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In this work, we introduce a new node attack strategy removing nodes with the highest conditional weighted betweenness
centrality (CondWBet), which combines the weighted structure of the network and the node’s conditional betweenness. We
compare its efficacy with well-known attack strategies from literature over five real-world complex weighted networks. We use the
network weighted efficiency (WEFF) like a measure encompassing the weighted structure of the network, in addition to the
commonly used binary-topological measure, i.e., the largest connected cluster (LCC). We find that if the measure is WEFF, the
CondWBet strategy is the best to decrease WEFF in 3 out of 5 cases. Further, CondWBet is the most effective strategy to reduce
WEFF at the beginning of the removal process, whereas the Strength that removes nodes with the highest sum of the link weights
first shows the highest efficacy in the final phase of the removal process when the network is broken intomany small clusters.*ese
last outcomes would suggest that a better attacking in weighted networks strategy could be a combination of the CondWBet and
Strength strategies.

1. Introduction

*e study of real-world complex networks has attractedmuch
attention in recent decades because a large number of real
complex systems can be abstracted as networks [1, 2]. One of
the fundamental research topics is their robustness (resil-
ience), i.e., capacity of the network to hold its functioning
when a proportion of nodes are removed/blocked [3–12].*e
robustness is usually evaluated by the size of the largest
connected cluster (LCC) in the network and is a fundamental
problem of theoretical and applied network science with huge
efforts made in recent years [3, 7, 9, 12–17]. Previous studies
showed that most real-world networks are resilient to random
failure [4] but can disintegrate quickly when a small

proportion of most connected nodes (hubs) are attacked [13].
Furthermore, one of the remarkable observations is when the
proportion of removed nodes is high enough, a phase
transition occurs, and the probability for the existence of a
LCC in the network abruptly collapses (i.e., the network loses
its global nodes connectivity). Monte Carlo simulation is
usually used to run the attack by removing nodes according to
a structural criterion and tracing the network damage using
measures/indicators of its functioning. *e most common
criteria are node’s centrality such as degree centrality [3, 4, 5,
9], closeness centrality [9, 18], and betweenness centrality
[7, 14, 19]. Other node attack strategies are based on ei-
genvector [9, 20], the degree of the second neighbors [7], and
entropy [21].
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Overall findings showed that nodes attack strategies
based on betweenness centrality are highly efficient to dis-
mantle the LCC for most model and real-world networks
[7, 9, 10, 12]. *e attack based on the betweenness centrality
(Bet) ranks and removes nodes according to their role in
routing the shortest paths in the network; i.e., nodes with
higher betweenness centrality are the ones that pass the
major number of shortest paths among other nodes [7, 12].
*is finding indicated that the most important nodes are not
necessarily the most connected ones (i.e., hubs), but they can
be nodes with a medium or low connectivity level and high
betweenness centrality. However, it is found that the Bet
strategy becomes ineffective at the end of the removal
process when the network may be broken in many fully
connected subnetworks (clusters) [10]. *is is due to the
inherent nature of betweenness’s definition for a fully
connected network (e.g., a complete graph); all node’s be-
tweenness is zero. At this stage, the Bet strategy was unable
to break the fully connected LCC for a very long time, and
finally, it fails to completely break the network earlier than
other strategies, such as the degree-based strategy. To
overcome this limitation of the betweenness nodes attack
strategies, Nguyen et al. [22] introduced the “conditional
attack strategy” (CondBet) that removes nodes according to
their betweenness only if they belong to the LCC, demon-
strating how the new conditional strategy outperforms the
classic nodes attack strategies. However, most of the
aforementioned researches investigate binary complex
networks, where the interaction between two nodes is either
1 (have an edge) or 0 (no edge).

In reality, many real-world complex networks are nat-
urally weighted with some interaction value associated to the
links. For example, in a communication network, the link
weights may represent the frequency of e-mail exchanges
[23, 24]; in the Internet network link weights could be the
connection bandwidth magnitude [24, 25]; in a flights
transportation network, the link weights could be the total
passengers flowing between airports ([26]. In some cases,
real networks own very large link weight heterogeneity, with
link weights spanning over five order of magnitude, such as
the passengers flow between airports [8].*is implies that, to
perform more real and precise network description, it is
necessary to account the link weights heterogeneity.

Bellingeri and Cassi [27] analyzed the robustness of real-
world networks to different nodes attack strategies using
binary and weighted indicators of network functioning. *e
authors found that the inclusion of link weights in the an-
alyses changes the network response to nodes attack, out-
lining the importance to investigate the performance of nodes
attack strategies in weighted networks [27]. *is leads us to
the questions: (1) Which is the best nodes attack strategy to
harm real weighted networks? And (2) How does the in-
clusion of link weight changes the global efficacy of the nodes
attack betweenness-based strategies? (3) What metric should
we use to measure the robustness of a weighted network?

