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Abstract 

We derive a first-order approximation of the density of maximum 
entropy for a continuous 1-D random variable, given a number of 
simple constraints. This results in a density expansion which is 
somewhat similar to the classical polynomial density expansions 
by Gram-Charlier and Edgeworth. Using this approximation of 
density, an approximation of 1-D differential entropy is derived. 
The approximation of entropy is both more exact and more ro
bust against outliers than the classical approximation based on 
the polynomial density expansions, without being computationally 
more expensive. The approximation has applications, for example, 
in independent component analysis and projection pursuit. 

1 Introduction 

The basic information-theoretic quantity for continuous one-dimensional random 
variables is differential entropy. The differential entropy H of a scalar random 
variable X with density f(x) is defined as 

H(X) = - / f(x) log f(x)dx. (1) 

The 1-D differential entropy, henceforth called simply entropy, has important appli
cations such areas as independent component analysis [2, 10] and projection pursuit 
[5, 6]. Indeed, both of these methods can be considered as a search for directions 

in which entropy is minimal, for constant variance. 

Unfortunately, the estimation of entropy is quite difficult in practice. Using defi
nition (1) requires estimation of the density of X, which is recognized to be both 
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theoretically difficult and computationally demanding. Simpler approximations of 
entropy have been proposed both in the context of projection pursuit [9] and in

dependent component analysis [1, 2]. These approximations are usually based on 
approximating the density f(x) using the polynomial expansions of Gram-Charlier 
or Edgeworth [11]. This construction leads to the use of higher-order cumulants, 
like kurtosis. However, such cumulant-based methods often provide a rather poor 
approximation of entropy. There are two main reasons for this. Firstly, finite

sample estimators of higher-order cumulants are highly sensitive to outliers: their 

values may depend on only a few, possibly erroneous, observations with large values 
[6]. This means that outliers may completely determine the estimates of cumulants, 

thus making them useless. Secondly, even if the cumulants were estimated per
fectly, they measure mainly the tails of the distribution, and are largely unaffected 
by structure near the centre of the distribution [5]. 

Therefore, better approximations of entropy are needed. To this end, we introduce 
in this paper approximations of entropy that are both more exact in the expectation 
and have better finite-sample statistical properties, when compared to the cumulant
based approximations. Nevertheless, they retain the computational and conceptual 
simplicity of the cumulant-based approach. Our approximations are based on an 

approximative maximum entropy method. This means that we approximate the 
maximum entropy that is compatible with our measurements of the random variable 
X. This maximum entropy, or further approximations thereof, can then be used as 

a meaningful approximation of the entropy of X. To accomplish this, we derive a 
first-order approximation of the density that has the maximum entropy given a set 
of constraints, and then use it to derive approximations of the differential entropy 
of X. 

2 Applications of Differential Entropy 

First, we discuss some applications of the approximations introduced in this pa
per. Two important applications of differential entropy are independent compo
nent analysis (ICA) and projection pursuit. 'In the general formulation of ICA 
[2], the purpose is to transform an observed random vector x = (Xl, ... , Xm)T lin
early into a random vector s = (81, ... , 8m )T whose components are statistically 
as independent from each other as possible. The mutual dependence of the 8i 

is classically measured by mutual information. Assuming that the linear trans
formation is invertible, the mutual information 1(81, ... , 8 m ) can be expressed as 
1(81, ... , 8m) = 2:i H(8i) - H(Xl, ... , Xm) -log Idet MI where M is the matrix defin
ing the transformation s = Mx. The second term on the right-hand side does not 
depend on M, and the minimization of the last term is a simple matter of differential 
calculus. Therefore, the critical part is the estimation of the 1-D entropies H(8i}: 
finding an efficient and reliable estimator or approximation of entropy enables an 
efficient and reliable estimation of the ICA decomposition. 

