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New Backward Recurrences for Bessel Functions

By Henry C. Thacher, Jr.*

Abstract.   The recurrences for the coefficients of appropriate power series may be

used with the Miller algorithm to evaluate Jv(x) (\x\ small), exKv(x) (Re x > 0,

\x\ large), and the modulus and phase of H¿ '(x) (Re x > 0, \x\ large).   The first

converges slightly faster than the power series or the classical recurrence, but requires
more arithmetic; the last three give both better ultimate precision and faster conver-

gence than the corresponding asymptotic series.   The analysis also leads to a   formal

continued fraction for Kv+X(x)/Kv(x) the convergence of which increases with |x|.

The procedures were tested numerically both for integer and fractional values of v,

and for real and complex x.

J. C. P. Miller [1] was the first modern worker to apply backward recurrence
for evaluating sequences of functions {fk} when the recurrence connecting successive
members was unstable for increasing k.  He evaluated the modified Bessel functions
Ik(x) by assigning values F^ = 1, F$+ x = 0, and used the recurrence to compute
F%_x, F%_2, - . . , Fq.  For N » k, the Fk  approached proportionality to Ik(x),
and the proportionality constant CN could be evaluated using a generating function.
Since 1952, the method has been applied to many families of functions, and the
algorithm has been subjected to intensive analysis and refinement.   Relatively recent
surveys of the status of the method have been provided by Gautschi [2], [3], [4].

To use conventional backward recurrence methods, one needs a recurrence
connecting successive elements of the sequence and, if the recurrence is homogeneous,
some normalizing relation such as a generating function or a single function value.
The algorithm must also, of course, converge, in the sense that the estimates for a
particular element,/^ = Fk/CN,  approach the true value as N increases.  In 1972,
Thacher [5] pointed out that solution of linear differential equations with rational
coefficients by the method of undetermined coefficients is a fruitful source of
recurrences (albeit for the Taylor coefficients, instead of for the elements of a family
of functions), and that the value of the function at any point within the circle of con-
vergence of the series provides the required normalizing condition.  Moreover, the
analytic properties of the solutions of the differential equation provide useful clues to
the convergence of the backward recurrence algorithm.
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NEW BACKWARD RECURRENCES FOR BESSEL FUNCTIONS 745

This paper describes the results of applying this approach to a variety of trans-
formations of Bessel's equation.  These transformations allow the evaluation of
solutions which have not previously been accessible to the backward recurrence method
and include hitherto refractory domains of the independent variable.

1.  General Approach.   To establish notation and to indicate the general procedure
to be followed, we begin with a brief outline of the methods for generating and
solving the recurrences.  Additional details, which are not important for the present
application, may be found in [5].

Let y (x), the function to be evaluated, satisfy a differential equation which
may be transformed to

n     mi i °°

(1-1) ¿^ÍI Pu t> ̂ = Z V s Mi).
i=o /=o dr        j=o

The changes of dependent variable, W(x) = F(x, y) = w(t), and of independent
variable, x = x(t), axe chosen to secure the following properties:

a. The origin is an ordinary point of (1-1).  Thus, pnQ # 0, and h(t) is holo-
morphic for |r| < r*.

b. w^(t), the transform of y*(x) is holomorphic in the disk |r| < rT, with
rT > 1.

c. The value of wT(l) is known, and satisfies 0 < |wT(l)| < °°.
Under these circumstances, each solution of (1-1) may be expanded as a series

in powers of t with a nonzero radius of convergence

(1-2) w(t)= Z "***•      \t\<r,r>0.
fc = 0

Substituting this -expression into the differential equation and collecting the coefficients
of equal powers of t leads to a system of equations for the cjk

(1-3) ¿ ïlx(k)ux+k =hk      (k = 0, 1, 2, . . .),
x=o

where the coefficients £2x(fc) are determined by the differential equation.
Although, as pointed out in [5], v may be greater than n, this is not the case for

the equations we consider here, and the coefficients for a set of n + 1 (n if h(t) = 0)
independent solutions of (1-1) form a complete basis for solutions of (1-3).  Further,
the known value,

(14) w+(l) =  Z «!
fc = 0      *

gives us an additional condition which may be used for normalization if (1-1) is
homogeneous and is otherwise available as a check on convergence.

Although it would be possible to investigate the convergence of the backward
recurrence algorithm directly by considering the difference equation (1-3), the relation
to the differential equation (1-1) suggests an alternative approach, connecting convergence
with the singularities of solutions of (1-1).  These, of course, can occur only at the
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746 HENRY C. THACHER, JR.

singularities of h(t) and at the zeros of the coefficient of d"w(t)/dtn.  In the case of
Bessel functions, they are well known from the properties of the functions.

Letting w'(t) be the desired solution of (1-1) and w(t) be any other distinct
solution, the following conjectures have proved useful in predicting convergence of
backward recurrence using (1-3) to the coefficients {coî}:

Conjecture 1.  A necessary condition for convergence to {wt} is that every
other solution w(t) have at least one singularity in the disk |r| < rT.

Conjecture 2.  A sufficient condition for convergence is that all the singularities
of all the other solutions in a fundamental set including w^(i) lie in the disk |r| < r*

These conjectures leave undetermined the behavior when one of the solutions,
w(t), in the fundamental set has a singularity on the circle |r| = r*.  If this singularity
does not coincide with one of the singularities of w*(t), the problem may be resolved
by a small shift of origin for t.  The following conjectures appear to apply when
w'(t) and w(t) have a common singular point at t^ = re'9', and no other singularities
in |r| < r*, and if lixnr^.rf _w^(re'e^) exists.

