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Abstract-In this paper constructions are given for combining two, 
three, or four codes to obtain new codes. The AndryanovSaskovets 
construction is generalized. It is shown that the Preparata double-error- 
correcting codes may be extended by about (block length)“’ symbols, 
of which only one is a check symbol, and that e-error-correcting BCH 
codes may sometimes be extended by (block length)“’ symbols, of which 
only one is a check symbol. Several new families of linear and nonlinear 
double-error-correcting codes are obtained. Finally, an infinite family of 
linear codes is given with d/n = 3, the 8rst three being the (24,2”,8) 
Golay code, a (48,215,16) code, and a (96,218,32) code. Most of the 
codes given have more codewords than any comparable code previously 
known to us. 

Dejinitions 

N (n,M,d) code %’ is a set of M binary vectors of 

A length n, any two of which differ in at least d places. 
The redundancy of this code is r = n - log,M and its 
rate is (log,M)/n. 

A coset of %7 is an arbitrary translation a + %? of the 
codewords of %? (where a is any binary vector of length n). 
If % is linear, then two cosets of % are either equal or dis- 
joint, but this need not be true if %’ is nonlinear. 

Two codes are said to be equivalent if they differ only 
by a permutation of the coordinates (Peterson [14, p. 331). 

Summary 

Section I describes a construction for combining three 
codes to form a fourth. When applied to BCH codes it 
produces, among others, codes with the same parameters 
as those given by the Andryanov-Saskovets construction 
(Berlekamp [2, p. 3331). When applied to cyclic and 
Preparata codes, it yields several good new codes. Encoding 
and decoding methods are given for the new codes. 

Section II describes a construction for combining four 
codes to form a fifth. When applied to e-error-correcting 
BCH codes, in the most favorable cases the codewords 
may be extended by about n’le symbols, of which only 
one is a check symbol. Double-error-correcting codes are 
studied in detail in both Sections II and III, and several 
new infinite families, both linear and nonlinear, are obtained. 
The results are summarized in Table II, which gives for 
6 I r < 35 the length of the longest distance-5 code with 
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redundancy r known to us. Again encoding and decoding 
methods are discussed. 

Section III describes three constructions due to Goethals 
for combining a code and its dual. Applications are given 
to double- and triple-error-correcting BCH codes, to cyclic 
codes, and to quadratic-residue codes. It is shown in effect 
that double-error-correcting BCH codes may be extended 

by about 24; symbols, of which only two are check 
symbols. 

Finally in Section IV a construction for combining two 
different first-order Reed-Muller codes is used to obtain 
an infinite family of linear codes with d/n = 3, the first 
three being the (24,2r2,8) Golay code, a (48,2r5,16) code, 
and a (96,2l*,32) code. 

Most of the codes given as examples have more code- 
words than any comparable code previously known to us. 
However, apart from the Preparata codes, none of the 
codes mentioned is known to be optimal. (For extensive 
tables of upper and lower bounds on the sizes of codes 
see [lo], [12], and [19].) 

I. CONSTRUCTION X: COMBINING THREE CODES 

The Construction 

Suppose we are given an (n,,M,,d,) code %‘, and an 
(n,,M, = bM,,d,) code q2, with the property that q2 is 
the union of b disjoint cosets of %?I, 

w2 = (Xl + U,) u (x2 + %?I) u *** u (Xb + %I) 

for some set of vectors S = {x1,x2; * *,x,}. Let %s = 

{YlTY2>’ * * ,yb} be any (n,,b,A) code. 
Let rc be an arbitrary permutation of { 1,2, * * * ,b}, so 

that xi -+ ynci) defines a one-one mapping from S onto 
%‘s. Let (u,v) denote the vector formed by concatenating 
vectors u,v, and if S is a set of vectors, let (S,v) denote the 
set of all (u,v), 24 E S. 

The new code %7:4 is then defined to be 

(Xl + cloy, ” (x2 + %Yn(2)) ” * * * u (Xb + %,Y,(b,). 

Simply stated, g2 is divided into cosets of V, and a different 
codeword of %, is attached to each coset. See Fig. 1. 

The parameters of the new code are given by the following 
theorem. 