In projection pursuit, the purpose is to search for projections of multivariate data 
which have 'interesting' distributions [5, 6, 9]. Typically, interestingness is con
sidered equivalent with non-Gaussianity. A natural criterion of non-Gaussianity is 
entropy [6, 9], which attains its maximum (for constant variance) when the distribu
tion is Gaussian, and all other distributions have smaller entropies. Because of the 

difficulties encountered in the estimation of entropy, many authors have considered 
other measures of non-Gaussianity (see [3]) but entropy remains, in our view, the 
best choice of a projection pursuit index, especially because it provides a simple 

connection to ICA. Indeed, it can be shown [2] that in ICA as well as in projection 
pursuit, the basic problem is to find directions in which entropy is minimized for 
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constant variance. 

3 Why maximum entropy? 

Assume that the information available on the density f(x) of the scalar random 
variable X is of the form 

J f(x)Gi(x)dx = Ci, for i = 1, ... , n, (2) 

which means in practice that we have estimated the expectations E{Gi(X)} of n 
different functions of X. Since we are not assuming any model for the random 
variable X, the estimation of the entropy of X using this information is not a 
well-defined problem: there exist an infinite number of distributions for which the 
constraints in (2) are fulfilled, but whose entropies are very different from each 
other. In particular, the differential entropy reaches -00 in the limit where X takes 
only a finite number of values. 

A simple solution to this dilemma is the maximum entropy method. This means 
that we compute the maximum entropy that is compatible with our constraints 

or measurements in (2), which is a well-defined problem. This maximum entropy, 
or further approximations thereof, can then be used as an approximation of the 
entropy of X. 

Our approach thus is very different from the asymptotic approach often used in 
projection pursuit [3, 5]. In the asymptotic approach, one establishes a sequence of 
functions G i so that when n goes to infinity, the information in (2) gives an asymp
totically convergent approximation of some theoretical projection pursuit index. We 
avoid in this paper any asymptotic considerations, and consider directly the case of 
finite information, i.e., finite n. This non-asymptotic approach is justified by the 
fact that often in practice, only a small number of measurements of the form (2) 
are used, for computational or other reasons. 

4 Approximating the maximum entropy density 

In this section, we shall derive an approximation of the density of maximum entropy 
compatible with the measurements in (2). The basic results of the maximum entropy 
method tell us [4] that under some regularity conditions, the density fo(x) which 
satisfies the constraints (2) and has maximum entropy among all such densities, is 
of the form 

(3) 

where A and ai are constants that are determined from the Ci, using the constraints 
in (2) (i.e., by substituting the right-hand side of (3) for fin (2)), and the constraint 
J fo(x)dx = 1. This leads in general to a system of n+ 1 non-linear equations which 
is difficult to solve. Therefore, we decide to make a simple approximation of fo. This 
is based on the assumption that the density f(x) is not very far from a Gaussian 
distribution of the same mean and variance. Such an assumption, though perhaps 
counterintuitive, is justified because we shall construct a density expansion (not 
unlike a Taylor expansion) in the vicinity of the Gaussian density. In addition, we 
can make the technical assumption that f(x) is near the standardized Gaussian 

density 'P(x) = exp(-x2 /2)/..;2ii, since this amounts simply to making X zero
mean and of unit variance. Therefore we put two additional constraints in (2), 

defined by Gn+1 (x) = x, Cn+l = 0 and Gn+2(x) = x2, Cn+2 = 1. To further simplify 
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the calculations, let us make another, purely technical assumption: The functions 
G i , i = 1, ... , n, form an orthonormal system according to the metric defined by 

cp, and are orthogonal to all polynomials of second degree. In other words, for all 

i,j=1, ... ,n 

! { 1, if i = j 
cp(x)Gi(x)Gj(x)dx = 0, if i i- j , (4) 

For any linearly independent functions G i , this assumption can always be made 

true by ordinary Gram-Schmidt orthonormalization. 

Now, note that the assumption of near-Gaussianity implies that all the other ai in 

(3) are very small compared to an+2 ~ -1/2, since the exponential in (3) is not far 
from exp( _x2 /2). Thus we can make a first-order approximation of the exponential 

function (detailed derivations can be found in [8]). This allows for simple solutions 
for the constants in (3), and we obtain the approximative maximum entropy density, 

which we denote by j(x): 

n 

j(x) = cp(x)(1 + L CiGi(X)) (5) 

i=l 

where Ci = E{ G i (X)}. To estimate this density in practice, the Ci are estimated, for 
example, as the corresponding sample averages of the Gi(X). The density expansion 
in (5) is somewhat similar to the Gram-Charlier and Edgeworth expansions [11]. 

