-made AAs, there is clearly a fast-growing need
in the availability of various structural types of AAs. Thus, the interest in new approaches
for the asymmetric synthesis of tailor-made AAs is currently at an all-time high [122,123].
Some breakthrough developments have been made in the area of dynamic kinetic resolution
of unprotected AAs [124,125], which can be efficiently used for large-scale synthesis and
can compete with biocatalytic approaches in terms of affordability and low-cost structure.
Nevertheless, the application of AAs has some inherent problematic issues. Some of them
are the racemization of the stereogenic carbon, proteolytic and microsomal metabolism,
clearance rates, and membrane permeability of AA-derived drugs. Fortunately, these
issues can be ameliorated by the rational substitution of fluorine for hydrogen and/or the
incorporation of fluorine-containing groups. The steric, electronic, and physical properties
of the fluorinated groups [126–129] can be rationally applied to enhance configurational
stability, reduce proteolytic and microsomal degradation, slow down clearance rates, and
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enhance membrane permeability [130–132], allowing us to quite successfully address the
intrinsic stumbling blocks associated with the application of AAs.
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