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Abstract

In this article, we focus our study on finding approximate analytical solutions to

systems of nonlinear PDEs using the fractional natural decomposition method

(FNDM). We apply the FNDM to obtain approximate numerical solutions for two

different types of nonlinear time-fractional systems of partial differential equations.

The theoretical analysis of the FNDM is investigated for these systems of equations

and is calculated in the explicit form of a power series with easily computable terms.

The analysis shows that our analytical solutions converge very rapidly to the exact

solutions and the effectiveness of the FNDM is numerically confirmed.

MSC: 35Q61; 44A10; 44A15; 44A20; 44A30; 44A35; 81V10

Keywords: fractional natural decomposition method; system of fractional

differential equations; Caputo fractional derivative

1 Introduction

During the last three decades, several numerical methods have been developed in the field

of fractional calculus [–]. The use of fractional differentiation for modeling physical

problems has beenwide spread in recent years [, ]. Fractional calculus has applications

in physics, fluid flow, chemical physics, control theory of dynamical systems, electrical net-

works, modeling of earth quake, measurement of viscoelasticmaterial properties, etc. The

natural decomposition method (NDM) was first introduced by Rawashdeh and Maitama

in  [–], to solve linear and nonlinear ODEs and PDEs that appear inmanymathe-

matical physics and engineering applications. The NDM is based on the natural transform

method (NTM) [–] and the Adomian decomposition method (ADM) [, ] and it

provides solutions in an infinite series form, and the obtained series may converge to a

closed form solution if the exact solution exists. For concrete problems where the exact

solution does not exist, the truncated series may be used for numerical purposes. For non-

linearmodels, theNDMhas shown dependable results and gives analytical approximation

that converges very rapidly. Recently, Rawashdeh and Al-Jammal [] used the FNDM to

find analytical solutions for nonlinear fractional ODES. Many numerical methods were

used in the past to solve fractional systems of nonlinear partial differential equations, such

as the fractional Sumudu transform [, ], the fractional matrix method [], the frac-

tional Adomian decompositionmethod (FADM) [, ], the fractional reduced differential
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transformmethod (FRDTM) [, ], the fractional Laplace decompositionmethod (FLDM)

[], the fractional homotopy analysis method (FHAM) [, ], and the fractional homo-

topy perturbation method (FHPM) [, ].

In this paper, we find approximate solutions to the following fractional systems of

FNLPDEs.

First, the nonlinear time-fractional coupled Burgers’ system of equations:

Dα
t w = wxx + wwx – (wv)x ( < α ≤ ),

D
β
t v = vxx + vvx – (wv)x ( < β ≤ ),

(.)

subject to the initial conditions

w(x, ) = sin(x); v(x, ) = sin(x). (.)

Second, the time-fractional nonlinear system in dimension three:

Dα
t h + vxwy – vywx = –h ( < α ≤ ),

D
β
t v + hywx + hxwy = v ( < β ≤ ),

D
γ
t w + hxvy + hyvx = w ( < γ ≤ ),

(.)

subject to the initial conditions

h(x, y, ) = ex+y; v(x, y, ) = ex–y; w(x, y, ) = ey–x. (.)

The goal of our study is to use the FNDM [] to find approximate solutions to two dif-

ferent types of systems of nonlinear partial differential equations for  < α,β ,γ < , and

exact solutions in the case when α = β = γ = .

The rest of this paper is organized as follows: In Section , we give some preliminaries

and definitions of fractional calculus. In Sections  and , the natural transform method

is introduced. Section  is devoted to the application of the method to two applications

and present graphs to show the effectiveness of the FNDM for some values of x and t.

In Section , we present tables for different values of α, β , γ , and t. Section  is for a

discussion and our conclusion of this paper.

2 Preliminaries of fractional calculus

In this section, we give some of the main definitions and notations related to fractional

calculus. These basic definitions are due to Liouville [, , , ].

Definition . A real function f (x),x >  is said to be in the spaceCμ,μ ∈R, if there exists

a real number q (> μ), such that f (x) = xqg(x), where g(x) ∈ C[,∞), and it is said to be in

the space Cm
μ if f (m) ∈ Cμ,m ∈N.