In this paper, we analyzed the robustness of a high-quality
dataset of real-world weighted networks from different fields
of science. We implemented six attack strategies based on
binary and weighted properties of the nodes. We adopted the

recalculated (adaptive) version of the nodes attack strategies,
in which the nodes rank is updated after each nodes removal
[12]. Here, we introduce for the first time the conditional
nodes weighted betweenness centrality (CondWBet) attack
strategy (the weighted version of the CondBet strategy) that
remove nodes of highest weighted betweenness centrality
inside the LCC. We test the efficacy of the different nodes
attack strategies by computing their impact on network ro-
bustness using both binary andweightedmeasures of network
functioning, i.e., the largest connected cluster (LCC) and the
weighted efficiency (WEFF).

We found that the conditional betweenness attack
strategy (CondBet) is the best to fragment the LCC in all
the networks confirming previous evidences [22]. *en,
when the goal is to decrease the network efficiency measure
(WEFF), in 3 out of 5 networks, the new weighted con-
ditional betweenness strategy (CondWBet) is the best
strategy. On the other hand, in two other networks, the
nodes strength attack strategies (Strength that removes
nodes with highest sum of link weights) and the binary
conditional betweenness strategy (CondBet) are the best
strategies. We propose that an efficient breakdown of a
weighted network, as measured by the WEFF, can be di-
vided into two phases: the first one is when the network is
still dense and the CondBet/CondWBet are more appro-
priate to dismantle the network as they can separate the
network into smaller clusters; the second one is when the
network is broken into many small clusters, and then the
Strength strategy is more efficient as it breaks the nodes
that reduce the most of the WEFF. *e introduction of the
new node attack strategy CondWBet and its efficacy
comparison with other strategies from literature is the
main contribution our work.

*e paper is organized as follows. In Section 2, we describe
the data and methods used in this work. Section 3 presents the
empirical findings: the efficacy of six intentional attacking
strategies over five real-world weighted networks. Finally,
Section 4 summarizes the results and concludes the study.

2. Method and Data

2.1. 2e Nodes Attack Strategies. We simulate nodes attacks
strategies belonging to two main groups, the binary and the
weighted-based strategies. In each group, we use node de-
gree, node betweenness centrality, and the conditional be-
tweenness centrality for nodes ranking. In case of nodes
ranking ties (e.g., nodes with equals rank), we randomly sort
one of them.

In total, we adopt six nodes attack strategies:

(i) Deg: degree-based attack strategy removes nodes
according to their degree; i.e., the degree of the node
is the number of links to it [3]. *is is the simplest
and the oldest type of node attack widely used to test
the networks robustness.

(ii) Bet: betweenness attack strategy removes the nodes
with the highest betweenness centrality first. *e
betweenness centrality of the node is a macroscale
network metric measuring the number of times a
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node appears in the shortest path between all pairs
of nodes in the network [7, 12, 28].

(iii) CondBet: conditional betweenness attack strategy is
the improved version of the Bet [22]. *e CondBet
removes the node with highest betweenness if it is in
the LCC; otherwise, it removes the node with
highest betweenness inside the LCC. In other words,
the CondBet removes nodes inside the LCC only,
maximizing the efficacy of the Bet strategy into
disrupting the LCC. It has been shown that the
CondBet performs better than Bet, and it owns
higher efficacy to fragment the LCC on a variety of
real-world networks.

(iv) Strength: strength attack strategy removes nodes in
decreasing rank of strength. *e strength of the
node is the sum of the link weights pointing to it
[27]. *e strength of the node is defined as the
“weighted degree” and for this reason, the Strength
can be viewed as the weighted counterpart of the
Deg strategy.

(v) WBet: Weighted Betweenness attack strategy
removes nodes according to their weighted be-
tweenness centrality. Like the binary version of the
nodes betweenness centrality, the weighted be-
tweenness centrality for each node is the number of
the shortest paths that pass through the nodes. *e
difference in this case is that the shortest paths
among nodes are weighted shortest path (WSP). To
computeWSP, it is necessary to distinguish whether
the link weights indicate “flow” or “cost” among
nodes [28]. Examples of “weight as a flows” are the
strength of friendship among individuals, the
number of common papers among authors, the
number of flights among airports, and the number
of synapses among neurons. Examples of “weight as
a cost” are the distance among cities, the resistance
in a circuit, and the time to information delivery
between computers. If they are “flow,” in WSP, each
link contributes to the shortest path according to
their inverse weight. *is is a standard procedure
making links of higher weight equivalent to “larger,
faster, and shorter route” between nodes. Since our
real-world networks have link weights as a flow, the
WSP between two nodes is the path minimizing the
sum of the inverse link weights between that pair of
nodes. Differently, if they are “cost,” the WSP be-
tween nodes is the path minimizing the sum of the
link weights to travel between them.