5 Approximating the differential entropy 

An important application of the approximation of density shown in (5) is in ap
proximation of entropy. A simple approximation of entropy can be found by 

approximating both occurences of f in the definition (1) by j as defined in 
Eq. (5), and using a Taylor approximation of the logarithmic function, which yields 

(1 + €) log(1 + €) ~ € + €2/2. Thus one obtains after some algebraic manipulations 
[8] 

H(X) ~ - ! j(x) log j(x)dx ~ H(v) - ~ t c; 

i=l 

(6) 

where H(v) = ~(1 +log(27r)) means the entropy of a standardized Gaussian variable, 
and Ci = E{ Gi(X)} as above. Note that even in cases where this approximation 
is not very accurate, (6) can be used to construct a projection pursuit index (or 
a measure of non-Gaussianity) that is consistent in the sense that (6) obtains its 
maximum value, H(v), when X has a Gaussian distribution. 

6 Choosing the measuring functions 

Now it remains to choose the 'measuring' functions G i that define the information 

given in (2). As noted in Section 4, one can take practically any set of linearly inde
pendent functions, say Ch i = 1, ... , n, and then apply Gram-Schmidt orthonormal

ization on the set containing those functions and the monomials xk, k = 0,1,2, so as 

to obtain the set G i that fulfills the orthogonality assumptions in (4). This can be 
done, in general, by numerical integration. In the practical choice of the functions 
Gi , the following criteria must be emphasized: First, the practical estimation of 

E{Gi(x)} should not be statistically difficult. In particular, this estimation should 
not be too sensitive to outliers. Second, the maximum entropy method assumes 
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that the function fo in (3) is integrable. Therefore, to ensure that the maximum 
entropy distribution exists in the first place, the Gi(x) must not grow faster than 
quadratically as a function of Ixl, because a function growing faster might lead to 
non-integrability of fo [4]. Finally, the Gi must capture aspects of the distribution 
of X that are pertinent in the computation of entropy. In particular, if the density 
f(x) were known, the optimal function GoPt would clearly be -logf(x), because 
-E{log f(X)} gives directly the entropy. Thus, one might use the log-densities of 
some known important densities as Gi . 

The first two criteria are met if the Gi(x) are functions that do not grow too fast 
(not faster than quadratically) when Ixl grows. This excludes, for example, the 
use of higher-order polynomials, as are used in the Gram-Charlier and Edgeworth 
expansions. One might then search, according to the last criterion above, for log
densities of some well-known distributions that also fulfill the first two conditions. 
Examples will be given in the next section. It should be noted, however, that the 
criteria above only delimit the space of function that can be used. Our framework 
enables the use of very different functions (or just one) as Ch The choice is not 
restricted to some well-known basis of a functional space, as in most approaches 
[1,2,9]. However, if prior knowledge is available on the distributions whose entropy 
is to estimated, the above consideration shows how to choose the optimal function. 

7 A simple special case 

A simple special case of (5) is obtained if one uses two functions G1 and G2 , which 
are chosen so that G 1 is odd and (h is even. Such a system of two functions 
can measure the two most important features of non-Gaussian 1-D distributions. 
The odd function measures the asymmetry, and the even function measures the 
bimodality /sparsity dimension (called central hole/central mass concentration in 
[3)). After extensive experiments, Cook et al [3] also came to the conclusion that 
two such measures (or two terms in their projection pursuit index) are enough for 
projection pursuit in most cases. Classically, these features have been measured by 
skewness and kurtosis, which correspond to G1 (x) = x3 and G2 (x) = X4, but we do 
not use these functions for the reasons explained in Section 6. 

In this special case, the approximation in (6) simplifies to 

where k1 and k2 are positive constants (see [8]), and v is a Gaussian random vari
able of zero mean and unit variance. Practical examples of choices of Gi that are 
consistent with the requirements in Section 6 are the following. 

