
New Approximation-based
Local Search Algorithms for the

Probabilistic Traveling Salesman Problem

Dennis Weyland, Leonora Bianchi, Luca Maria Gambardella
IDSIA (Galleria 2, 6928 Manno-Lugano)

{dennis,leonora,luca}@idsia.ch

September 14, 2009

Abstract

In this paper we present new local search algorithms for the Probabilistic Trav-
eling Salesman Problem (PTSP) using sampling and ad-hoc approximation. These
algorithms improve both runtime and solution quality of state-of-the-art local search
algorithms for the PTSP.

1 Introduction

The field of combinatorial optimization under uncertainty has received increasing atten-
tion within the last years. Combinatorial optimization problems containing uncertain and
dynamic information can be used for more realistic models of real world problems. One
common way of representing the uncertainty is to express input parameters by probabil-
ity distributions instead of single values. Combinatorial optimization problems using this
kind of stochastic information are called Stochastic Combinatorial Optimization Problems
(SCOPs). Among the SCOPs the Probabilistic Traveling Salesman Problem (PTSP) is cur-
rently one of the most significant problems. A broad overview about recent developments
in this field is given in [4].

Since most of the Stochastic Combinatorial Optimization Problems are generalizations
of combinatorial optimization problems it is not surprising that they are in practice usually
harder to solve than the underlying (deterministic) combinatorial optimization problem.
For problem sizes of practical relevance exact approaches are computationally too expensive
and therefore heuristics are mostly used to tackle these kind of problems.

Currently local search algorithms play an important role in this field and a lot of algo-
rithms for the PTSP are either itself local search algorithms or use local search algorithms

1

as subroutines. In this paper we introduce new local search algorithms for the Proba-
bilistic Traveling Salesman Problem and show that these new algorithms outperform the
state-of-the-art local search algorithms for the PTSP.

2 Probabilistic Traveling Salesman Problem

The Probabilistic Traveling Salesman Problem (PTSP) is a generalization of the well known
Traveling Salesman Problem (TSP). In contrast to the TSP each city in the PTSP has to be
visited only with a certain probability, thus allowing more realistic models and scenarios.
The goal here is to find a so called a-priori tour that visits all cities exactly once, minimizing
the expected cost over all possible a-posteriori tours, where cities which do not require a
visit are just skipped without chaning the order of the a-priori tour.

As a generalization of the TSP the PTSP is NP-hard and therefore algorithms comput-
ing near optimal solutions in a reasonable amount of time are of great interest. Especially
local search algorithms play an important role in this field.

Formally we can define the PTSP over a complete undirected edge- and node-weighted
graph G = {V, c, p}. V = {1, 2, . . . , n} is the set of nodes which represent the customers,
p : V −→ [0, 1] is the probability function that assigns to each node the probability that the
node requires a visit and c : V × V −→ R+ is the symmetric cost function that represents
the non-negative travel costs between any two nodes. For real world problems c usually
obeys the triangle inequality or even represents distances in an Euclidean space. The goal
is to find a permutation τ : V → V (the a-priori solution) which minimizes the expected
cost over all a-posteriori solutions. A closed-form expression for this cost due to [8] is given
in section 3.2.

3 Local Search Algorithms

We propose five new local search algorithms for the PTSP. Starting point for our work is a
state-of-the-art local search algorithm for the PTSP which uses the 2.5-opt neighbourhood
and a sampling-based approximation for the difference between the expected costs of two
neighbouring solutions. It is called 2.5-opt-EEs and a detailed description can be found in
[7] with some extensions in [3].

A description of the 2.5-opt neighbourhood operator, which is a combination of the
famous 2-opt and 1-shift neighbourhood operators, can be found in [9]. A lot of common
optimization techniques for local search algorithms that are used in our new algorithms
are also discussed in that work in the context of the TSP.

After introducing the general local search framework we show how the exact cost of a
solution can be computed. Then we give a detailled presentation of our new algorithms.

2

3.1 Local Search Framework

Algorithm 1 describes the general local search framework for the PTSP. At the beginning
an initial solution is created ignoring the additional customer probabilities and using the
well known nearest neighbour heuristic for the PTSP. As long as our current solution is
not a local optimum, we replace the current solution with an improving one. The way in
which we explore the neighbourhood and in which the improving solution is chosen differs
among our algorithms and is described in the corresponding chapters.