Definition . For an integrable function f ∈ Cμ, the Riemann-Liouville fractional inte-

gral operator of order α ≥ , is defined as

⎧

⎨

⎩

Jαf (x) = 
Ŵ(α)

∫ x


(x – t)α–f (t)dt, when α > ,x > ,

Jf (x) = f (x).
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Caputo and Mainardi [] presented a modified fractional differentiation operator Dα in

their work on the theory of viscoelasticity to overcome the disadvantages of the Riemann-

Liouville derivative when one tries to model real world problems.

Definition . The fractional derivative of f ∈ Cm
– in the Caputo sense can be defined as

Dαf (x) = Jm–αDmf (x)

=


Ŵ(m – α)

∫ x



(x – t)m–α–f (m)(t)dt, m –  < α ≤ m,m ∈N,x > .

Definition . [] A one-parameter function of theMittag-Leffler type is defined by the

series expansion:

Eα(z) =

∞
∑

k=

zk

Ŵ(αk + )
, α > , z ∈C. (.)

Lemma . [] If m –  < α ≤ m,m ∈N, and f ∈ Cm
μ ,μ ≥ –, then

⎧

⎨

⎩

DαJαf (x) = f (x), if x > ,

JαDαf (x) = f (x) –
∑m–

k= f
(k)(+) x

k

k!
, if m –  < α <m.

It should be mentioned here that the Caputo fractional derivative is used because it

allows traditional initial and boundary conditions to be included in the formulation of the

problem.

Remark . Note that Ŵ represents the Gamma function, which is defined by

Ŵ(z) :=

∫ ∞



e–ttz– dt, z ∈C. (.)

Notice that the Gamma function is the continuous extension to the fractional function.

Throughout this paper, we will be using the recursive relation Ŵ(z + ) = zŴ(z), z > , to

calculate the values of the Gamma function of all real numbers by finding only the values

of the Gamma function between  and .

3 Definitions and properties of the N transform

In this section, we present some background about the nature of the natural transform

method (NTM). Given a function f (t), t ∈ R, then the general integral transform is defined

by [–]:

ℑ
[

f (t)
]

(s) =

∫ ∞

–∞

K(s, t)f (t)dt, (.)

where K(s, t) represent the kernel of the transform, s is a real (complex) number which

is independent of t. Note that when K(s, t) is e–st , tJn(st), and ts–(st), then equation (.)

gives, respectively, the Laplace transform, theHankel transform, and theMellin transform.

Now, for f (t), t ∈ (–∞,∞), consider the integral transforms defined by

ℑ
[

f (t)
]

(u) =

∫ ∞

–∞

K(t)f (ut)dt (.)
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and

ℑ
[

f (t)
]

(s,u) =

∫ ∞

–∞

K(s, t)f (ut)dt. (.)

It is worth mentioning that when K(t) = e–t , equation (.) gives the integral Sumudu

transform, where the parameter s is replaced by u. Moreover, for any value of n the gen-

eralized Laplace and Sumudu transform are, respectively, defined by [–]

ℓ
[

f (t)
]

= F(s) = sn
∫ ∞



e–s
n+tf

(

snt
)

dt (.)

and

S
[

f (t)
]

=G(u) = un
∫ ∞



e–u
ntf

(

tun+
)

dt. (.)

Note that when n = , equation (.) and equation (.) are the Laplace and Sumudu trans-

form, respectively. The natural transform of the function f (t) for t ∈ R is defined by [–

]

N
[

f (t)
]

= R(s,u) =

∫ ∞

–∞

e–stf (ut)dt; s,u ∈ (–∞,∞), (.)

where N[f (t)] is the natural transformation of the time function f (t) and the variables s

and u are the natural transform variables. Moreover, if the function f (t)H(t) is defined on

the positive real axis, whereH(·) is the Heaviside function, t ∈ (,∞), and we suppose that

A =
{

f (t) : ∃M, τ, τ > ,with
∣

∣f (t)
∣

∣ <Me
|t|
τj , for t ∈ (–)j × [,∞), j ∈ Z

+
}

.

Then we define the natural transform (N transform) as

N
[

f (t)H(t)
]

=N
+
[

f (t)
]

= R+(s,u) =

∫ ∞



e–stf (ut)dt; s,u ∈ (,∞). (.)