First, for measuring bimodality /sparsity, one might use, according to the recommen
dations of Section 6, the log-density of the double exponential (or Laplace) distribu
tion: G2a (x) = Ixl. For computational reasons, a smoother version of G2a might also 
be used. Another choice would be the Gaussian function, which may be considered 
as the log-density of a distribution with infinitely heavy tails: G2b (X) = exp( -x2 /2). 
For measuring asymmetry, one might use, on more heuristic grounds, the follow
ing function: G 1 (x) = x exp ( - x2 /2). which corresponds to the second term in the 
projection pursuit index proposed in [3]. 

Using the above examples one obtains two practical examples of (7): 

Ha(X) = H(v) - [k1 (E{X exp( _X2 /2)})2 + k2(E{IXI} - }2/71")2], (8) 

Hb(X) = H(v) - [k1 (E{X exp( _X2 /2)})2 + k~(E{exp( _X2 /2)} - Ji72)2], (9) 
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with kl = 36/(8V3 - 9) , k~ = 1/(2 - 6/'rr), and k~ = 24/(16V3 - 27). As above, 
H(v) = !(1 + log(27r)) means the entropy of a standardized Gaussian variable. 

These approximations Ha(X) and Hb(X) can be considered more robust and ac
curate generalizations of the approximation derLved using the Gr~m-Charlier ex

pansion in [9] . Indeed, using the polynomials G 1 (x) = x3 and G2 (x) = x4 one 
obtains the approximation of entropy in (9), which is in practice almost identical 
to those proposed in [1, 2]. Finally, note that the approximation in (9) is very 
similar to the first two terms of the projection pursuit index in [3] . Algorithms for 

independent component analysis and projection pursuit can be derived from these 

approximations, see [7] . 

8 Simulation results 

To show the validity of our approximations of differential entropy we compared the 

approximations Ha and Hb in Eqs (8) and (9) in Section 7, with the one offered 
by higher-order cumulants as given in [9]. The expectations were here evaluated 
exactly, ignoring finite-sample effects. 

First, we used a family of Gaussian mixture densities, defined by 

f(x) = J.tcp(x) + (1 - J.t)2cp(2(x - 1)) (10) 

where J.t is a parameter that takes all the values in the interval 0 ::; J.t ::; 1. This fam
ily includes asymmetric densities of both negative and positive kurtosis. The results 
are depicted in Fig. 1. Note that the plots show approximations of negentropies: 

the negentropy of X equals H(v) -H(X), where v is again a standardized Gaussian 
variable. One can see that both of the approximations Ha and Hb introduced in 
Section 7 were considerably more accurate than the cumulant-based approximation. 

Second, we considered the following family of density functions : 

(11) 

where a is a positive constant : and C1 , C2 are normalization constants that make f Ot 

a probability density of unit variance. For different values of a , the densities in this 
family exhibit different shapes. For a < 2, one obtains (sparse) densities of positive 
kurtosis. For a = 2, one obtains the Gaussian density, and for a > 2, a density of 
negative kurtosis. Thus the densities in this family can be used as examples of dif
ferent symmetric non-Gaussian densities. In Figure 2, the different approximations 
are plotted for this family, using parameter values .5 ::; a ~ 3. Since the densi
ties used are all symmetric, the first terms in the approximations were neglected. 
Again, it is clear that both of the approximations Ha and Hb introduced in Section 7 
were much more accurate than the cumulant-based approximation in [2, 9]. (In the 
case of symmetric densities, these two cumulant-based approximations are identi

cal). Especially in the case of sparse densities (or densities of positive kurtosis), the 
cumulant-based approximations performed very poorly; this is probably because it 
gives too much weight to the tails of the distribution. 
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Figure 1: Comparison of different ap
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approximation Hb in (9). Our two ap

proximations were clearly better than the 

cumulant-based one. 
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Figure 2: Comparison of different approximations of negentropy, for the family of densities 

(11) parametrized by Q. On the left, approximations for densities of positive kurtosis (.5 ~ 
Q < 2) are depicted, and on the right, approximations for densities of negative kurtosis 
(2 < Q ~ 3). Solid curve: true negentropy. Dotted curve: cumulant-based approximation. 
Dashed curve: approximation Ha in (8). Dot-dashed curve: approximation Hb in (9) . 
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