Theorem I: GZ4 is an 

(nl + n3,M2 = bM,,d4 = min {d,,d, + A}) 

code. 
Proof: Let X = (x,y) and X’ = (x’,y’) be distinct 

codewords of wd. If x and x’ belong to the same coset of 
%,, then y = y’ and dist(X,X’) = dist(x,x’) 2 d,. If x 
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Fig. 1. Construction X. 

and x’ belong to different cosets, then dist(x,x’) 2 d,, 

dist(u,$) 2 A, and dist(X,X’) 2 dz + A. Q.E.D. 

A Simple Example 

Let %i be the (4,2,4) repetition code {0000,11 ll} and 
let %?Z be the (4,8,2) even-weight code {OOOO,l 1 1 1,001 1,l 100, 
0101,1010,1001,0110}; 

592 = w1 u (0011 + %Z1) u (0101 + U,) u (1001 + %I). 

Then b = 4, so let %3 be the (4,3,2) code {000,011,101,110}. 
Attaching ws to the tails of the cosets we obtain 
w, = {0000000,1111000,0011011,1100011,0101101,1010101, 
1001110,01101 lo}, a (7,8,4) linear code. 

Linear Codes 

As in the last example, if %‘r, %ZZr and %a are all linear, 
we can always choose 71 so as to make %?a a linear code. 
(For then %‘JZ1 and %Zs are both Abelian groups of type 

(1’1; - -3 l), and so there exists an isomorphism n between 
them. See, for example, Carmichael [4, pp. 98-1001.) 

We give three principal applications of Construction 
X, using BCH, cyclic, and Preparata codes. 

Example i): Using BCH Codes 

When d, > d2, the BCH code of designed distance d, 
is contained in that of designed distance d,, so the construc- 
tion may be applied to any pair of BCH codes. 

If d, 2 d2 + 2 and b = 2k, then %‘a may for example 
be taken to be the (k + 1,2k,2) even-weight code. In this 
case we are combining (nl,Ml,dl 2 d, + 2) and (n1,2kM1, 
dJ BCH codes to obtain an (nl + k + 1,2kM,,dz + 2) 
code. Thus we can construct linear codes having the same 
parameters as any of the codes given by the Andryanov- 
Saskovets construction (see Berlekamp [2, p. 3331). 
Examples follow : 

On the other hand, if d, is greater than d2 + 2, good 
codes may sometimes be obtained by choosing %‘3 to be 
an (n,,b,A = d, - d,) code, where n3 is as small as possible. 
The first and fourth of the preceding examples may be 
used to illustrate this: 

Ql Q2 

(31,26,15) (31,211,11) 
(63,2l”,27) (63,216,23) 

Two other examples are 

Q3 v4 

(10~25~4) (41,211,15) 
(11,26,4) (74,216,27). 

(127,2’l,19) (127,2’*,15) UJ;,;] (139,2’*,19) 
(127,2-‘,27) (127,257,23) , , (139,25’,27). 

Example ii): Using Cyclic Codes 

Chen [S], [6] h as f ound the minimum distance of a 
large number of binary cyclic codes of length I 65. Using 
these data and Construction X, the codes shown in Table I 
are obtained. Here ‘+?i and %‘Z are (n1,2kl,dl) and (n,, 

2k2,d,) codes, respectively, the new code %h is an (n4, 
2kz,d4) code, and %?a can be deduced from the others. The 
table is arranged in order of increasing d4. 

Example iii): Using the Preparata Codes 

We show that certain Hamming codes are expressible as 
a union of disjoint cosets of a Preparata code. This fact is 
then combined with Construction X to give an infinite 
family of nonlinear double-error-correcting codes, and 
will also be used in Section II to construct other families 
of codes. 

For every even integer m 2 4, Preparata [ 171 has 
constructed an optimal nonlinear 

(2” - 1,22m-Zm,5) 

code X,. The codewords are. specified in terms of poly- 
nomials in the algebra &‘,,,-, of polynomials modulo 
X2 m-‘- ’ + 1, Let c( be a primitive element of GF(2m- ‘) 

and let M(‘)(x) be the minimal polynomial of rxi. 
We first define th.ree fixed polynomials. They are 

u(x) = (x2”-- + 1)/(x + 1) 

and 

4(x) = (X--l + 1)/M”‘(X) 

f(x) = x’dJ(x)9 

where t is chosen so thatf(x)2 = S(x) in d,- i. 
Then the codewords of X,,, are all vectors of the form 

(c(x) + qW&) + dW(x) + (41) + iM-4 + 4% 

where c(x), q(x), i, and s(x) are variables: c(x) is any 
codeword in the Hamming code X,,,- I of length 2”-l - 1; 
q(x) = axjfora = Oor 1 andj = Oor 1 or .** or2m-1 - 
2; i is 0 or 1; and s(x) is any codeword in the d 2 6 BCH 
code a,,,-1 generated by (x + l)M(l)(~)M(~)(x). For the 
proof that X, has minimum distance 5, see Preparata [ 171. 