Algorithm 1 Local Search Framework for the PTSP

1. Create an initial solution S using the nearest neighbour heuristic

2. While S is not a local optimum regarding the chosen neighbourhood:

Replace S by an improving solution

3. Return S

For a better runtime behaviour we use neighbourhood lists and don’t look bits which
are both common optimization techniques for the PTSP and which are also described in
[9]. Additionaly we use delta-evaluation for the comparison of two solutions. Instead of
comparing the solution costs directly only the difference of the solution costs is calculated.
For the neighbourhood operators used in this work delta-evaluation leads to another major
runtime improvement.

3.2 Exact Evaluation

Here we show two ways of computing the exact cost of a solution. The first approach
calculates the sum of the a-posteriori costs over all possible combinations of realizations of
the random variables each multiplied with the according probability that such realizations
occur. Since there are two different possibilities for each customer we have in total 2n dif-
ferent combinations. This naive computation requires exponential runtime and is therefore
not useful for any practical implementations, but can be used as a starting point for an
approximation with Monte-Carlo-Sampling (cf. 3.3).

Another way to calculate the exact solution cost analytically is to sum over all edges
and multiply their costs with the probability that they occur in the a-posteriori tour.
The probability that a certain edge occurs in the a-posteriori tour is the product of the
probabilities, that both of its vertices require a visit and that all the vertices that are
between them in the a-priori tour do not require a visit. Let τ : V −→ V be the permutation
that represents our current solution and let τi = τ(i) ∀i ∈ V . Then the expected cost of
the a-posteriori tour can be written as

3

E(τ) =
n∑

i=1

n∑
j=i+1

c(τi, τj) p(τi) p(τj)

j−1∏
k=i+1

(1− p(τk))

+
n∑

i=1

i−1∑
j=1

c(τi, τj) p(τi) p(τj)
n∏

k=i+1

(1− p(τk))

j−1∏
k=1

(1− p(τk))

Using this formulation the expected cost of a solution can be calculated in runtime
O(n2) by adding the summands in a certain order. Although this is a lot better than
the exponential runtime of the first approach, it is still too slow for input instances of
reasonable sizes. This is why there is a huge need for fast and accurate approximations of
the expected cost of a solution. We introduce such approximations in the next chapters in
the context of the algorithms where they are used.

3.3 2.5-opt-optimized

This algorithm is based on a state-of-the-art algorithm in [7]. It uses the 2.5-opt neigh-
bourhood within our local search framework. The solutions are explored in a random order
in each iteration and the first improving solution is used to replace the current solution.

For the comparison of two solutions we use Monte-Carlo-Sampling with the naive exact
computation from 3.2, but instead of summing over all possible scenarios, we sample s
scenarios at the beginning of the algorithm using the know probabilities and take the
average over the a-posteriori costs regarding the sampled scenarios as an approximation
for the expected costs. Using the same samples during the whole run of the algorithm is
a well known variance reduction technique. With delta-evaluation it is even possible to
calculate the difference of two solutions in the 2.5-opt neighbourhood regarding a particular
sample in constant time. This leads to a total runtime of O(s) for the comparison of two
solutions using s samples.

For this algorithm it is necessary to calculate for a customer i and a sample s the first
customer in the a-priori tour prior to customer i that requires a visit regarding sample s
as well as the first customer after customer i that requires a visit regarding sample s. The
runtime of the algorithm can be improved by computing these values at the beginning of
the algorithm for the initial solution and by updating them after each improvement step.
We call this algorithm 2.5-opt-sampling.

3.4 1-shift-delta

The special structure of the 1-shift neighbourhood makes it possible to push this precal-
culation process to an extreme. Here we compute for the initial solution the delta-values
(differences between the solutions) for all possible 1-shift moves. After each improvement
step these values are then updated. For the 1-shift neighbourhood the number of values

4

that really change and require an update stays small in relation to the number of all pos-
sible moves. Unfortunately this does not hold for the 2-opt neighbourhood, since large
segments of the a-priori tour are reversed in some cases and this makes it impossible to
benefit from the precalculations for this neighbourhood operator.

The precalculation of the delta-values makes it possible to explore the whole neigh-
bourhood in each step and to replace the current solution with the best solution in its
neighbourhood. We call this algorithm 1-shift-delta.

3.5 2.5-opt-depth

Like 2.5-opt-sampling this algorithm uses the 2.5-opt neighbourhood within our local search
framework. The solutions are also explored in a random order in each iteration and the
first improving solution is used to replace the current solution.