(vi) CondWBet: conditional weighted betweenness at-
tack strategy is introduced for the first time in this
work. It is the weighted version of the CondBet. *e
CondWBet strategy removes nodes inside the LCC

according to their recalculated weighted between-
ness centrality.

3. The Real-World Networks

We analyzed the efficacy of the nodes attack strategies on five
real-world weighted networks (Table 1). *e first two are
financial networks constructed from stock prices in the
SP500 index in the US market using a threshold method
[29]. We keep the value of the correlation coefficients that
are higher than the threshold as link weights. By adjusting
the threshold, we can obtain two networks with a similar
average degree and number of nodes but with different
topological structures. *e first network, (i) the SP500_1, is
built from Feb. 1993 to Feb. 1996, which is relatively uni-
formly connected and contains 315 nodes and 8706 links
(see Figure 1(a)).*e second, (ii) SP500_2, is built fromMay
1999 toMay 2002, which contains 371 nodes and 10636 links
[22]. *is network has several well-connected clusters
connecting to the central bulk through intermediated stocks
(see Figure 1(c)). *e other three networks are as follows:
(iii) the co-authorship undirected network of scientists
working on network theory and experiments (NetScience)
compiled by Newman [30]. Nodes represent authors, and
link weights represent the number of common papers. *e
network includes 1589 nodes and 2742 links (see
Figure 1(e)); (iv) the network of 6005 peoples who trade
Bitcoin on a platform called Bitcoin OTC (Bitcoin) [31, 29].
*e weight of the links represents the rate of members on
other members, which is in a scale of −10 (total distrust) to
+10 (total trust) with steps of 1. We simplified the network
by removing self-node links and converting it to an undi-
rected network. It results in a network of 6005 nodes and
21492 links (see Figure 1(g)); (v) the network of 500 busiest
airports in U.S. [33], where nodes represent airports, and the
weight of a link identifies the normalized passengers flowing
between two airports/nodes (see Figure 1(i)) [8].

A detailed summary of all networks is represented in
Table 1. Overall, our networks have a number of nodes from
315 to 6005. *e two financial networks, the SP500_1 and
SP500_2, are very dense with an average degree of more than
27, while the NetScience network is the sparsest one with an
average degree of 1.72. Also, the NetScience network is
composed of 396 subgraphs, and its LCC’s size is only 23.9%
of the total number of nodes N. Its clustering coefficient C
and modularity Q are also highest among networks. Other
networks are almost connected with the LCC’s size of more
than 99% of N. Finally, we compute the new metric <r> that
characterizes the influence of network link weights to the
ranking of nodes’ betweenness, where <r> is the ratio of pair
of nodes whose relative betweenness changes when weights
are included. Concretely,

<r> � 1

N · (N − 1)
∑
i≠j∈G
Ι beti > betj( )and wbeti <wbetj( )( )or beti < betj( )and wbeti >wbetj( )( ){ }, (1)
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where N is the total number of nodes of network G, beti
(wbeti) is the betweenness (weighted betwennness) of node i
and I{} is the indicator function. In other words, higher <r>
indicates that the inclusion of link weights changes the node
betweenness centrality ranking.

4. The Network Robustness Measures

We used two measures of network robustness along the
nodes attack process, e.g., the size of the largest connected
cluster (LCC) and the weighted efficiency (WEFF). *e LCC
is a simple indicator evaluating the binary-topological
connectivity of the network nodes.

*e network efficiency (WEFF) is introduced by [35]
with the goal to account the network information delivery
rate in the network. WEFF is the average of the sum of the
inverse of the weighted shortest paths (WSP) among nodes:

WEFF �
1

N · (N − 1)
∑
i≠j∈G

1

d(i, j)
, (2)

whereN is the total number of nodes of networkG and d(i, j)
is the length of the WSP between node i and node j.

*e WEFF is a measure that considers the difference in
link weights in the evaluation of the weighted network
functioning (integrity) and can be viewed like an indicator of
how efficiently the network nodes exchange information
[19, 35]. Recently, the network efficiency has been used to
evaluate and compare the efficacy of different nodes attack
strategy for weighted networks [27, 36, 37].

In addition, for each attack strategy, we compute a
single value defined as the network robustness (R) as done
in [37]. *e value of R corresponds to the area below the
curve of the system functioning indicators (LCC and
WEFF) against the fraction of nodes removed. We denote

Table 1: Structural statistics of the real-world networks: network type, nodes type, weight definition,N nodes’ number, L links’ number, <k>
average node degree, <s> average node strength, 〈w〉 average link weight, C global clustering coefficient, Q the modularity, LCC the size of
initial largest clustered components, LCC% the relative size of the LCC, Nb_comp the number of components, the new metric <r> for the
ratio of pair betwenneess ranking change, and the network Reference.