Conjecture 3.  Convergence to {cj£ } will occur if w(re'8^) is unbounded as
r —rt-.

Conjecture 4.  Convergence to {cjT}  will occur if w(reiB^) has an unbounded
number of oscillations as r —► r* —.

The principal value of these conjectures is in suggesting appropriate transforma-
tions of the original differential equation to secure convergence to the power series
coefficients for the desired solution.  As for most finite length computations, conver-
gence is neither necessary nor sufficient for utility.

In contrast to the more familiar recurrences, which generate the sequence of
members of the family of functions, the recurrence (1-3) yields the sequence of
Taylor coefficients.  Although the sequences may often be converted into one
another, using standard relations for derivatives, the Taylor coefficients themselves have
many applications.  They may be used to evaluate the function and its derivatives at
any point within the circle of convergence; they may be rearranged to a Chebyshev
series, providing rapid convergence on the interval -1 < f < 1 ; function and derivative
values may be used in iterations for finding zeros, and so on.  We will emphasize
evaluating the function.

The simplest function value to compute is wT(0) = co\.  However, the values

(1-5) wt(-i)= z (-»*<4
Jt = 0

and

(1-6)       wt(±o = z i±Dkik"l = Z C-i)H±' Z (-OH«
fc = 0 /=0 ;'=0

may be accumulated without multiplications in parallel with the backward recurrence.
It may, thus, be advantageous to choose the origin so that the value of x for which
the function is desired corresponds to one of these values of t.
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NEW BACKWARD RECURRENCES FOR BESSEL FUNCTIONS 747

Considerable attention has been devoted to refining algorithms for the backward
recurrence approach, particularly for three-term recurrences. Most of this activity has
been reviewed in [2], [3], [4]. Although a careful choice of algorithm would be
essential for the construction of an acceptable item of software, our computations had
a much less ambitious goal, that of exploring the domains of effective convergence of
the various recurrences.  The original Miller algorithm is quite adequate for this task.

Denoting the approximate normalizing factor and solution for a particular start-
ing value N by CN and {cok }, respectively, our computational procedure was as
follows:   Set C"u% = 1, CNu%+1 = CFoj%+2 - • • • = 0.   For * = N- I,
N - 2, . . . , 0, compute C^co^ using (1-3) and accumulate l,I¡LkCNicf and
i:f=kCNojft'-k   Then, let

(1-7)      C" = £ <*«f M(D;   ^(f) = wt(l) £ C^fV/Z C^cof.
/=0 /=0 ;=0

To verify convergence, the recurrence was repeated with N increased by 5 until
|[w^(r) - wj.    (t)]/wj.(t)\ was less than some tolerance e, close to machine accuracy.
This value of N was denoted by A7*, and w^t(t) was chosen as the true value for
subsequent estimates of the rate of convergence.  When tabulated values were available
from independent calculations, this assumption was validated by comparison, but the
precision of our values was usually greater than the published values.

The recurrence was then repeated with N = 1(1 )N* to determine the rate of
convergence for smaller values of N.  The errors were generally expressed as relative
precision indexes

(1-8) /' = -log10
WN(t) - M^.(f)

»4.«
approximately the number of correct decimal digits produced.

2.  Bessel Functions of the First Kind; Small |x|. We turn, now, to applications
of our approach to Bessel functions.  Most of the properties of these functions which
we will need are summarized in Chapters 9 [6] and 10 [7] of AMS 55, the notation
of which we will follow as closely as possible.  Additional useful information about
the asymptotic properties which we shall use may be found in [8].

Bessel functions are solutions of Bessel's differential equation

O1) x2y"(x) + xy'(x) + (x2 - v2)y(x) = 0,

where v is the order.  This equation has a regular singular point at the origin, and an
irregular singular point at °°.  One solution, the Bessel function of the first kind of
order v,  Jv(x) has the power series expansion

T r .      (x \ »   ~ (-x2/4)* .   .   .
(2-2) W = (2J   ¿ Ft* + W + *+!)'       M<°°-
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748 HENRY C. THACHER, JR.

A second solution may be expressed by

cos nvJv(x)-J_v(x)
(2-3) Yv(x) = sin Ttv

when v is noninteger, and by the limiting value as v approaches an integer value.  As
x —► 0, y0(x) ~ 2 In x/rr, while Yv(x) ~ - r(v)(2lx)v/it when Re v > 0. Thus,
Yv(x) has a singularity at the origin.

These facts suggest introducing the new dependent variable Wv(x) defined by

(24) >>(x) = (jjwjfpc).

The auxiliary function corresponding to Jv(x) is then an even entire function, taking
on the value l/F(v + 1) at the origin, while the function corresponding to Yv(x) is
of order (2/x)2v as x —► 0 for Re v > 0, and of order ln(x/2) for v = 0.

The symmetry of the auxiliary function corresponding to Jv(x), and the fact
that its value is known at the origin suggests introducing the new independent variable
t by

(2-5) x(t) = zy/l - t,       t(x) = 1 - (x/z)2,

where the parameter z may be chosen freely, although, as we shall see, increasing |z|
decreases the rate of convergence of the Miller algorithm.

Letting w(t) = W(x[t]), and introducing the new variables into Bessel's equation
leads to

(2-6) (1 - t)w"(t) -(v+ l)w'(t) + (z/2)2w(t) = 0,

which has an ordinary point at the origin, and singular points at t = 1 and f = °°.
If we write

P-7) ■»» - (¿^)W*>.
for the solution corresponding to Jv(x), and

M *»-(^=)'r>/r=ï

for the solution corresponding to Yv(x), we observe that w^(t) is an entire function
of t, with w>t(l) = l/T(v + 1), while w(t) is holomorphic for |r| < 1, but has
singularities at t = 1 and t = °°.  Conjecture 1, thus, implies that if the Miller algorithm
converges, it will converge to the coefficients for w^(t).