Note that if u =  equation (.) can be reduced to the Laplace transform and if s =  equa-

tion (.) can be reduced to the Sumudu transform.

Important properties Some basic properties of the N transforms are given as follows

[–]:

. N
+[] = 

s
.

. N
+[tα] = Ŵ(α+)uα

sα+
, where α > –.

4 Analysis of the fractional natural decompositionmethod

In this section, we present the methodology of the FNDM and present some theorems

of the FNDM. One of the authors (Rawashdeh) of this paper proved these theorems in
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[]. Also, in [] the authors used a different approach to prove Theorem . and Theo-

rem ..

Theorem . If R(s,u) is the natural transform of f (t), then the natural transform of the

Riemann-Liouville fractional integral for f (t) of order α, denoted by Jαf (t), is given by

N
+
[

Jαf (t)
]

=
uα

sα
R(s,u). (.)

Theorem . If n is any positive integer, where n –  ≤ α < n and R(s,u) is the natural

transform of the function f (t), then the natural transform, Rα(s,u), of the Riemann-Liouville

fractional derivative of the function f (t) of order α, denoted by Dαf (t), is given by

N
+
[

Dαf (t)
]

= Rα(s,u) =
sα

uα
R(s,u) –

n–
∑

k=

sk

uk+

(

Dα–k–f (t)
)

t=
. (.)

Theorem . If n is any positive integer, where n –  ≤ α < n and R(s,u) is the natural

transform of the function f (t), then the natural transform, Rc
α(s,u) of the Caputo fractional

derivative of the function f (t) of order α, denoted by cDαf (t), is given by

N
+
[

cDαf (t)
]

= Rc
α(s,u) =

sα

uα
R(s,u) –

n–
∑

k=

sα–(k+)

uα–k

[

Dk f (t)
]

t=
. (.)

Methodology of the FNDM We illustrate the FNDM algorithm by considering the gen-

eral fractional nonlinear system PDEs with the initial conditions of the form

Dα
t v(x, t) + Rw(x, t) + Fv(x, t) = h(x, t),

D
β
t w(x, t) + Rv(x, t) + Fw(x, t) = h(x, t),

(.)

subject to the initial conditions

v(x, ) = g(x),

w(x, ) = g(x),
(.)

where Dα
t v(x, t), D

β
t w(x, t) are the Caputo fractional derivatives of the functions v(x, t),

w(x, t), respectively, R is the linear differential operator, F represents the general nonlinear

differential operator, and h(x, t), h(x, t) are the source terms.

Apply the N transform and Theorem . to equation (.) to get

V (x, s,u) =
uα

sα

n–
∑

k=

sα–(k+)

uα–k

[

Dkv(x, t)
]

t=

+
uα

sα
N

+
[

h(x, t)
]

–
uα

sα
N

+
[

Rw(x, t) + Fv(x, t)
]

, (.)

W (x, s,u) =
uβ

sβ

n–
∑

k=

sβ–(k+)

uβ–k

[

Dkw(x, t)
]

t=

+
uβ

sβ
N

+
[

h(x, t)
]

–
uβ

sβ
N

+
[

Rv(x, t) + Fw(x, t)
]

. (.)
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Apply the inverse natural transform of equation (.) and equation (.) to obtain

v(x, t) =G(x, t) –N
–

[

uα

sα
N

+
[

Rw(x, t) + Fv(x, t)
]

]

,

w(x, t) =H(x, t) –N
–

[

uβ

sβ
N

+
[

Rv(x, t) + Fw(x, t)
]

]

.

(.)

Note that G(x, t) and H(x, t) are arising from the nonhomogeneous term and the pre-

scribed initial conditions. Now we assume an infinite series solutions form:

v(x, t) =

∞
∑

n=

vn(x, t), Fv(x, t) =

∞
∑

n=

An,

w(x, t) =

∞
∑

n=

wn(x, t), Fw(x, t) =

∞
∑

n=

Bn.

(.)

Using equation (.) we can rewrite equation (.)