We shall show that the Hamming code #,,, is a union 
of disjoint cosets of the Preparata code X,. In fact since 
the linear Vasil’ev code is equivalent to the Hamming code 
(see what follows), we shall show that the linear Vasil’ev 
code is a union of disjoint cosets of X,. (This generalizes a 
remark of Preparata [ 161, that Xx4 is a subcode of a linear 
Vasil’ev code.) 

Vasil’ev [22] obtained a class of perfect (2”’ - 1,22m-m-1, 
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TABLE I 
NEW (n4, 2k2, d4) CODES FROM CONSTRUCTION X 

g(x) = yi + s(x), where s(x) E g,,- r. Therefore 

0 = (c(x) + 4c4,444 + qw-(4 n kl dl TYP= rl d2 Const. n' M d' 

63 46 + Ci + c(l>)u(x> + s(x)) + (“,o,YiJ 7 cyclic 17 22 Yl 41 ~~5 7 

31 10 12 BCH 21 5 Y2 25 320 9 = w + (“,o,Yi), 
48 24 12 QR 24 12 Y2 35 3.~~~ g 

Taking 
63 36 

where w E X,, and this representation is unique. 
11 BCH 27 14 Y2 ‘r9 7.224 9 

Q.E.D. 
48 24 

xi = (O,O,y,) proves the theorem. 
12 QR 24 12 Yl 35 $3 11 

63 28 15 cyclic 35 8 Y2 55 224 13 New Codes ^^ 
90 45 18 QR 45 18 Y2 71 g.2"Y 15 
63 18 21 BCH 45 8 Y3 55 29.21117 By 2, may apply %?, Theorem we Construction X with 
63 18 42 6 56 216 17 equal Preparata X,, V, equal Hamming to the code to the 21 cyclic Yl 

45 18 code and to the code. 90 QR 45 18 Yl 71 228 17 J?~, %?X equal (m,2”-l,2) even-weight 
63 18 We obtain an infinite of nonlinear 21 BCH 45 8 Y2 55 214 19 family 

63 16 23 BCH 47 6 Y3 57 215 19 (2” + m - 1,22m-“-1,5), m = 4,6,8, * * . 
104 52 20 QR 52 20 

63 lb 23 BCH 47 6 

63 16 23 F!CH 47 6 

Yl 83 233 lg 

Y2 57 6.211 21 
codes. When m = 4, this is a (19,2r1,5) code. For m 2 6, 

Yl 57 211 23 
Theorem 2 will be used in Section II to construct codes 
with more information symbols than this family. 

3) codes, both linear and nonlinear, by the following con- 
As a last example we consider the following. 

struction. Let /z be any mapping that assigns the values Example iv): Adding an Overall Parity Check 
0 and 1 to the codewords of X?Om-1 and satisfies 1[0] = 0. 
Then the Vasil’ev code Y,’ has as codewords all vectors 

Suppose g is an (n,2k,d) linear code, with d odd. The 
set of all codewords of even weight forms an (r~,2~-l,d,,,,) 

(P(X),P(l) + wG)l~Pw + WN> subcode gf, with d even 2 d + 1. By applying Construction 

where p(x) and b(x) are variables : p(x) E d,- r and 
X with %?‘r = w’, g2 = %?, and V, = {O,l}, we obtain an 

b(x) E z&‘,- r. In particular, if A is the mapping J.[b(x)] = 
(n + 1,2k,d + 1) code; we have just added an overall 

6(l), the resulting code is linear and is denoted simply by 
parity check to V (Berlekamp [2, p. 3331). 

“Y,,,. Since the Hamming code Z,,, is the unique perfect Remark 
linear code with minimum distance 3, X,,, and ^Y-, are 
equivalent. 