Introducing the power series (1-2), with r = 1, into (2-6) leads to the
recurrence

(2-9) "*_, =(f )2k[(k + v)iük-(k + l)cofc+1]
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NEW BACKWARD RECURRENCES FOR BESSEL FUNCTIONS 749

with the additional condition

M

(2-10) vv+(l) = Z co+ = l/r(K + 1).
fc = 0     K

As indicated in the last section, an appropriate choice of z can simplify the
calculations significantly, and may also improve the rate of convergence.  If z is real,
or pure imaginary, (2-9) and (2-10) include only real quantities.  Thus, both Jv(x)
and Iv(x) (the modified Bessel function) may be evaluated for real x without resorting
to complex arithmetic.  The evaluation of w*(t) is, of course, simplest for r = 0, i.e.
for z2 = x2.  However, the rate of convergence of the Miller algorithm decreases as
|z| increases, so that for real or pure imaginary x the choice z2 = x2/2, and (1-5)
may be advantageous.

The recurrence (2-9) was tested numerically using approximately 16S floating
point arithmetic for real x and v as high as 16, with z = x and z = x/y/2. The
results, typical examples of which are shown in Table 2-1, lead to the following general
observations:   The recurrence does, in fact, converge, to correct values, even for x as
large as 16.  The precision for a given starting index increases with v, and decreases
with lx|.  Precision is somewhat higher with z = x/\[2 than with z = x, but the
improvement may not be sufficient to justify the extra computation required in using

(1-5).

Table 2-1
Index of precision for Jv(x).  Miller algorithm on Eq. (2-9).

V00000800
xl 1               28               8 8             16 16
z lift           1                2            4/18 8              8/f 16
N Index of Precision

2 3.32           2.60           0.56         0.41        -0.19 0.31         -0.73 0.08
4 7.43           6.06           2.74        0.41        -0.01 1.44        -0.47 -0.01
6 12.30         10.31           5.76         0.98          0.48 2.88        -0.34 0.00
8 16.74        15.06          9.32        2.37          1.79 4.68        -0.23 "0.00

10 13.29        4.35          2.39 6.76        -0.06 -0.01
12 15.61         6.72           3.77 9.10           0.44 -0.01
14 9.40          5.66 11.66          1.58 0.01
16 12.33          7.87 14.37          3.17 0.15
18 15.79        10.34 15.91          5.03 0.76
20 13.03 7.11 1.96
22 16.09 9.38 3.49
24 11.82 5.21
26 » 7.12
28 9.17
30 11.36
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750 HENRY C. THACHER, JR.

Two other methods of evaluating Jv(x) for relatively small |x| also deserve
consideration:   backward application of the classical recurrence

(2-n) ',+*-!(*) -! <r + *)'*+*(*)-'„+fc+i(*)

and the classical power series (2-2).  Comparative evaluations of J0(x) by all three
methods showed that for fixed N, (2-9) with z = x/s/2 was more precise than any of
the other methods, while (2-11) was uniformly the worst, except for x > 8, where the
power series was inadequate.  Even with z = x, (2-9) was superior to (2-11) and to the
power series for x > 4.  The starting point necessary to attain a specified precision is
not, however, the sole criterion for the choice of algorithm, and it should be observed
that the amount of arithmetic for each application of (2-9) is significantly greater
than for (2-11) or (2-2).  A final selection would require a detailed analysis of
specific programs for the various domains.

3.  Modified Bessel Functions of the Second Kind, Large x.  Changing the
independent variable in Bessel's equation to ix leads to the modified Bessel equation

(3-1) x2y"(x) + xy'(x) - (x2 + v2)y(x) = 0,

with independent solutions

/ e-^i/ijjxe™/2) (-7T < arg x < tt/2),

(3"2> IJto = \
{e3v"il2Jv(xe-3<"l2)       (tt/2 < arg x < rr),

(3-3) *„(*) = ir[I_v(x) - /„(*)] 12 sin m

with the limit being taken, as usual, when v is an integer.
For (x| small, Iv(x) can be evaluated by the methods of the last section.   For

large br|, we may now use the backward recurrence method to evaluate Kv(x).  In
the neighborhood of the irregular singular point at °°, the solutions have the asymptotic
expansions

(^>/„(*)~-fL   |i-44^L + (^-l)(4f-9)--..j      (largxK^),
y/2^c   I 8* 2!(8x)2 j

V   2x j 8x 2!(8x)2 \

(|argx|<37r/2).
Since ^„(x) is recessive at °°, we hope that it will be computable by our

procedure.  To obtain a function with a nonzero value at °° we introduce the new
dependent variable Wfx) by setting

(3-6) Ax)=f£e-*Wix),
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NEW BACKWARD RECURRENCES FOR BESSEL FUNCTIONS 751

so that the differential equation becomes

(3-7) x2 W(x) - 2x2 W'(x) - 4"2~ l W(x) = 0

with the solution corresponding to Kv(x) approaching 1 as x —► °° in I arg x| <
3tt/2, while the solution corresponding to Iv(x) approaches e2x/tt.