Name SP500_1 SP500_2 NetScience Bitcoin USAirport

Type Financial Financial Co-author Social Traffic
Nodes Stock Stock Scientist Member Airport
Weight Correlation coefficient Correlation coefficient Number of common papers Trusting rate Passengers flow
N 315 317 1589 6005 499
L 8706 10636 2742 21492 2980
<k> 27.6 28.6 1.72 3.57 5.97
<s> 10.349 18.817 1.497 6.538 0.0675
〈w〉 0.187 0.328 0.433 0.913 0.018
C 0.511 0.718 0.878 0.288 0.726
Q 0.253 0.373 0.954 0.498 0.283
LCC 315 369 379 5875 499
LCC% 100.0% 99.5% 23.9% 97.8% 100.0%
Nb 1 2 396 128 1
<r> 0.39300 0.43626 0.00752 0.14802 0.31965
Ref. [22] [22] [30, 34] [31, 32] [33]
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Figure 1: An example of weighted network composed of two small clusters. *e node A has higher strength (10) and lower weighted
betweenness (2/5) than node B; the node B presents lower strength (4), and higher weighted betweenness (3) than node (A) For this reason,
the CondWBet will remove the node B and the Strength will remove node (A) *e CondWBet is more efficient than Strength when the
robustness measure is the LCC, but it is worse than the Strength when measured by the WEFF.
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RLCC and RWEFF as the network robustness when using
LCC and WEFF functioning indicators, respectively.

5. Results

5.1. Efficacy of the Attack Strategies with LCC. We found that
the CondBet is the best strategy to minimize RLCC for all the
five networks (Figure 2 and Table 2). *is outcome confirms
the highest efficacy of this strategy into fragment the LCC
[22]. CondWBet is the second best strategy to fragment the
LCC outperforming theWBet counterpart in all the network
(Figure 2).We can see that, at the end of the removal process,
the nodes betweenness centrality strategies such as Bet and
WBet become inefficient, especially in the SP500_2 and
NetScience networks (Figure 3). *e Bet and WBet nodes
attack strategies get stuck in a fully connected LCC and are
not able to break it for a long fraction of removals. In fact,
both binary (Bet) and weighted (WBet) nodes betweenness
centrality inside a fully connected LCC are zero for all the
nodes (because all the paths inside this subnetwork are

shortest paths); thus, the Bet andWBet strategies are not able
to select nodes and fragment the LCC. In Figure 3, we
compare the LCC size after removing a fraction q of nodes by
the attack strategies outlining the conditional strategies
CondBet and CondWBet as the best to attack the LCC; this is
because they are able to select the most important nodes
during the entire removal process.

Moreover, we find that including link weights as done in
the Strength, WBet, and CondWBet worsens the efficacy of the
strategies with respect to their corresponding nonweighted
strategy counterpart (Deg, Bet, and CondBet, respectively)
(Figures 2 and 3). For example, in the SP500_2 network, the
removal of q� 4% nodes by CondBet strategy triggers the faster
network fragmentation with respect the same nodes removal
fraction performed by the CondWBet (Figure 4). In Figure 4,
we can see that the CondBet strategy is able to fragment the
network isolating a large cluster, thus producing a sharper LCC
decrease. *is would suggest that, for the networks analyzed
here, adding information about link weights may degenerate
the efficacy of the attack strategies to select important nodes
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Figure 2:*e single value network robustness (R) for LCC (a) andWEFF (b) for each network and strategy. To easily compare the efficacy of
the strategies, we normalized R by the max robustness value produced by a strategy for that network.
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Table 2: *e most efficient nodes attack strategy for the five real-world weighted networks.

Network Best strategy to reduce RLCC Best strategy to reduce RWEFF

SP500_1 CondBet CondWBet
SP500_2 CondBet CondBet
NetScience CondBet Strength
Bitcoin CondBet CondWBet
USAirport CondBet CondWBet
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Figure 3: Continued.
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supporting the simple binary-topological connectivity (mea-
sured by the LCC). In fact, the link weights structure may
induce the weighted attack strategies to remove nodes; hence, it
is important for network functioning, not playing a major role
in shaping the topological network connectivity. As we may
expect, this effect is more important for networks with high
<r> value (the SP500_1, SP500_2, and the USAirport).

6. Efficacy of the Attack Strategies with WEFF

When the goal is to minimize RWEFF, the CondWBet strategy
is the best strategy in 3 out of 5 networks (Figure 3, Table 2).
*e CondWBet is highly effective to reduce the network

efficiency (WEFF), because it is able to remove the nodes
passing the most of the weighted shortest paths in the
network (equation (2)). For this reason, when removing the
nodes with highest weighted betweenness, we trigger the
disruption of many weighted shortest paths in the network
with a quick WEFF decrease. Furthermore, CondWBet is
more efficient than the classic betweenness strategyWBet for
all networks. *is can be explained by the ability of Con-
dWBet to select nodes only inside the LCC at the end of the
removal process when the LCCmay be fully connected, thus
providing further efficacy with respect classic WBet.