Theorem 2: The linear Vasil’ev code Y,,,, or equivalently 
the Hamming code X0,, is a union of disjoint cosets of the 
Preparata code X,, where m is any even integer 2 4. 

Proof: We shall establish the theorem by constructing 

Construction X works even if the cosets of %?r in %, 
are not of equal size. A trivial application is the addition 
of an overall parity check to a nonlinear code in which 
more than half of the codewords have odd weight (e.g., 
the (8,20,3) code described in [20]). 

vectors x0 = 0,x1, * * * ,xzR1- i - 1 in Ym such that any Encoding and Decoding for Construction X 
v E Y,” has a unique representation of the form v = xi + w, 
where w E X’,. a) Encoding: Let V, be obtained from codes %?1,‘e2,‘&j 

Let u E Y,, so 
by Construction X. For simplicity we assume that all the 
codes are linear and let M, = 2k1, M, = 2k2, M, = 

u = (P(4P(l) + ~O),Pc4 + W). 2k2-k1. Then %, contains 2k2 codewords. We assume that 

Since ~?~-r is a perfect single-error-correcting code, p(x) 
encoders and decoders for %‘r,%,,GZ3 are available and 

has a unique representation as p(x) = c(x) + q(x), where 
correspond to generator matrices 

c(x)Ez&,,-randq(x)=Oorxjforj=Oorlor**.or 
2’“-r - 2. Let i = c(1) + q(1) + b(1). Then G1 = mk,,.., 

v = (c(x) + s(x),i&> + 4(x) + W) I-- -.-.----I 

= (44 + dx),Gw + 4(Mx) 

+ (q(l) + WMX) + W) 

say, where 9(x) = q(x)(l +f(x)) + b(x) + (q(1) + b(l))u(x). 
By Preparata [17, lemma 41, q(x)(l +f(x)) E X,,,-r. 
Since ,f( 1) = 0, u(1) = 1, it follows that 3(l) = 0. There- 
fore j(x) E X”,‘- r, the even-weight subcode of srn- r. 

Since am-r is a subcode of Z,‘-.1, we may choose a 
set of vectors yO,y,; . . ,~~,,-~-r ~2L-r so that any 
3(x) E %‘“,‘-r has a unique representation of the form 

1 I,, / 

for %‘r, %Z2, and g3, respectively. Here/l, denotes the k x k 
identity matrix and A,,A,,A, are nonzero matrices. We 
use Encoder, to denote the e&oder for %‘r, and so forth. 
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Let I = (iI&; * * ,ikJ be the string of information 
symbols to be encoded by ‘Z4. The encoding is accomplished 
by feeding I into Encoder2, producing an output u (say) 
and feeding (ik2- kI+ 1, * * .,ikJ into Encoder,, producing an 
output v (say). Then (u,u) is the corresponding codeword 
of %‘:4. This corresponds to using the generator matrix 

G=Tli.F 
4 

1 

A2 Ikz-k, o A3 Ikrk, 

kzx(nr+nd 

for fZb. 

b) Decoding: This is a modification of the decoding 
algorithm for product codes given in [ 181. The minimum 
distance of %b is d4 = min {d,,d, + d3}. We suppose 
that e I [-)(d4 - l)] errors have occurred. 

Let R = (r1,r2; * * ,r,,+,,) be received. We feed (rl; * .,r,,) 

into Decoder, and (r,,+ r,. * *,r,,,) into Decoder,. For 
Decoderi, where i = 2 or 3, let e, be the number of errors 
found and let pi = di - 2ei be the associated “reliability” 
(see lemma following). If both Decoder, and Decoder, 
have made a decoding error, then at least 

M4 - 01 + IX& - 111 + 2 > L-W, - 111 
errors have occurred, which contradicts our hypothesis. 
So at least one of the decoders has made a correct decision. 
Because of the following lemma, we decide that the correct 
decoder is that with the largest pi. 

Lemma: If Decoder, is correct and Decoder, is incorrect, 
then p2 2 p3, and vice versa. 

Proof: Let ai be the actual number of errors in 
Decoderi. Since Decoder, is in error, by [18, Lemma 11, 
a3 2 d3 - e3. By hypothesis a2 + a3 I $(d, + d3 - 1). 
Then p2 = d2 - 2e2 = dz - 2a,, ps < 2a, - d3, and 

P2 - P3 2 0. Q.E.D. 