∞
∑

n=

vn(x, t) =G(x, t) –N
–

[

uα

sα
N

+

[

R

∞
∑

n=

wn(x, t)

]

+

∞
∑

n=

An

]

,

∞
∑

n=

wn(x, t) =H(x, t) –N
–

[

uβ

sβ
N

+

[

R

∞
∑

n=

vn(x, t)

]

+

∞
∑

n=

Bn

]

,

(.)

where the An, Bn are the polynomials representing the nonlinear term Fv(x, t), Fw(x, t),

respectively. By comparing both sides of equation (.) we conclude

v(x, t) =G(x, t),

v(x, t) = –N–

[

uα

sα
N

+
[

Rw(x, t)
]

+A

]

,

v(x, t) = –N–

[

uα

sα
N

+
[

Rw(x, t)
]

+A

]

,

w(x, t) =H(x, t),

w(x, t) = –N–

[

uβ

sβ
N

+
[

Rv(x, t)
]

+ B

]

,

w(x, t) = –N–

[

uβ

sβ
N

+
[

Rv(x, t)
]

+ B

]

.

We continue in this manner to get the general recursive relation given by

vn+(x, t) = –N–

[

uα

sα
N

+
[

Rwn(x, t)
]

+An

]

, n≥ ,

wn+(x, t) = –N–

[

uβ

sβ
N

+
[

Rvn(x, t)
]

+ Bn

]

, n ≥ .

(.)
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Finally, the approximate solutions are given by

v(x, t) =

∞
∑

n=

vn(x, t), w(x, t) =

∞
∑

n=

wn(x, t).

5 Illustrative examples

In this section, we test the FNDMon two applications and then compare our approximate

solutions with the exact solutions.

Example . Consider the time-fractional nonlinear coupled Burgers’ system of equa-

tions:

Dα
t w = wxx + wwx – (wv)x ( < α ≤ ),

D
β
t v = vxx + vvx – (wv)x ( < β ≤ ),

(.)

subject to the initial conditions

w(x, ) = sin(x); v(x, ) = sin(x). (.)

Apply the N transform and Theorem . to equation (.) to get

N
+
[

Dα
t w(x, t)

]

=N
+

[

∂w

∂x

]

+N
+

[

w
∂w

∂x

]

–N
+
[

(wv)x
]

,

N
+
[

D
β
t v(x, t)

]

=N
+

[

∂v

∂x

]

+N
+

[

v
∂v

∂x

]

–N
+
[

(wv)x
]

.

(.)

So equation (.) becomes

sα

uα
N

+
[

w(x, t)
]

–

n–
∑

k=

sα–(k+)

uα–k

[

Dkw
]

t=
=N

+
[

wxx + wwx – (wv)x
]

,

sβ

uβ
N

+
[

v(x, t)
]

–

n–
∑

k=

sβ–(k+)

uβ–k

[

Dkv
]

t=
=N

+
[

vxx + vvx – (wv)x
]

.

(.)

Thus from equation (.) and equation (.) we conclude

N
+
[

w(x, t)
]

=


s
sin(x) +

uα

sα
N

+
[

wxx + wwx – (wv)x
]

,

N
+
[

v(x, t)
]

=


s
sin(x) +

uβ

sβ
N

+
[

vxx + vvx – (wv)x
]

.

(.)

Apply the inverse N transform of equation (.) to obtain

w(x, t) = sin(x) +N
–

[

uα

sα
N

+
[

wxx + wwx – (wv)x
]

]

,

v(x, t) = sin(x) +N
–

[

uβ

sβ
N

+
[

vxx + vvx – (wv)x
]

]

.

(.)



Rawashdeh and Al-Jammal Advances in Difference Equations  ( 2016)  2016:235 Page 8 of 19

Assume infinite series solutions for the unknown functions v(x, t), w(x, t) as follows:

w(x, t) =

∞
∑

n=

wn(x, t); v(x, t) =

∞
∑

n=

vn(x, t). (.)

Note that wwx =
∑∞

n=An, vvx =
∑∞

n=Cn, and (wv)x =
∑∞

n= Bn are the Adomian polyno-

mials that represent the nonlinear terms. Using equation (.), we can rewrite equation

(.) in the form

∞
∑

n=

wn(x, t) = sin(x) +N
–

[

uα

sα
N

+

[

∞
∑

n=

wnxx + 

∞
∑

n=

An –

∞
∑

n=

Bn

]]

, n≥ , (.)