For the SP500_2, the efficacy difference between Con-
dBet and CondWBet to reduce WEFF is very low, with
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Figure 3: Normalized largest connected cluster (LCC) and weighted efficiency (WEFF) as a function of the fraction of removed nodes (q)
under different attack strategies: (a, b) the SP500 threshold network from Feb. 1993 to Feb. 1996 (SP500_1), (c, d) the SP500 threshold
network from May 1999 to May 2002 (SP500_2), (e, f ) the co-authors network (NetScience), (g, h) the Bitcoin trust network, and (i, j) the
USAirport network.

(a) (b)

Figure 4: Topological structure of the SP500_2 network at q� 4% attacked by (a) the CondWBet strategy and (b) the CondBet strategy. *e
CondBet strategy is more effective to fragment the network isolating a large cluster, thus producing a sharper LCC decrease than the
weighted counterpart CondWBet.
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(a) (b)

Figure 5: Topological structure of the NetScience network at (a) the beginning and (b) following the q� 2% of node removal by Strength
strategy. *e thicker links in the left panel indicate the links of highest weight (strong links representing higher number of common papers)
occurring between most prolific scholars. *e removal of the 2% of the higher strength nodes produces both the network fragmentation and
the deletion of the strong links thus inducing an abrupt WEFF decrease.
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Figure 6: Continued.
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almost negligible advantage of the CondBet strategy (Figures 2
and 3). For this reason, we can consider CondBet and Con-
dWBet roughly equally performing, with negligible difference
due to some less important effect.

Differently, in the NetScience network, the Strength is
clearly the best strategy to decrease WEFF. *e highest
efficacy of the Strength strategy for the NetScience network
can be explained by the peculiar embedding of the highest
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Figure 6: *e weighted efficiency (WEFF) as a function of the fraction of removed nodes (q) under three most efficacy attack strategies:
Strength, CondBet, and CondWBet. (a) SP500_1, (b) SP500_2, (c) NetScience, (d) Bitcoin, and (e) US Airports. *e transition between
phases is marked by the red crosses. *e inserts show a magnification of the transition (except for NetScience where this transition is clear).

Table 3: Fraction of removed nodes q range corresponding to the transition when the Strength strategy becomes more efficient than other
strategies.

SP500_1 SP500_2 NetScience Bitcoin USAirport

Approximate range of the fraction of removed nodes q when the transition
happens

0.67 0.66 0.04 0.12 0.07

Overall highest efficacy strategy for reducing RWEFF CondWBet CondBet Strength CondWBet CondWBet

*e overall highest efficacy strategy with minimum RWEFF for each real-world networks is shown in the last row. See Figures 4–5 for more details.
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CondBet/CondWBet are the most efficacy strategies (left column); at the transition point when the network are broken in many small
clusters and the Strength strategy becomes the most efficacy for the remaining nodes removal process (right column).
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weight links (strong links). *e NetScience is the social
network of co-authorship, where nodes are scholars, and
links weights indicate the number of common papers. In this
network, the strong links occur between senior and most
prolific scholars leading different research groups; i.e., the
strong links act as bridges between different research
communities [36, 38]. *e nodes of higher strength are these

senior scholars publishing many papers and holding the
collaborations with different research groups. For this rea-
son, when removing nodes of higher strength in the
NetScience network, we remove strong links (playing a
major role into shaping WEFF) and at the same time, we
delete the bridge links between communities, producing
abrupt collapses of WEFF (Figure 5).
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Figure 8: Scattered plot of binary betweenness and degree for (a) SP500_1 network, (b) SP500_2 network, (c) NetScience network,
(d) Bitcoin network, and (e) Airport network.
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Last, we find an interesting “efficacy transition” between
CondBet/CondWBet and Strength strategies for all the net-
works; i.e., at the beginning of the removal process, CondBet/
CondWBet are the best strategies, whereas, at the end of the
removal process, Strength strategy shows the highest efficacy
into reducing WEFF (Figure 6). *is may be explained by the
fact that when the network is broken apart in many small
clusters, the nodes betweenness-based strategies would become
ineffective to produce a significant further network fragmen-
tation. For this reason, at this stage by selecting the highest