Since the differential equation is no longer invariant under a change of sign of
x, we use the simple change of variable

(3-8) x(t) = z/(l - t),    t(x) = I - (z/x),

to map the point x = °° onto t = 1.   Letting w(t) = W(x [t] ), our differential equation
becomes

(3-9) (1 - t)2w"(t) - 2(1 + z - t)w'(t) - ^^- w(t) = 0

with the boundary condition w(l) = 1 corresponding to the solution for Kv(x).
Again, the origin is an ordinary point, so that the power series

oo

(3-10) "i*) = Z  <"V*
k = 0

converges for 11 \ < 1.  The method of undetermined coefficients leads to a recurrence
i in the form

2(k + z)cjk -(k + l)cofc+1

for the cofc which can be written in the form

(3-11) "fc-i
k - 1 - (4v2 - l)/4k

Since the solution corresponding to \j2x/it exKv(x) approaches 1 as t —► 1,
while the solution corresponding to y/2xfn exIv(x) is unbounded, Conjecture 3 suggests
that the backward recurrence solution of (3-11) will converge to {cok } with

0,2) wt<» = j>; = ., »»(o-r^y^wo-.*.^).
In particular, for t = 0,

(3-13) wt(o) = coj = V2z77 e*Kv(z)

and for t = - 1,

(3-14) wt(- 1) = Z »J(- Dfc = \^" ^l2Kv(z/2),
fc = 0

requiring no multiplications in summing the series.
Like all three-term homogeneous recurrences, (3-11) has an associated sequence

of formal continued fractions.  These may be written in /-fraction form

(3-15) (2ft - l)2 - 4^2 jjfc_i |   Pk+i   Pk+2     Pfc + 3
8fc "fc        qk     <7fc+i + <7fc + 2+<7k + 3+'" '
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752 HENRY C. THACHER, JR.

where

(3-16) Pj = \4v2 - (2/ - 1 )2 ] /l 6,   qf=j+z,

and k = 1,2,3, ... .
By Pincherle's theorem, our conjecture on the convergence of the backward

recurrence algorithm implies the convergence of this fraction to the ratio of
consecutive elements of the minimal solution {co|}.

For k = I, (3-15) yields a continued fraction for the logarithmic derivative of
w(t) at t = 0

(3-17) WTO)      <fi     (1 - 4i¿)/8   P2      p3 m
vv<0)      «0 qx+       q2+q3+--    '

Returning to the modified Bessel functions, we have, from (3-6),

(3-18) in Kv(z) = In /| - \ In z - z + In W(z),

so that

(3-19) _^- = -L + 1_J^i_1+±_IîîL(01   .
K„iz)     2z T Wiz) 2z    z  vv(0)

Using the recurrence

(3-20) ~* ̂  ~       r .  . v

we obtain

K'viz) = -Kv+Xiz) + V-Kviz),

/32n    ^+i(2)  _ y      ^(z)  _      ,   2p + 1      (4^2 - l)/8z    (4y2 - 9)/16
^(z)       «     ^(z) 2z l+z+ 2+z+   ••••

This fraction agrees with the odd part of one of Hitotumatu's [9, Eq. 4.7] convergent
continued fractions for Kv+1(x)/Kv(x).  Thus, the convergence of the Miller algorithm
follows from Pincherle's theorem.  In contrast to the direct use of the continued
fraction, the backward recurrence provides a simple normalization procedure.

The method is not, of course, restricted to integer orders, or to real arguments.
For v = (2n - l)/2, the denominator in (3-11) vanishes for k = n, but this merely
reflects the fact that modified Bessel functions of half-integer order have finite
expansions in powers of 1/x.  Exact results will be obtained by starting the recurrence
with con = 0, con_x = 1.

Among the modified Bessel functions of fractional order which are accessible
by this technique, the Airy functions,

(3-22)        Ai(S) = i /3Kx/3 ^ ,   Ai'(s) = -=| K2I3 (^j

have attracted particular interest.  Since Ai(s) is the recessive solution of Airy's equation
as | s | —*■ °° within the sector | arg s | < 7r/3, backward recurrence is effective within
this sector.
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NEW BACKWARD RECURRENCES FOR BESSEL FUNCTIONS 753

In the complex plane, the Kelvin functions of the third kind,

(3-23) ker„(S) + i keL» = e~v1"l2Kv(se^^)

have found considerable apphcation.  They are accessible by backward recurrence
using the representation

(3-24) kery(s) + i keiv(s) = exp j - ^ll n + JL-V J Jl e-*h& Wv(se'^).

For - 7T < arg s < tt/2, Kv(s) can be expressed in terms of the Bessel function of the
third kind (Hankel functions)

(3-25) Kv(s) = (m/2)eivnl2 tf* » V'*/2 )

where H^\x) = Jv(x) + iYv(x).   Accordingly,

(3-26)     //(D(x) = l-e-ivn'2Kv(xe-iv'2) = J¿ e-i(2v+l)l"eixWv(xe'ivl2).

The real and imaginary parts of Wv(-ix) can thus be identified with the
functions P(v, x) and Q(v, x) appearing in Hankel's asymptotic representations

(3-27) / (x) =   /— {P(v, x)cos x - Q(v, ̂ )sin x>,
" \     TtX

(3-28) Yv(x) = J1 {P(v, x)sin X + Q(v, ̂ )cos X},

where x = x - (2v + 1)ît/4.
The procedure was tested by numerical calculations in 16S arithmetic for various

orders, arguments, and choices for the parameter z.  The method was validated by
comparisons with values of K0(2), ^(2), ker 2 and kei 2 and J0(2) and YQ(2) tabulated
in AMS 55 [6]. Agreement to the accuracy of the tabulated values was obtained in all
four test cases.

For other cases, reference values and precision indexes were computed by the
method of Section 1, with e = 10_1S.  Typical results are given in Table 3-1.  For
comparison, the maximum precision obtainable by the asymptotic series [6, Eq. 9.7.2]
for x = 16 is 14.74 and requires 33 terms.