If Decoder, was correct, we now know the information 
symbols (ik2-kl + 1, * * * ,ik2). By feeding these into Encoder, 
and substracting the result from the output of Decoder,, 
the remaining information symbols are recovered correctly. 
A similar discussion applies if Decoder, was correct. 

Thus we may decode up to [+(d4 - l)] errors in gb. 

II. CONSTRUCTION X4. COMBINING FOUR CODES 

The Construction 

Suppose we are given four codes: an (n,,M,,d,) code 
VI, an (n,,M, = bM,,d,) code V2, an (n,,M,,d,) code %‘,, 
and an (n3,M4 = bM3,d4) code wh, with the properties 
that i) %Z2 is a union of b disjoint cosets of %Zr, 

%2 = (x1 + %I> u (x2 + %I) u * * * u (Xb + %I>, 

and ii) ‘?Za is a union of b disjoint cosets of g3, 

q4 = (Yl + %3) ” (Y2 + W3) ” * * * ” (Yb + %3) 

for some sets of vectors S = {x1,x2; * *,x,} and T = 

{YlTY,,* * .,Yb)- 
As in Construction X, let rc be an arbitrary permutation 

Fig. 2. Construction X4. 

of {1,2; * * ,b}, SO that Xi + Yn(i) defines a one-one mapping 
from S onto T. 

If S, and S2 are arbitrary sets of vectors, we define 
S, x S, to be the set of all possible concatenations (s1,s2), 
where s1 E S,, s2 E S,. 

Finally, the new code ‘+Z5 is defined to be 

Simply stated, the vectors of the ith coset of %?, are con- 
catenated in every possible way with the vectors of the 
rr(i)th coset of w3. See Fig. 2. 

The parameters of the new code are given by the follow- 
ing theorem, whose proof is immediate. 

Theorem 4: W5 is an 

h + n3,M2M3,4 = min W,d2 + d4>) 

code. 

Linear Codes 

As in Construction X, if %?r-JiZh are all linear, we can 
always choose rc so as to make w5 a linear code. 

We will apply Construction X4 to double-error-correcting 
codes and then to e-error-correcting BCH codes. First we 
define some nonprimitive BCH codes. 

Nonprimitive BCH Codes of Length 2” + 1 

As pointed out by several authors [8], [2, pp. 139-1401, 
[13], [l l] nonprimitive BCH codes sometimes contain 
more information symbols with the same redundancy as 
primitive BCH codes. 

For later use we define the following codes of length 
n = 2”’ + 1. Let u be a primitive nth root of unity, and 
let M”‘(x) be the minimal polynomial of cli. Let ?&m,A) 
be the nonprimitive BCH code of length n = 2”’ + 1 
having generator polynomial g(x) = M(“)(x)M”‘(~)M’3’ 
(x) * * .M’“)(x), for I odd. Since 2”’ = - 1 (modulo n), if 
/I is a root of g(x), so is /I- ‘. Thus g(x) has roots c? for 
i = 0,*1,*2;** , +(A + 1) and so by the BCH bound, 
B(m,A) has minimum distance at least 22 + 4. Let aA 
denote the punctured code obtained by deleting any parity- 
check symbol from &m,A). 

For 1 = 1 it is not difficult to show that ?&m,l) contains 
exactly 22m-2m codewords for m 2 4, and so a(m,l) is a 

(2”,2 2m- 2mS) 

code. This contains one more information symbol than the 
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corresponding 

(2”’ - 1,22m-1-2m,5) 

primitive BCH code. 

Double-Error-Correcting Codes 

Let N, denote the length of the longest possible code 
of minimum distance 5 and redundancy r. We already 
have the following bounds. 

i) Nbo+s 2 22a’2 - 1 for all a 2 1, from the Preparata 
code X2=+ 2. 

ii) N,, 2 2” + m - 1 for all even m 2 4, from the 
nonlinear codes constructed in Section I. 

iii) N4n+2 2 22a+1 for all a 2 2, from the BCH code 
W(2a + 1,l). 