strength nodes, we can intercept the remaining strong links
that play the major contribution in shaping the network ef-
ficiency (WEFF). For example, USAirport network is mostly
broken and contains a large number of small clusters as soon as
q� 7% (Figure 6). At this stage, the betweenness-based strat-
egies CondBet/CondWBet lose their global ability to intercept
nodes bridge, and the Strength strategy that removes nodes
with highest link weights becomes themost efficacy strategy for
reducing WEFF. *us, before the transition, the CondBet/
CondWBet are the most efficacy strategies and after this
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Figure 9: (a) Binary betweenness vs. degree of the two financial networks, the SP500_1 and SP500_2 where in the SP500_2 we see a group of
high betweenness-medium degree nodes of the SP500_1 (highlighted by the rectangle). (b)*ose nodes are colored red in the corresponding
topological graph and appear to be bridge points of the network.
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Figure 10:*eNetScience network attacked by the Bet strategy at (a) q� 7%when the LCC is a large complete graph of 16 nodes and the Bet
strategy will ignore it until at (b) q� 91% when the remaining network only contain individual nodes or complete graph.
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transition, when the network is broken into many small
clusters, the Strength strategy is the best one for the remaining
removal process. *is situation can be better illustrated by a
sample network as shown in Figure 1.We have a small network
of 9 nodes, with node A being less connected than node B, but
its links have much higher weight than those of node B. If
attacked by the CondBet/CondWBet, node B will be removed;
however, the remainingWEFF is still higher than that if nodeA
is removed, because of higher strength of the node A. In such
case, the most efficient strategy must be the Strength strategy
that removes node A of higher strength in the network.

As a consequence, we can infer a general result for which,
when the network is broken enough, the Strength strategy
may be one of the best strategies to decrease the network
efficiency (WEFF). *e transition point values are sum-
marized in Table 3 and the topological images of each
network at this point are shown in Figure 7. Further ob-
servations that are specific to each real-world network are
presented in the Appendix.

7. Conclusion

In this work, we studied the efficacy of different nodes
attack strategies on real-world complex networks adopting
different measures of the network functioning, both ac-
counting the binary-topological connectedness and the link
weights structure of the network. We used both classic
topological-binary attacks and introduced new attacks
based on weighted properties of the nodes and found that
the recently introduced conditional attack strategy (Con-
dBet) still outperforms the other strategies to break the
LCC in all the 5 networks, confirming the highest effec-
tiveness of this strategy [22]. Furthermore, the inclusion of
link weighs into nodes attack strategy results in a lower
efficacy when the goal is to reduce the LCC. *is would
suggest that adding information about link weights may
degenerate the efficacy of the attack strategies to select
important nodes supporting the simple binary-topological
connectivity (LCC).

Secondly, whenmeasuring the network functioning with
the network efficiency WEFF, we find that, in 3 out of 5
networks, the newly introduced conditional weighted be-
tweenness strategy CondWBet outperforms all other strat-
egies, showing that, with the aim to select the most
important nodes in real networks, it is necessary to consider
the link weights. Further analysis shows that if the target is to
decrease WEFF, the node attack process can be divided into
two phases: in the first phase, when the network is well
connected, the CondBet/CondWBet are the most efficient. If
the correlation between the links’ weight and the node
betweenness is low (i.e., high <r>), and the network mod-
ularity is high, the inclusion of weight may avoid the removal
of important bridge node by CondWBet, decreasing the
efficacy of this strategy; in the second phase, the Strength
shows the highest efficacy because when the network is
broken into many small clusters, the Strength strategy may
break the most important cluster, thus being the best one to
decrease the network efficiency (WEFF). *e best strategy
would be therefore a result of the balance between these two
node attack strategies.

*ese last outcome would suggest that a better attacking
strategy for real-world weighted networks could be a
combination of CondBet/CondWbet and Strength. How-
ever, an analytic model is necessary to determine the
transition time and construct the combined strategy. Our
work may help best design the attack strategy, or inversely
design amore robust weighted network structure in practice.

Appendix

In this Appendix, we discuss additional observations that are
specific to the real-world networks, as a complement to the
Result section.

A. Financial Networks (SP500_1 and SP500_2)

All strategies seem relatively inefficacy to break the LCC
network SP500_1 in relative to other networks. *e size of
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Figure 11: Scattered plot of weighted betweenness and binary betweenness, Strength and degree for (a) two financial networks (with shifted
scale for the SP500_2, (b) NetScience network, (c) Bitcoin network, and (d) USAirport network.
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the LCC only decreases linearly with the fraction of nodes
removed q; i.e., the strategies are not able to break apart the
networks and the LCCs linearly decrease as the effect of the
node removal itself. Only until q� 35% then the conditional
betweenness strategies (CondBet and CondWBet) can have
some efficacy producing the disconnection of network nodes
from the LCC (Figure 5(b)), and now they are able to lay
below the linear decrease of the LCC (Figure 3(a)). Only
until q� 63% then the conditional strategies can reduce the
LCC to 10% of its initial size (Figure 1(a)). *us, in the
financial network SP500_1, the CondBet and CondWBet are
clearly the most efficient than all other strategies with sig-
nificantly better performance to break the LCC than the
related Bet and WBet strategies. *e difficulty of the nodes
attack strategies into breaking apart the LCC can be due to
the fact that the network is highly and relatively uniformly
connected around the main bulk (Figure 7(a)).