The calculation of the solution costs is based directly on the formula given in the section
about the exact evaluation of the solution costs. Instead of summing over all edges, here
we sum only over those edges whose vertices have a distance of at most d in the a-priori
tour, where d is called the depth of the approximation. The formula changes to

Edepth(τ) =
n∑

i=1

min{i+d,n}∑
j=i+1

c(τi, τj) p(τi) p(τj)

j−1∏
k=i+1

(1− p(τk))

+
n∑

i=1

i+d−n∑
j=1

c(τi, τj) p(τi) p(τj)
n∏

k=i+1

(1− p(τk))

j−1∏
k=1

(1− p(τk))

The computational time required for this approach is O(dn). Usually d is a constant
between 10 and 50, which leads to a good tradeoff between runtime and approximation
accuracy. Another important speedup can be achieved by computing the difference of the
costs of two solutions in the 2.5-opt neighbourhood. In this case only the O(d2) edges
that are at a distance of at most d to at least one of the removed/added edges have to be
considered, leading to a runtime of O(d2). The resulting local search algorithm is called
2.5-opt-depth.

3.6 2.5-opt-threshold

This algorithm is similar to 2.5-opt-depth and also uses the 2.5-opt neighbourhood. The
solutions are explored in a random order in each iteration and the first improving solution is
used to replace the current solution. But instead of summing over all edges whose vertices
have a distance of at most d in the a-priori tour, here we sum over all edges that occur in
the a-posteriori solution with a probability of at least t, where t, with 0 < t < 1, is called
the threshold.

The computational time required for this approach can be bounded by O(un) where u
depends on t and the problem instance and is usually a lot smaller than n for reasonable

5

values of t. By calculating the difference of the costs of two solutions in the 2.5-opt
neighbourhood an important speedup can be achieved. The computational time in this
case decreases to O(u2). The resulting local search algorithm is called 2.5-opt-threshold.

3.7 2.5-opt-combined

Since the local search algorithms 2.5-opt-depth, 2.5-opt-threshold and 2.5-opt-sampling use
different perturbed variants of the exact solution cost function, we tried to combine these
algorithms. Especially the following combination of 2.5-opt-threshold and 2.5-opt-sampling
turned out to be useful.

Algorithm 2 Combined Local Search Algorithm for the PTSP

1. Create an initial solution S using the nearest neighbour heuristic

2. Repeat i times:

Use 2.5-opt-threshold with S as the initial solution, store the result in S

Use 2.5-opt-sampling with S as the initial solution, store the result in S

3. Return S

We will refer to this combined local search approach with 2.5-opt-combined.

4 Experiments & Results

We tested different parameterizations of the algorithms on instances from the TSPLIB
benchmark [10] supplemented with the probabilities for the customers (tsplib instances),
on Euclidean instances in which customers are distributed uniformly at random in a square
(uniform instances) and Euclidean instances in which customers are distributed around a
certain number of centers which themselves are distributed uniformly at random in a square
(clustered instances). We either have selected the same probability for each city with typical
values of 0.05, 0.1, 0.2, . . . , 0.5 or we have selected the probabilities uniformly from a fixed
interval. For each algorithm and each parameterization of the algorithm we performed
50 independent runs and calculated the average runtime and the average solution quality.
Complete numerical results of our experiments will be soon available at [1].

Since heuristics for the PTSP should both be fast and produce good solutions, the de-
velopment of these heuristics can be seen as a multi-objective optimization problem. That
means the goal here is to find the so called Pareto front of non-dominated algorithms.
The practitioner then can pick the proper algorithm concerning the required solution qual-
ity or the available runtime. Therefore we used runtime/solution quality graphs for the
visualization of the results.

6

 100 1000

S
ol

ut
io

n
Q

ua
lit

y
(lo

g-
sc

al
ed

)

Runtime (log-scaled)

Pareto Surface (uniform, n=1000, p=0.2)

2.5-opt-EEs
2.5-opt-optimized

1-shift-delta
2.5-opt-depth

2.5-opt-threshold
2.5-opt-combined

Figure 1: Pareto Surface for different parameterizations of the algorithms 2.5-opt-EEs,
2.5-opt-optimized, 1-shift-delta, 2.5-opt-depth, 2.5-opt-threshold and 2.5-opt-combined on
uniform instances with n = 1000 and homogeneous probabilities of p = 0.2. Since the PTSP
is a minimization problem, better solutions are plotted with a lower solution quality.

In our experiments we found out that the algorithms 2.5-opt-optimized, 2.5-opt-depth,
2.5-opt-threshold and 2.5-opt-combined always dominate 2.5-opt-EEs which itself domi-
nates 1-shift-delta for most of the problem instances. In all our tests 2.5-opt-combined is
part of the Pareto front on its whole runtime range, whereas for lower runtimes the situation
is not clearly decided between 2.5-opt-optimized, 2.5-opt-depth and 2.5-opt-threshold.