Although the whole domain of x, v, and z was not explored, the following
semiquantitative generalizations appear useful:

a. For fixed z and v, the index of precision, P, is effectively independent of
f for |i|<l.

b. For fixed z and v, with | v \ < \ z \, the index of precision for varying
starting points, N, may be represented by an expression of the form
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(3-29) P = arf

with ß — .5 for v < 1, increasing somewhat with v.  For v > |z|, convergence is
unacceptably slow.

Table 3-1

/ 2xPrecision indexes for   / — exKv(x) by backward recurrence.
V      71

|x| 1.0              2.0 16.0 2.0 1.0 /2~ 2
arg x 0.                  0 0 0 -u/2 n/4 0
|z| 2.0               2.0 32.0 4.0 2.0 2/2~ 4
arg z 0                  0 0 0 -tt/2 n/4 0

v 0                   0 0 2/3 0 0 2
N Precision Indexes

1 2.12    1.96 5.15 2.94 1.84 2.71 1
2 2.41     2.52 5.42 3.30 2.20 3.02 2
3 3.09     2.99 7.76 4.27 2.65 3.94 3
4 3.34     3.41 8.05 4.57 2.92 4.22 3
5 3.86     3.79 10.04 5.32 3.25 4.93 4
6 4.09     4.14 10.33 5.61 3.48 5.19 5
7 4.52     4.47 12.09 6.23 3.75 5.78 5
8 4.73    4.77 12.38 6.49 3.95 6.03 5
9 5.11    5.06 13.98 7.04 4.18 6.53 6

10 5.30     5.34 14.27 7.29 4.37 6.77 6
11 5.64     5.60 15.35 7.77 4.58 7.22 7
12 5.82     5.85 16.16 8.01 4.75 7.44 7
13 6.12     6.09 16.55 8.45 4.94 7.85 7
14 6.30     6.32 8.68 5.10 8.07 8
15 6.58     6.55 9.09 5.27 8.44 8
16 6.74    6.77 9.30 5.42 8.65 8
17 7.01    6.98 9.68 5.58 9.00 9
18 7.16     7.19 9.89 5.73 9.19 9
19 7.41     7.39 10.24 5.88 9.52 9
20 7.56     7.58 10.44 6.01 9.71 10
21 7.80     7.77 10.78 6.16 10.02 10
22 7.94     7.96 10.97 6.29 10.21 10
23 8.16     8.14 11.29 6.43 10.50 10
24 8.30     8.32 11.48 6.55 10.68 11
25 8.52     8.50 11.79 6.68 10.96 11
50 12.09 12.10 9.27 15.47
75 15.02 15.01 11.25
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c.  The constant a in (3-29) depends primarily on |z I, and varies only slightly
with arg z and v for v < \z |.  The dependence may be approximated by

.33(3-30) a = 1.4 |z|

4.  Bessel Function Modulus.   As |x | —*■ °° with x near the real axis, both
Jv(x) and Yv(x) oscillate with comparable amplitudes and with periods approaching
2ti. This behavior is evident from the Hankel representations (3-27) and (3-28), since
the auxiliary functions P(y, x) and Q(v, x) have the asymptotic series representations

(4-1) P(p, x) ~ 1 - A-^--L
2!(8x)2

|   (4v2 - 1)(V - 9)(4^2 - 25) (V - 49)_
4!(8x)4

(4-2) ^.x)~^-^2-1^2-9)^2-25>+---.
8* 3!(8x)3

Even with the convergent recurrence of Section 3 for computing the auxiliary
functions, the Hankel form requires two trigonometric functions for either of the
Bessel functions, and, more seriously, is subject to cancellation error in the neighbor-
hood of the zeros.  Alternate representations valid for large x are, thus, desirable.

The oscillation of Jv(x) and Yv(x) suggests that no power series for either solu-
tion of Bessel's equation which is valid as x —* °° will have minimal coefficients. If,
however, we turn to products of solutions, we find

(4-3) J*(x) + Y2(x) = ¿ { P2(v, x) + Q2(v, *)} ~ ¿ >

2Jv(x)Yv(x) = — {[P2(v, x) - Q2(v, x)] sin 2X + 2P(v, x)Q(v, x)cos 2X>

(44)
2 sin 2x

7TX       '

/2(x) - r2(x) = — {[P2(v,x)-Q2(v,x)\cos2X-2P(v,x)Q(v, x)sin 2X}
7TX

(4"5) , o2 cos 2x-j
7TX

and only the last two oscillate as x —*■ °°.  Conjecture 4 then suggests that if we can
find a differential equation with (4-3), (44) and (4-5) as a complete set of independent
solutions, backward recurrence on the power series coefficients will converge to the
coefficients for /2(x) + K2(x).

Such a differential equation can be obtained using the result [10, p. 298,
Example 10] that if y. and y2 are independent solutions of the differential equation
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(4-6) y"+Ry'+Sy = 0,

then y2, y^2' an(l y\ are independent solutions of

(4-7) u'" + 3Ru" + \2R2 +^ + 4Sju' + UrS + 2 ̂  )

Writing Bessel's equation in the form

y"(x) + zy'(x)+ (i-4W) = °>(4-8)

we see that the general solution of

3   <v a .  1 - 4p2 + 4*2      V > j. 4-u (x) +-2- «(*) + -
X X

can be written as

(4-9) «"(*) + Íu"(x) + l J   *     u'(x) + I u(x) = 0

(4-10) u(x) = A [J2v(x) + Y2v(x)] + 2BJv(x) Y„(x) + C[J2v(x) - Y2v(x)\,

where /2(x) + Y2(x) is the squared modulus of the Hankel function, often written
asM2(x).