∞
∑

n=

vn(x, t) = sin(x) +N
–

[

uβ

sβ
N

+

[

∞
∑

n=

vnxx + 

∞
∑

n=

Cn –

∞
∑

n=

Bn

]]

, (.)

where n≥ . Then by comparing both sides of equation (.) and equation (.) above, we

can easily generate the recursive relation

w(x, t) = sin(x), v(x, t) = sin(x),

w(x, t) =N
–

[

uα

sα
N

+[wxx + A – B]

]

,

v(x, t) =N
–

[

uβ

sβ
N

+[vxx + C – B]

]

.

(.)

Thus,

w(x, t) =N
–

[

uα

sα
N

+[wxx + wwx –wvx – vwx]

]

=N
–

[

uα

sα
N

+
[

– sin(x)
]

]

= – sin(x)N–

[

uα

sα


s

]

= – sin(x)
tα

Ŵ(α + )

and

v(x, t) =N
–

[

uβ

sβ
N

+[vxx + vvx –wvx – vwx]

]

=N
–

[

uβ

sβ
N

+
[

– sin(x)
]

]

= – sin(x)N–

[

uβ

sβ


s

]

= – sin(x)
tβ

Ŵ(β + )
.

We continue to get

w(x, t) =N
–

[

uα

sα
N

+
[

wxx + ww + wwx – (vw +wv)x
]

]

=N
–

[

uα

sα
N

+

[

sin(x)

(

 cos(x)tβ

Ŵ(β + )
+
( –  cos(x))tα

Ŵ(α + )

)]]
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= sin(x)N–

[

uα

sα

(

 cos(x)uβ

sβ+
+
( –  cos(x))uα

sα+

)]

= sin(x)

[(

 cos(x)tα+β

Ŵ(α + β + )
+
( –  cos(x))tα

Ŵ(α + )

)]

.

Similarly,

v(x, t) = sin(x)

[(

 cos(x)tα+β

Ŵ(α + β + )
+
( –  cos(x))tβ

Ŵ(β + )

)]

.

We continue in this manner to obtain the following approximate solutions:

w(x, t) =

∞
∑

n=

wn(x, t)

= w(x, t) +w(x, t) +w(x, t) + · · ·

= sin(x) – sin(x)
tα

Ŵ(α + )
+ sin(x)

[(

 cos(x)tα+β

Ŵ(α + β + )
+
( –  cos(x))tα

Ŵ(α + )

)]

+ · · · ,

v(x, t) =

∞
∑

n=

vn(x, t)

= v(x, t) + v(x, t) + v(x, t) + · · ·

= sin(x) – sin(x)
tβ

Ŵ(β + )
+ sin(x)

(

 cos(x)tα+β

Ŵ(α + β + )
+
( –  cos(x))tβ

Ŵ(β + )

)

+ · · · .

Choosing α = , β = , and using a Taylor series expansion, the above approximate solution

becomes

w(x, t) =

∞
∑

n=

wn(x, t)

= sin(x) – sin(x)t + sin(x)

(

 cos(x)t


+
( –  cos(x))t



)

+ · · ·

= sin(x)e–t .

Similarly,

v(x, t) =

∞
∑

n=

vn(x, t)

= sin(x) – sin(x)t + sin(x)

(

 cos(x)t


+
( –  cos(x))t



)

+ · · ·

= sin(x)e–t .

These are in fact the exact solutions of equation (.) in the case when α = , β = . Hence,

the approximate solution is rapidly convergent to the exact solution. The numerical re-

sults of the approximate solution obtained by FNDM and the exact solution are shown in

Figures - for different values of x, t, α, and β .
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Figure 1 The approximate and exact solutions of w(x, t) when α = β = 1.

Figure 2 The approximate solutions of w(x, t) when α = β = 0.5, α = β = 0.75, and α = β = 0.90.

Figure 3 The approximate and exact solutions of w(x, t) for different values of α and β .

Figure 4 The approximate and exact solutions of v(x, t) when α = β = 1.
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Figure 5 The approximate solutions of v(x, t) when α = β = 0.5, α = β = 0.75, and α = β = 0.90.