Some linear codes to be given in Section III show that 
iv) Nda+ i 2 22u + 2” - 1 for all a 2 1. 
Let us apply Construction X4 with %?i = X,, +Z2 = the 

Hamming code s,,, (which is justified by Theorem 2), 
%‘s = the longest distance-6 code with redundancy m, with 
length N,- 1 + 1, and %d = the even-weight code of length 
N,,,- 1 $ 1. The new code %:5 is a nonlinear distance-5 code 
of length 2” + N,,- i and redundancy 2m, so 

v) N,, 2 2” + N,-, for all even m 2 4. 
Thus the Preparata code X, has been extended by 

Jn + 1 symbols, of which only one is a check symbol. 
With the same %?1 and q2, %?s = the longest distance-6 

code with redundancy m + 1, with length N,,, + 1, and 
%Zb an even-weight code, we find 

vi) N2,,,+ 1 2 2” + N, for all even m 2 4. 
From i), iv), v), vi) we obtain 
vii) Nha 2 22” + 2”-l + 2(“-1)/2 - 1 for all a 2 2, 

so that iii) and vii) together improve on ii), and 
viii) Nsn 2 24“ + 22” - 1 for all a 2 1, 
ix) N16=+i 2 28a + 24” + 22a - 1 for all a 2 1, and 

so on. 
Table II gives N,.*, the length of the longest code of 

minimum distance 5 and redundancy r presently known 
to us, for 6 I r 5 35. Included here are the (19,211,5) 
code constructed in Section I, the (23,214,5) quasi-perfect 
code found by Wagner [23], and the (73,2’j”,5), (277,2260,5) 
Srivastava codes found by Helgert [9]. The remaining codes 
are obtained from the preceding discussion. Most are 
nonlinear. 

The results of Table II show that the bounds iv) and vii) 
can always be improved on. 

Two distance-5 codes that do not appear in Table II 
are worth mentioning. They are the (11,24,5) Hadamard 
code with redundancy r F 6.415. * * ; and the (20,5 * 29,5) 
code with r = 8.678-e * obtained from Construction X4 
by taking %?r = X4, %Z2 = X4 plus any other four of 
the eight cosets of X4 in X4, %?s = {00000,11111}, 
and %, = {00000,11111,11000,00111,10100,01011,10010, 
01101,10001,01110}. 

e-Error-Correcting Codes 

Let us apply Construction X4 to extend e-error-correcting 

507 

TABLE II 

N,.*,THE L,ONGEST DOWILE-ERROR-CQRRECTING CODEOF 
REDUNDANCYI-KNOWNTO Us 

- 
r N: r N: I N: 

6 8 16 271 26 213 

7 15 17 277 27 214-l 

8 19 18 512 28 214+73 

9 23 19 210-l 29 214+128 

10 32 20 21°+23 30 ~~5 

11 63 21 21°+32 31 216-l 

12 70 22 211 32 216+255 

13 73 23 212-l 33 216+271 

14 128 24 212+63 34 2l7 

15 255 25 212+70 35 218-l 

where 0 I fl < e, and take %‘,, %Z2, and %‘:3 equal to 
pa _ 1,22m-em-1 ,2e + l), (2” - 1,2 2m-(e-l)m-1,2e _ 1) 

and (2a,22’-ea-1 ,2e + 2) BCH codes. Take %Y4 equal to %‘s 
plus 2” - 1 other cosets of Vs in the (2a,22”-1,2) even- 
weight code. 

Then the new code %?s is a 

(2” + 2” - 1,22m+2”-ew3-2,2e + 1) 

linear code of redundancy em + /? + 1. In the most 
favorable case, when m is divisible by e and p = 0, Vi 
has been extended by 2m/e z nlle symbols, of which only 
one is a check symbol. For large m this is an improvement 
over the Andryanov-Saskovets construction, which gives 
an extension by only m x log n symbols. In Section III 
it is shown that in effect triple-error-correcting BCH codes 

can be extended by about 2& symbols, of which only 
two are check symbols. 

Encoding and Decoding for Construction X4 

a) Encoding: Let %?, be obtained from %‘-g4 by 
Construction X4, where Vi is an (ni,2k1,di) linear code for 
i = l-5. As in the case of Construction X, we assume 
encoders and decoders are available, corresponding to 
generator matrices G1 = [Ai,zk,], Gs = [A3,&], 

G2= mi 

and 

for %Z1, q3, V2, and %Z4, respectively. 
Let hiZ9’ “Tik2+k3 ) be the string of information symbols 

to be encoded by g5. Encoding is accomplished by feeding 
(i19’ “~ikl+l~’ * *,ik2) into Encoder, and (ikl+l,. * *,ikl+l,* * *, 
ikzfk3) into Encoder4, and concatenating the outputs. This 
corresnonds to using the generator matrix BCHcodesoflength2” - l,fore 2 I.Letm = ue - /I, I - - 
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G, = 

for qs. (Notice that k, - k, = k4 - k, by hypothesis.) 
b) Decoding: Decoding is then analogous to that for 

Construction X, and corrects up to [$(d5 - l)] errors. 