Letting u(x) = W(x)/x leads to the conventional differential equation for the
squared modulus of the Hankel function

(4-11) x3Wm(x) + (1 - 4v2 + 4x2)xW'(x) + (4^2 - l)lV(x) = 0

with the three independent solutions

(4-12) Wl (X) = X [J2»(X) + Y*(X)] '    W¿x) = 2x/"(*) Yv(x)'

W3(x) = x[J2v(x)-Y2v(x)].

From our outline of the asymptotic properties, we see that Wx(x) is a symmetric
function of x, and that

2(4-13) hm  Wx(x) =hmsupW2(x) =limsupW3(x) =-,
X-K» X-*°° JC-X» "

where both W2(x) and W3(x) oscillate with periods approaching 7r as x —>°°.

In view of the symmetry of Wx (x), the change of independent variable

(4-14)        x(t) = z/y/T^t,    t(x) = 1 - (z/x)2        (Re x > 0, Re z > 0)

is appropriate, letting, as usual, w(t) = W(x[t]).  With this change of variable, (4-11)
becomes

(4-15)  2(1 - tfw'"(t) - 9(1 - t)2w"(t) + 2[z2 + (3 - X) - (3 - X)t]w'(t) + \w(t) = 0

where 4X = 4^2 - 1.   The boundary condition corresponding to W(°°) = 2/n is
w(l) = 2/it.
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Letting w(t) = zZu)ktk, and substituting in (4-15) leads, after some rearrange-
ment, to

(4-16) '   '

Z  {2j(j + 1)0' + 2)co,.+ 2 - 3/0' + 1X2/ + IH+i

+ 2/(3/2 + z2 - X)^.    - [2/3 - 3/2 + (1 - 2X); + X] uf_ x }t'~ ' = 0,

so that the coefficients oj. must satisfy the four term recurrence

Wfc_, =—-,—-   {(* + l)[2(k + 2)uk+2-(6k + 3)cok+1]
(4-17) 2k   - 3k   + i1 - 2X)Ä: + X

+ 2(3fc2 +z2 - X)cofc}

with the normalizing condition

f 2(4-18) Z
k = 0 "

The applicability of the Miller algorithm with (4-17) and (4-18) was verified by
numerical calculation with a variety of real orders and arguments.   For most of the
tests the parameter z was taken equal to x, but the choice z = \/2x was also examined
(and found to be advantageous), and one test was made with v = 0, x = 8 and z =
6 + 2/ to verify the applicability of the algorithm for complex values.   Fractional
orders caused no difficulty except, of course, for v = (2m + l)/2 where the series
terminates.  Selected results were found to be in satisfactory agreement with values
computed from the tables in AMS 55 [6].

The rate of convergence was explored by calculations similar to those described
in Section 3.  The data, typical examples of which are shown in Table 4-1, support
the following conclusions:

a. The choice z = V2x gives more rapid convergence than z = x.
b. For fixed z and v, the precision indexes are well represented by an expres-

sion of the form (3-29), with a decreasing from 5.33 to 2.02, and ß from 0.45 to
0.34 as z decreases from 16 to 2.

c. The rate of convergence decreases with increasing order.   The technique is
of little value for v significantly greater than |z|.

For comparison, the asymptotic series [6, Eq. 9.2.28] requires 17 terms to
achieve a maximum precision of 14.45 for x = 16, and 9 terms give a maximum
precision 7.36 for x = 8.

5. Evaluation of the Phase. The phase, dv(x), for Bessel functions may be
defined by

(5-1 ) /„(*) = Mv(x) cos dv(x),    Yv(x) = Mv(x) sin fl„(x),

where Mv(x) is the modulus, which was considered in the last section.
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x
z
V
N

1
2
3
4
5

Table 41

Precision indexes for x [J2(x) + Y2(x)] by backward recurrence

2.13
2.54
2.38
3.18
3.43

2

o

2.64
3.16
3.66
4.00
4.33

using Eqs. (4-17) and (4-18).
4 4
4 4
0 1

Precision

4
4
4

Indexes

3.14
3.87
4.44
4.92
5.32

88
,67
28
77

5.19

-0.13
0.36
1.13
2.32
3.06

0.04
0.05

-0.08
0.56
1.62

4.30
5.47
6.40
7.17
7.83

8
8/2~
0

5.64
6.12
7.78
8.33
9.47

16
16

0

5.49
7.21
8.63
9.85

10.92

6
7
3
9

10

3.66 4.59
3.87 4.85
4.06 5.07
4.23 5.29
4.38 5.48

5.68
6.00
6.29
6.56
6.82

5.56
5.89
6.19
6.46
6.72

3.64
4.12
4.54
4.91
5.24

2.38
2.99
3.49
3.93
4.32

8.42
8.95
9.43
9.88

10.29

9.98 11.88
10.84 12.75
11.31 13.54
12.00 14.28
12.43 14.96

11
12
13
14
15

4.53
4.67
4.80
4.93
5.04

5.67
5.84
6.01
6.16
6.32

7.05
7.27
7.48
7.68
7.87

6.96
7.18
7.40
7.60
7.79

5.54 4.67
5.82 4.98
6.08 5.28
6.33 5.55
6.56 5.81

10.68
11.04
11.38
11.71
12.02

13.02 15.60
13.41 16.21
13.92 16.81
14.28 17.46
14.73

16
17
18
19
20

21
22
23
24
25

5.16
5.27
5.37
5.47
5.57

5.66
5.75
5.84
5.93
6.01

6.46
6.60
6.73
6.86
6.98

7.10
7.22
7.33
7.44
7.55

8.06
8.23
8.40
8.56
8.72

8.87
9.02
9.16
9.30
9.44

7.98
8.16
8.33
8.49
8.65

8.80
8.95
9.09
9.23
9.37

6.78
6.99
7.18
7.37
7.56

7.73
7.90
8.06
8.22
8.37

6.05
6.27
6.49
6.70
6.89

7.08
7.26
7.44
7.61
7.77

12.32
12.60
12.88
13.14
13.40

13.64
13.88
14.11
14.34
14.55

15.08
15.52
15.89
16.46

Writing the Wronskian for Jv(x) and Yv(x) in terms of modulus and phase

Jv(x)     Yv(x)