Figure 6 The approximate and exact solutions of v(x, t) for different values of α and β .

Example . Consider the time-fractional nonlinear system of equations in three dimen-

sions:

Dα
t h + vxwy – vywx = –h ( < α ≤ ),

D
β
t v + hywx + hxwy = v ( < β ≤ ),

D
γ
t w + hxvy + hyvx = w ( < γ ≤ ),

(.)

subject to the initial conditions

h(x, y, ) = ex+y; v(x, y, ) = ex–y; w(x, y, ) = ey–x. (.)

Apply the N transform and Theorem . to equation (.) to get

N
+
[

Dα
t h

]

=N
+[–h + vywx – vxwy],

N
+
[

D
β
t v

]

=N
+[v – hywx – hxwy],

N
+
[

D
γ
t w

]

=N
+[w – hxvy – hyvx].

(.)

So equation (.) becomes

sα

uα
N

+[h] –

n–
∑

k=

sα–(k+)

uα–k

[

Dkh
]

t=
=N

+[–h + vywx – vxwy], (.)
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sβ

uβ
N

+[v] –

n–
∑

k=

sβ–(k+)

uβ–k

[

Dkv
]

t=
=N

+[v – hywx – hxwy],

sγ

uγ
N

+[w] –

n–
∑

k=

sγ–(k+)

uγ–k

[

Dkw
]

t=
=N

+[w – hxvy – hyvx].

Thus from equation (.) and equation (.) we conclude

N
+[h] =

ex+y

s
+
uα

sα
N

+[–h + vywx – vxwy],

N
+[v] =

ex–y

s
+
uβ

sβ
N

+[v – hywx – hxwy],

N
+[w] =

ey–x

s
+
uγ

sγ
N

+[w – hxvy – hyvx].

(.)

Apply the inverse N transform of equation (.) to obtain

h(x, y, t) = ex+y +N
–

[

uα

sα
N

+[–h + vywx – vxwy]

]

,

v(x, y, t) = ex–y +N
–

[

uβ

sβ
N

+[v – hywx – hxwy]

]

,

w(x, y, t) = ey–x +N
–

[

uγ

sγ
N

+[w – hxvy – hyvx]

]

.

(.)

So assume infinite series solutions for the unknown functions h(x, y, t), v(x, y, t), and

w(x, y, t) of the form

h(x, y, t) =

∞
∑

n=

hn(x, y, t),

v(x, y, t) =

∞
∑

n=

vn(x, y, t),

w(x, y, t) =

∞
∑

n=

wn(x, y, t).

(.)

Note that

vywx =

∞
∑

n=

An, vxwy =

∞
∑

n=

Ān,

hywx =

∞
∑

n=

Bn, hxwy =

∞
∑

n=

B̄n,

vyhx =

∞
∑

n=

Cn, vxhy =

∞
∑

n=

C̄n

(.)
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represent the Adomian polynomials of the nonlinear terms. Using equation (.), we can

rewrite equation (.) in the form

∞
∑

n=

hn(x, y, t) = ex+y +N
–

[

uα

sα
N

+

[

∞
∑

n=

hn +

∞
∑

n=

An –

∞
∑

n=

Ān

]]

,

∞
∑

n=

vn(x, y, t) = ex–y +N
–

[

uβ

sβ
N

+

[

∞
∑

n=

vn +

∞
∑

n=

Bn –

∞
∑

n=

B̄n

]]

,

∞
∑

n=

wn(x, y, t) = ey–x +N
–

[

uγ

sγ
N

+

[

∞
∑

n=

wn +

∞
∑

n=

Cn –

∞
∑

n=

C̄n

]]

,

(.)

where n≥ . Then by comparing both sides of equation (.) above, we can easily gener-

ate the recursive relations

h(x, y, t) = ex+y, v(x, y, t) = ex–y, w(x, y, t) = ey–x.