In SP500_2, all strategies perform better than those in
SP500_1, except for the degree-based strategies (Figure 7(b)).
*e reason can be seen from the topological image of this
network as it shows higher communities effect (in Figure 7(c)).
*is structure has twofold consequences: the betweenness-
based strategies are efficient because they remove the pivotal
nodes connecting different communities first, thus breaking
the network apart and reducing the LCC quickly. Differently,
the degree-based strategies (Deg and Strength) are inefficient
because high degree nodes are usually inside a dense com-
munity, and their removal does not trigger the fragmentation
of the network in different clusters. *is can be seen from the
scattered plot of the initial betweenness vs degree of this
network in Figure 8(b). We found that, in the SP500_2, there
are groups of nodes with medium degree but very high be-
tweenness. *ose nodes playing the role of connecting the
network are quickly removed by the betweenness-based
strategy, but they are not selected in principle by the degree-
based strategies. Consequently, these “higher betweenness-
medium degree nodes” playing a major role in connecting the
network are secondarily removed during the degree-based
attack process producing a slower LCC decrease. We show the
higher betweenness-medium degree nodes owing a pivotal role
in connecting the network in Figures 9(a) and 9(b).We found a
small difference in the efficacy of the nodes attack strategies
into decreasing WEFF in the SP500_1 financial network
(Figure 3(b)). Nonetheless, the CondWBet is the most efficient
to decreaseWEFF until q� 67%, and then the Strength is more
efficient (Figure 6(a)). A similar observation was found with
SP500_2 (at q� 67% as shown in Table 3).

B. NetScience Network

We found all the attack strategies very efficient in reducing
the LCC. *is higher efficacy of the nodes attack strategies
can be explained by the fact that the NetScience is the least
connected network among the four studying networks. It has
been shown that the highest linkage density level positively
affects the robustness of the networks connectivity; i.e.,
networks with a higher number of link per node experienced
a slower decrease of the LCC when subjected to nodes re-
moval [3]. *e NetScience network owns an average degree

<k>�1.72 equal to one-fifteen of the average degree of the
two financial networks (Table 1), and the removal of a small
fraction of nodes is able to trigger the network fragmentation
with faster LCC decrease.

Again, we found that the conditional strategies out-
perform all the other strategies for reducing the LCC. Es-
pecially, when the Bet and WBet become inactive for a very
long time, as soon as q� 7% until q� 91%, the Bet and WBet
strategies are able to break the largest LCC. *is is an in-
teresting situation because at q� 7%, a complete (fully
connected) graph whose size is 16 becomes the LCC
(Figure 10(a)). As the remaining network still has 1477
nodes, the Bet and WBet will completely ignore the LCC
until all the clusters that are not fully connected are removed
(Figure 10(b)). *e situation is different for the Deg and
Strength strategies: at q� 1%, the same 16-node cluster al-
ready contains nodes with the highest degree and is broken
by the Deg and Strength, although it is not the LCC. *is is
why the Deg and Strength strategies are ineffective at the
early stage as shown in Figure 3(e).

For the weighted efficiency measure WEFF, we found
that, for this Netscience network, the Strength strategy is the
most efficient as soon as q� 4% (Figure 6(c)). In conse-
quence, the Strength strategy is the most efficient and sig-
nificantly better than the second best CondBet one overally.

C. Bitcoin Network

Similar to the NetScience network, all strategies performwell
into decreasing the LCC (Figure 3(g)). It is also because the
Bitcoin network is sparse (low number of links per node)
with an average degree <k>�3.58. We also found the in-
efficacy of the Bet and WBet strategies when the network is
broken enough (to a lesser extent than the NetScience). At
this later stage of the removal process, the Bet and WBet are
not able to intercept nodes into the LCC in the network
presenting a fully connected LCC and many clusters, and as
a consequence, the conditional strategy CondBet that always
removes nodes inside the LCC is the most efficient one to
make it vanish. For the weighted efficiency measure WEFF,
similar to the Netscience, the second phase starts as soon as
q� 12% (Figure 6(d)). However, because of the large gain in
efficacy in the first phase by the CondWBet strategy, the
overall best strategy is still the CondWBet strategy.

D. USAirport Network

All strategies perform well into decreasing the LCC; in
particular, the betweenness-based strategy Bet and CondBet
strategies outperform the others significantly (Figures 2(b)
and 3(i)).