(5-2)

we find

(5-3)

Mv sin 0„M„ cos 0„

M'v cos 6V - Mv sin 0„0'„      Ksin dv + Mv cos eX

M„ cos 0„        M„ sin 0,

2_
7TX

M„ sin 0„0!,   M„ cos 0„0',V    V V

■*?'.-¿
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leading to the familiar differential equation

(54) xM2ix)6'vix) = 2/vr.

As | x | —► °°, the phase has the asymptotic representation

(5-5)      W^-^ff+^ + (^-l)(4r8-25)   +."v ' 4 2(4x) 6(4x)3

suggesting that we write

DÀx)
(5-6) 0,(x) = *Jx) + -J— >
where, as in the last section, xvix) = x - (2v + l)rr/4, and the auxiliary function
Dv(x) is an even function of x satisfying

4i;2 - 1          „,v N      -(V - l)(4t;2 -25)(5-7) Dv(x)-— ,      Dv(x)^-jJJL--1.

In terms of the auxiliary functions, Wv(x) (from the last section) and Dv(x), we
may write the differential equation (54) as

[D'(x)     D(x)        1     2
(5-8) w¿x\-^--jr^\=l

Again, changing the independent variable to

(5-9) r=l-z2/x2

and letting d(t) = Dv(x[t]), we obtain, after simplification

(5-10) 2(1 - t)d'(t) - d(t) = r(t),

where

v       ' v '        (1 -í)w(í) (1 -í)w(í)

The singularities of r(t) will fall at t = 1 (because of the essential singularity of
M^x) at x = °°) and at the zeros of w(i) (i.e. at t = °°, and at the values of r cor-
responding to the complex zeros of H^\x)).   If all of these zeros lie outside the
circle t = 1, we can represent r(t) as a power series

(5-12) r(t) = Z Pktk>
fc = 0

which converges absolutely for 111 < 1.
Writing

(5-13) (1 - t)w(t)r(t) = z2 Ml) - W(r)]
and using the series representation for w(t), the coefficients for which can be found
by the method of the last section are

"o + Z i"k-"k-i)tk\ Z   Pktk =z2 L ""o J" £
k=l ) ic = 0 /       fc = l

z'co.r
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Multiplying the series on the left,

(5-15)     ¿o j coPk + ¿ «o,«,.^., J tk = z2ß - u0\ - ¿ z2^'

It follows that the pk may be evaluated by solving the system of linear
equations

z   /2
(5-16)

and, for k > 1,

w0\7r

The general solution of (5-10) is

(5-18) d(t) = C/y/T^t + d*(t),

where d*(t) may be taken as the solution giving the phase shift.
Setting

(5-19) d(t) = Z àktk,
fc=0

we have, in the domain of convergence,

(5-20) ¿ [2{k + i)Afc+1 - (2k + l)Afc] tk = ¿       ,*
k=0 « = 0    k

so that the Afc must satisfy the inhomogeneous recurrence

(5-21) 2(k+l)Ak+x-(2k+l)Ak=pk      (k = 0, 1,2, . . .).

We can solve this equation explicitly.  The complementary solution is

(5-22) a» = 2*^i Ak      . J|*1L_ ¿   . (-l)fc("1/2N) A,
fe        2fc       *-i      (2**!)2 \   jfc   /    °

It follows that a solution to the equation

(5-23) 2(fc + l)A^1-(2fc + l)A"fc=p„ok;„

with Sfc n the Kronecker 8 symbol, is

(2Jt:)!       j2nn\)2

(5-24) ànk = (2*fc!)2    (2« + l)!P"'        *<W'

0, k>n.
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Summing over n gives us the general solution to (5.21)

(5.25,     *.-*+£«-$ír|4-¿;£&4
Since (2"nl)2/(2n + 1)! is a monotone decreasing function of n, Dirichlet's test
[10, p. 17] insures that zZ(2"n\)2pn/(2n + 1)! converges whenever 2p„ does, and the
sum from k on must approach zero.  It follows that

,t _      (2k)\     f     (2nn\)2
(5-26) *k        {2kk])2   2^k   cln + i). Pn

is a minimal solution to (5-21) and may be computed stably by backward recurrence
once the pk have been found.  The identification of {A^} with the power series
coefficients for <¿T(r) may be made by observing that limt^x_d'(t) = (4v2 - l)/8,
while the complementary function is unbounded as t —► 1 —.