Thus,

h(x, y, t) = N
–

[

uα

sα
N

+[–h + vywx – vxwy]

]

= N
–

[

uα

sα
N

+
[

–ex+y + ex–ye–x+y – ex–ye–x+y
]

]

= –ex+y
tα

Ŵ(α + )
,

v(x, y, t) = N
–

[

uβ

sβ
N

+[v + hywx – hxwy]

]

= N
–

[

uβ

sβ
N

+
[

ex–y + ex+ye–x+y – ex+ye–x+y
]

]

= ex–y
tβ

Ŵ(β + )
,

w(x, y, t) = N
–

[

uγ

sγ
N

+[w – hxvy – hyvx]

]

= N
–

[

uγ

sγ
N

+
[

e–x+y + ex+yex–y – ex+yex–y
]

]

= ey–x
tγ

Ŵ(γ + )
.

We continue in this manner to obtain

h(x, y, t) =N
–

[

uα

sα
N

+[–h + vywx + vywx – vxwy – vxwy]

]

= ex+y
tα

Ŵ(α + )
,

v(x, y, t) =N
–

[

uβ

sβ
N

+
[

v – (hywx + hywx) – (hxwy + hxwy)
]

]

= ex–y
tβ

Ŵ(β + )
,
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and

w(x, y, t) =N
–

[

uγ

sγ
N

+
[

v – (hxvy + hxvy) – (vxhy + vxhy)
]

]

= ey–x
tγ

Ŵ(γ + )
.

Thus the approximate solutions are given by

h(x, y, t) =

∞
∑

n=

hn(x, y, t)

= h(x, y, t) + h(x, y, t) + h(x, y, t) + · · ·

= ex+y – ex+y
tα

Ŵ(α + )
+ ex+y

tα

Ŵ(α + )
– ex+y

tα

Ŵ(α + )
+ · · ·

= ex+y
[

 –
tα

Ŵ(α + )
+

tα

Ŵ(α + )
–

tα

Ŵ(α + )
+ · · ·

]

= ex+yEα

(

–tα
)

,

v(x, y, t) =

∞
∑

n=

vn(x, y, t)

= v(x, y, t) + v(x, y, t) + v(x, y, t) + · · ·

= ex–y + ex–y
tβ

Ŵ(β + )
+ ex–y

tβ

Ŵ(β + )
+ ex–y

tβ

Ŵ(β + )
+ · · ·

= ex–y
[

 +
tβ

Ŵ(β + )
+

tβ

Ŵ(β + )
+

tβ

Ŵ(β + )
+ · · ·

]

= ex–yEβ

(

tβ
)

,

w(x, y, t) =

∞
∑

n=

wn(x, y, t)

= w(x, y, t) +w(x, y, t) +w(x, y, t) + · · ·

= ey–x + ey–x
tγ

Ŵ(γ + )
+ ey–x

tγ

Ŵ(γ + )
+ ey–x

tγ

Ŵ(γ + )
+ · · ·

= ey–x
[

 –
tγ

Ŵ(γ + )
+

tγ

Ŵ(γ + )
–

tγ

Ŵ(γ + )
+ · · ·

]

= ey–xEγ

(

tγ
)

.

Choosing α = , β = , γ = , and using a Taylor series expansion, the above approximate

solution becomes

h(x, y, t) = ex+yE(–t) = ex+y–t ,

v(x, y, t) = ex–yE(t) = ex–y+t ,

w(x, y, t) = ey–xE(t) = ey–x+t .

These are in fact the exact solutions of equation (.) in the case when α = , β = , γ = .

Hence, the approximate solution is rapidly convergent to the exact solution.

The numerical results of the approximate solution obtained by FNDM and exact solu-

tion are shown in Figures - when y = . for different values of x, t, α, β , and γ .
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Figure 7 The approximate and exact solutions of h(x, t) when y = 0.4 and α = 1.

Figure 8 The approximate solutions of h(x, t) when y = 0.4 and α = 0.5, α = 0.75, and α = 0.90.

Figure 9 The approximate and exact solutions of h(x, t) for y = 0.4 and different values of α.

Figure 10 The approximate and exact solutions of v(x, t) when α = β = 1.



Rawashdeh and Al-Jammal Advances in Difference Equations  ( 2016)  2016:235 Page 16 of 19

Figure 11 The approximate solutions of v(x, t) when y = 0.4 and α = 0.5, α = 0.75, and α = 0.90.