Figure 1 illustrates the results for a uniform instance with n = 1000 customers and
homogeneous probabilities of p = 0.2 and figure 2 illustrates the results for a 783-city
TSPLIB instance with homogeneous probabilities of p = 0.1. These results are typical for
our experiments and representative for the results mentioned above.

5 Conclusions & Outlook

In this work we have presented new sampling- and ad-hoc approximation-based local search
algorithms for the PTSP with significant improvements over a state-of-the-art local search
algorithm. These improvements could be achieved on the basis of the following three
ideas: Precomputation combined with more elaborate data structures for the sampling-
based algorithms, the use of ad-hoc approximation and the alternation of local search with

7

 100 1000

S
ol

ut
io

n
Q

ua
lit

y
(lo

g-
sc

al
ed

)

Runtime (log-scaled)

Pareto Surface (ptsplib, n=783, p=0.1)

2.5-opt-EEs
2.5-opt-optimized

1-shift-delta
2.5-opt-depth

2.5-opt-threshold
2.5-opt-combined

Figure 2: Pareto Surface for different parameterizations of the algorithms 2.5-opt-EEs,
2.5-opt-optimized, 1-shift-delta, 2.5-opt-depth, 2.5-opt-threshold and 2.5-opt-combined on
a 783-city TSPLIB instance with homogeneous probabilities of p = 0.1. Since the PTSP
is a minimization problem, better solutions are plotted with a lower solution quality.

8

sampling and ad-hoc approximation.
The new algorithms now build the Pareto front for small runtimes (i.e. at most some

seconds) and in principle they could also be used in iterated local search algorithms or
hybrid heuristics to create new state of the art algorithms in higher runtime regions. Ant
Colony Optimization combined with a local search algorithm is a widely used hybrid heuris-
tic for the PTSP, eg. in [5], [6] and [2]. It seems very promising to use the new local search
algorithms within an Ant Colony Optimization algorithm.

Acknowledgements

Dennis Weyland admits support from the Swiss National Science Foundation, grant 200021-
120039/1.

References

[1] Complete Numerical Results. http://www.idsia.ch/˜weyland.

[2] P. Balaprakash, M. Birattari, T. Stützle, and M. Dorigo. Adaptive sample size and
importance sampling in estimation-based local search for stochastic combinatorial
optimization: A complete analysis. Technical Report TR/IRIDIA/2007-015, IRIDIA,
Université Libre de Bruxelles, Brussels, Belgium, September 2007.

[3] P. Balaprakash, M. Birattari, T. Stützle, Z. Yuan, and M. Dorigo. Estimation-based
ant colony optimization and local search for the probabilistic traveling salesman prob-
lem. Technical report, Brussels, Belgium, September 2008.

[4] L. Bianchi, M. Dorigo, L. M. Gambardella, and W. J. Gutjahr. A survey on meta-
heuristics for stochastic combinatorial optimization problems. Accepted for publica-
tion at Natural Computing, DOI 10.1007/s11047-008-9098-4, 2008.

[5] L. Bianchi, L. M. Gambardella, and M. Dorigo. An ant colony optimization approach
to the probabilistic traveling salesman problem. In PPSN VII: Proceedings of the 7th
International Conference on Parallel Problem Solving from Nature, pages 883–892,
London, UK, 2002. Springer-Verlag.

[6] L. Bianchi, L. M. Gambardella, and M. Dorigo. Solving the homogeneous probabilistic
traveling salesman problem by the aco metaheuristic. In ANTS ’02: Proceedings of
the Third International Workshop on Ant Algorithms, pages 176–187, London, UK,
2002. Springer-Verlag.

[7] M. Birattari, P. Balaprakash, T. Stützle, and M. Dorigo. Estimation-based local search
for stochastic combinatorial optimization. Technical Report TR/IRIDIA/2007-003,
IRIDIA, Université Libre de Bruxelles, Brussels, Belgium, February 2007.

9

[8] P. Jaillet. Probabilistic Traveling Salesman Problems. PhD thesis, Massachusetts
Institute of Technology, Cambridge, MA, 1985.

[9] D. S. Johnson and L. A. McGeoch. The traveling salesman problem: A case study. In
E. H. L. Aarts and J. K. Lenstra, editors, Local Search in Combinatorial Optimization,
pages 215–310. Wiley, Chichester, 1997.

[10] TSPLIB. http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/.

10