Again, the CondBet strategy can break the complete
graph at the end of the removal process, resulting in a
higher efficacy than the Bet strategy. We found that, for this
network, the inclusion of weights into strategies worsens
the efficacy in reducing the LCC for all the three strategies:
Strength, WBet, and CondWBet (Figures 2(a) and 3(i)).
*is can be seen from the scattered plot of the binary
betweenness vs weighted betweenness of this network in
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Figure 11(d) where one finds that their correlation is the
worst among networks. *is may come from the fact that
high binary betweenness node/airport may represent a
geographically important transit point. Meanwhile, when
counting the passenger flow for weighted betweenness,
other airports, although less well located, can still be higher
ranked in terms of passenger transit. For the weighted
efficiency measureWEFF, both degree-based strategies Deg
and Strength improve significantly. *is suggests that high
weight nodes may have important contribution in the
efficiency measure of this network. However, CondWBet is
still slightly better than the Strength for the whole removal
process for reducing WEFF. As shown in Figure 7(i), the
USAirport network has a high degree of communities and
therefore, CondWBet works efficiently. In other words, the
US 500 airports network would be most affected if the top
7% (35 airports) of the most transit point is closed. *en,
from this point, the whole network is almost broken
(Figure 7(j)), and the Strength strategy based on the total
number of passenger flow will become the most efficient
again.

Abbreviations

CondWBet: *e conditional weighted betweenness node
attack strategy

CondBet: *e conditional betweenness node attack
strategy

WEFF: *e network weighted efficiency
LCC: *e network largest connected cluster
Deg: *e degree-based node attack strategy
Bet: *e betweenness node attack strategy
Strength: *e strength node attack strategy
WBet: *e weighted betweenness node attack strategy
SP500_1: *e US daily stock price network (built from

data between Feb. 1993 and Feb. 1996)
SP500_2: *e US daily stock price network (built from

May 1999 to May 2002)
NetScience: *e co-authorship undirected network of

scientists working on network theory and
experiments

Bitcoin: *e network of 6005 nodes-peoples who trade
using Bitcoin on a platform called Bitcoin OTC

USAirport: *e network of 500 busiest airports in USA
N: *e network nodes’ number
L: *e network links’ number
<k>: *e network’s average node degree
<s>: *e network’s average node strength
〈w〉: *e network’s average link weight
R: *e network robustness
RLCC: *e network robustness measured by the LCC
RWEFF: *e network robustness measured by the

WEFF
WSP: Weighted shortest path.

Data Availability
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airports network dataset is downloaded from Tore Opsahl’s
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[26] M. Barthélemy, A. Barrat, R. Pastor-Satorras, and
A. Vespignani, “Characterization and modeling of weighted
networks,” Physica A: Statistical Mechanics and Its Applica-
tions, vol. 346, no. 1-2, pp. 34–43, 2005.

[27] M. Bellingeri and D. Cassi, “Robustness of weighted net-
works,” Physica A: Statistical Mechanics and its Applications,
vol. 489, pp. 47–55, 2018.

[28] U. Brandes, “A faster algorithm for betweenness centrality∗,”
2e Journal of Mathematical Sociology, vol. 25, no. 2,
pp. 163–177, 2001.

[29] V. Boginski, S. Butenko, and P. M. Pardalos, “Statistical
analysis of financial networks,” Computational Statistics &
Data Analysis, vol. 48, no. 2, pp. 431–443, 2005.

[30] M. E. J. Newman, “*e structure and function of complex
networks,” SIAM Review, vol. 45, pp. 167–256, 2003.

[31] S. Kumar, H. Bryan, D. Makhija, M. Kumar, C. Faloutsos, and
V. S. Subrahmanian, “REV2: fraudulent user prediction in
rating platforms srijan,” in Proceedings of the Eleventh ACM
International Conference on Web Search and Data Min-
ing–WSDM ’18, Los Angeles, CA, USA, 2018.

[32] S. Kumar, F. Spezzano, V. S. Subrahmanian, and C. Faloutsos,
“Edge weight prediction in weighted signed networks,” in
Proceedings of the IEEE International Conference on Data
Mining, ICDM, Barcelona, Spain, December 2017.

[33] V. Colizza, R. Pastor-Satorras, and A. Vespignani, “Reaction-
diffusion processes and metapopulation models in hetero-
geneous networks,” Nature Physics, vol. 3, no. 4, pp. 276–282,
2007.

[34] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and
D. Hwang, “Complex networks, structure and dynamics,”
Physics Reports, vol. 424, pp. 175–308, 2006.

[35] V. Latora and M. Marchiori, “Efficient behavior of small-
world networks,” Physical Review Letters, vol. 87, no. 19,
Article ID 198701, 2001.

[36] M. Bellingeri, D. Bevacqua, F. Scotognella, R. Alfieri, and
D. cassi, “A comparative analysis of link removal strategies in
real complex weighted networks,” Scientific Reports, vol. 10,
no. 1, p. 3911, 2020.

[37] M. Bellingeri, D. Bevacqua, F. Scotognella, and D. Cassi, “*e
heterogeneity in link weights may decrease the robustness of
real-world complex weighted networks,” Scientific Reports,
vol. 9, no. 1, Article ID 10692, 2019.

[38] R. K. Pan and J. Saramäki, “*e strength of strong ties in
scientific collaboration networks,” Europhysics Letters, vol. 97,
p. 18007, 2012.

Complexity 17