Figure 12 The approximate and exact solutions of v(x, t) for different values of β .

Figure 13 The approximate and exact solutions of w(x, t) when α = β = 1.

Figure 14 The approximate solutions of w(x, t) when y = 0.4 and α = 0.5, α = 0.75, and α = 0.90.
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Figure 15 The approximate and exact solutions of w(x, t) for different values of γ .

Table 1 The approximate and exact solution of v(x, t) and w(x, t) for Example 5.1 for different

values of α and β

x t α = β = 0.75 α = β = 0.9 α = β = 1

Numerical Exact

–10 0.2 0.403596 0.429046 0.446097 0.445407

0.4 0.349827 0.358413 0.369934 0.364668

–5 0.2 0.711403 0.756262 0.786318 0.785101

0.4 0.616625 0.63176 0.652069 0.642786

5 0.2 –0.711403 –0.756262 –0.786318 –0.785101

0.4 –0.616625 –0.63176 –0.652069 –0.642786

10 0.2 –0.403596 –0.429046 –0.446097 –0.445407

0.4 –0.349827 –0.358413 –0.369934 –0.364668

Table 2 The approximate and exact solutions of h(x, t) for Example 5.2 for different values of

α and y = 0.4

x t α = 0.75 α = 0.9 α = 1

Numerical Exact

0.5 0.3 1.6256 1.74178 1.82217 1.82212

0.6 1.27791 1.31047 1.35131 1.34986

0.9 1.10414 1.02931 1.0105 1

1 0.3 2.68017 2.8717 3.00424 3.00417

0.6 2.10692 2.1606 2.22793 2.22554

0.9 1.82042 1.69705 1.66603 1.64872

1.5 0.3 4.41885 4.73464 4.95316 4.95303

0.6 3.47372 3.56223 3.67323 3.6693

0.9 3.00136 2.79796 2.74682 2.71828

6 Numerical tables

In this section, we shall illustrate the accuracy and efficiency of the FNDM. In Table , we

consider the same values of x and t for w(x, t) and v(x, t), specifically, x = {–,–, , }

and t = {., .}. In Tables , ,  we consider the same values of x and t for h(x, t), v(x, t),

and w(x, t) specifically, x = {., , .} and t = {., ., .}.

7 Conclusion

In this paper, the FNDM has been successfully applied to obtain numerical solutions to

the time-fractional coupled Burgers’ system of equations and another nonlinear time-

fractional PDE.We successfully found exact solutions to both physical models in the cases

when α = β = γ = . The FNDM introduces a significant improvement in the fields over

existing techniques. Our goal in the future is to apply the FNDM to other systems of frac-

tional differential equations that arise in other areas of science.
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Table 3 The approximate and exact solutions of v(x, t) for Example 5.2 for different values of

β and y = 0.4

x t β = 0.75 β = 0.9 β = 1

Numerical Exact

0.5 0.3 1.76307 1.58084 1.4918 1.49182

0.6 2.48848 2.17346 2.01296 2.01375

0.9 3.40244 2.95156 2.71191 2.71828

1 0.3 2.90682 2.60637 2.45956 2.4596

0.6 4.10281 3.58343 3.31881 3.32012

0.9 5.60968 4.86629 4.47118 4.48169

1.5 0.3 4.79253 4.29717 4.05514 4.0552

0.6 6.76439 5.90808 5.47179 5.47395

0.9 9.2488 8.02316 7.37174 7.38906

Table 4 The approximate and exact solutions of w(x, t) for Example 5.2 for different values of

γ and y = 0.4

x t γ = 0.75 γ = 0.9 γ = 1

Numerical Exact

0.5 0.3 1.44348 1.29428 1.22138 1.2214

0.6 2.0374 1.77948 1.64807 1.64872

0.9 2.78569 2.41653 2.22032 2.22554

1 0.3 0.875516 0.785023 0.740807 0.740818

0.6 1.23574 1.07931 0.999606 1

0.9 1.6896 1.4657 1.34669 1.34986

1.5 0.3 0.531027 0.47614 0.449322 0.449329

0.6 0.749516 0.654634 0.606291 0.606531

0.9 1.0248 0.888992 0.816812 0.818731
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