Evaluation of the phase shift, d^(t) thus consists of three principal tasks:
a. Computing the coefficients {w£} for the given v and z using the backward

recurrence of Section 4.
b. Finding the coefficients {pk} by solving the triangular system of linear

equations (5-16) and (5-17).
c. Evaluating {A¡£ } by backward application of (5-21), and summing the series

(5-19) for the desired value (or values) of t, with |r I < 1.
The procedure was tested numerically for the same values of x, z, and v used

for the recurrence of Section 4.  Again, the results were in satisfactory agreement
with tabulated values of the Bessel functions.  Typical precision indexes obtained are
presented in Table 5-1.  The results support the following generalizations:

a. Convergence is rapid for large |z |, but the rate decreases with |z |.   The
choice z = Vzx gives more rapid convergence than z = x.

b. The precision index may be approximated by an expression of the form
(3-29), although the approximation is not so good as for x\HJi1\x)\2 or for
exKv(x).  The constant a decreases from 2.6 to 0.5 and ß from 0.73 to 0.61 as z
decreases from 16\/2 to 2.

c. The precisions for the phase shifts are about three digits less than for the
corresponding squared moduli.  It should be observed, however, that the phase shift
is a relatively small correction to the asymptotic phase, x-

d. Precisions are almost independent of v for v < |z|.   For v > |z|, the precision
may deteriorate rapidly because of the complex zeros of H^(x) in the right half plane.

e. The results appear to be sensitive to the arithmetic precision used.   For long
precision IBM System 370 arithmetic (14 hexadecimal, approximately 16 decimal,
digit fraction) random fluctuations in precision index were observed when the pre-
cision index approached about 11.5.   Carrying out the calculations in extended pre-
cision (about 35S) arithmetic eliminated the fluctuations.
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Table 5-1

Precision indexes for Bessel function phase shifts

X22444488 16
z              2            2/2"           4              4              4              48          8/T 16
v              000              14              500 0
N                                                   Indexes of Precision

1 0.39 0.65 0.83 1.05 -1.06 0.80 1.38 1.76 1.96
2 0.70 1.10 1.43 1.71 -0.29 -0.51 2.42 3.07 3.56
3 0.95 1.47 1.91 2.23 0.61 -1.39 3.26 4.16 4.89
4 1.18 1.77 2.31 2.65 1.86 -0.00 3.97 5.08 6.05
5 1.37 2.04 2.66 3.02 2.37 0.92 4.58 5.88 7.08

6 1.55 2.28 2.98 3.34 2.51 2.20 5.13 6.60 7.99
7 1.71 2.50 3.27 3.64 2.89 1.52 5.63 7.25 8.82
8 1.87 2.71 3.53 3.90 3.86 1.66 6.08 7.84 9.59
9 2.01 2.89 3.77 4.15 3.99 2.68 6.49 8.38 10.29

10 2.14 3.07 4.00 4.39 5.07 1.80 6.88 8.89 10.95

11 2.26 3.23 4.21 4.60 4.29 1.92 7.25 9.37 11.57
12 2.38 3.39 4.42 4.81 4.41 3.54 7.59 9.82 12.16
13 2.49 3.54 4.61 5.00 4.92 2.14 7.92 10.24 12.74
14 2.60 3.68 4.79 5.19 6.11 2.21 8.23 10.65 13.39
15 2.70 3.81 4.97 5.37 6.25 3.22 8.52 11.04

16 2.80 3.94 5.13 5.54 5.71 2.46 8.80 11.42
17 2.90 4.07 5.30 5.70 5.73 2.48 9.07 11.80
18 2.99 4.19 5.45 5.86 5.98 3.25 9.34 12.20
19 3.08 4.30 5.60 6.01 6.31 2.79 9.59 12.70
20 3.17 4.42 5.75 6.15 6.54 2.76 9.83

21 3.25 4.52 5.89 6.30 6.63 3.38 10.06
22 3.33 4.63 6.02 6.43 6.73 3.12 10.29
23 3.41 4.73 6.15 6.57 6.88 3.04 10.51
24 3.49 4.83 6.28 6.70 7.05 3.55 10.73
25 3.56 4.93 6.41 6.82 7.21 3.46 10.94

As suggested by d above, the domain of applicability of this procedure is
limited by the requirement that the series for r(t) converge for |r| < 1.  This demands
not only that w(t) have no singularities other than poles in the unit disc, but also
that it not vanish there.  Although H^l^(x) has no real zeros, it does have complex
zeros, some of which lie in the right half plane.

To find the restriction on permissible values of z2 imposed by a particular zero
x,, we may let

(5-27) z2 = pe''9x2

so that the condition | f(x-)|2 > 1 becomes

(5-28) 11 _ pe'0|2 = 1 _ 2p cos 6 + p2 > 1
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or

(5.29) P>2cos0.

In particular, using Dbring's [11] values for the zeros of Hnl\x), and limiting
our attention to real z, we find that for v = 4, we must have z > 1.376. .. ,
while for v = 5, we must have z > 3.088. . .  .  These limits may be confirmed by
attempting to perform the algorithm for smaller values of z.  It will be found that
2pfc diverges badly, so that backward recurrence for the Aj fails.

6.  Discussion and Conclusions.  Of the four recurrences presented, the first
is useful for small arguments, while the others are most effective near °°.  The first,
Eq. (2-9), is competitive with other methods of evaluating Jv(x) but offers no clear
advantage over the power series for |x | less than the first zero.  This should not be
surprising in view of the close connection between recurrences and continued fractions,
and the observation that continued fractions corresponding to power series for entire
functions rarely accelerate convergence, although those corresponding to asymptotic
divergent series often show dramatic improvement.

The last three recurrences fall in the latter class, and not only converge more
rapidly, but also yield higher precisions than the asymptotic series over wider domains
of the complex argument.  Hitotumatu's continued fraction, Eq. (3-21), shows com-
parable convergence but requires a more complicated normalization.  It, thus, appears
that the recurrences should replace the asymptotic series for large arguments and
relatively small orders.   Equation (3-11) with z = - ix provides an improvement over
the Hankel form, although the modulus and phase representation deserves careful
consideration.
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