III. CONSTRUCTION Y 1, Y2, Y3: COMBINING A CODE 

AND ITS DUAL 

In this section we state three general constructions for 
linear and nonlinear codes due to Goethals [7]. These 
constructions are then applied to extended double- and 
triple-error-correcting BCH codes, to quadratic-residue 
(QR) codes, and to cyclic codes. First we state the con- 
structions. 

Construction Yl 

Let %?1 be an (n,2k1,dI) linear code and let q2 be its 
(n,2’l,d2) dual code, with coordinates chosen so that there 
is a minimum weight codeword 1. . * 10. * *O in g2. Let S 
be the subgroup of %?, in which the first d2 - 1 coordinates 
are zero. Then the d,th coordinates of S are also zero. 
If the initial d2 zeros are deleted from S we are left with an 

(n - a,, 2k1-dz+l, d,) 

linear code. 

Construction Y2 

Let T be the union of S and all of the d2 - 1 cosets of 
Sin %I with coset leaders 1 10”-2,1010”-3,* * *,10d2-210”-dz. 
By deleting the first d, coordinates of T we obtain an 

(n - d,, d22k1-ds+1, d, - 2) 

nonlinear code. 

Construction Y3 

Let U be the union of S and all of the (2) cosets of S 
in %?i with coset leaders of weight 2. By deleting the first 
d, coordinates of U we obtain an 

(n - d,, (1 + (:)) 2k*-dz+‘, d, - 4) 

nonlinear code. 

Applications 

i) To Double-Error-Correcting BCH Code?: Let %‘1 be 
a (y1+1,$,2~+~-2m-3 ,6) extended double-error-correcting 
BCH code. From Berlekamp [2, table 16.51, the dual code 
w2 has minimum distance d, equal to 

2” _ 2ww2, m is odd 

Or 

1 Suggested by E. R. Berlekamp. 
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2” - 242, m is even. 

From Construction Yl, we obtain linear codes with 
minimum distance 5, redundancy 2m + 1, and length 
2” + 2(“+ ‘)I2 - 1 if m is odd, or length 2”’ + 2”‘12 - 1 
if m is even, for all m 2 3. See Section II for a comparison 
of these with other distance-5 codes. 

ii) To Triple-Error-Correcting BCH Codes’ : Now choose 
%?I to be a (2m+1,22m+1-3m-4,8) BCH code. Again using 
[2, table 16.51, we obtain linear codes with minimum 
distance 7, redundancy 3m + 2, and length 2” + 
2(m+2)/2 - 1 if m is even, or length 2” + 2(m+3)/2 - 1 if 
m is odd, for all m 2 3. 

Thus we have in effect extended these codes by about 

2& symbols, of which only two are check symbols. 
Unfortunately the method cannot be applied to BCH 
codes of distance greater than 8, because for such codes the 
exact minimum weight of the dual is not known. 

iii) To QR and Cyclic Codes: We apply Constructions 
Yl, Y2, and Y3 to the table2 of QR codes on [2, p. 3601, 
and to Chen’s table of cyclic codes [5], [6]. The new codes 
obtained are shown in Table III. In the table an (n,2k1,dI) 
code of the given type is combined with its (n,2*‘,d2) dual 
code, to produce a new (n’,M,d’) code. The table is arranged 
in order of increasing d’. 

IV. A GENERALIZATION OF THE GOLAY CODE: COMBINING 

Two CODES 

Turyn [l] showed in 1967 that the length 24 Golay 
code can be obtained by combining two first-order Reed- 
Muller codes. This technique is used here to give a simple 
construction of an infinite family of linear codes with 
d/n = J-. The first three codes of the family are the (24,212,8) 
Golay code, a (48,2 l5 16) code, and a (96,2ls,32) code. , 
For large block lengths the rate approaches zero. 

Let n = 2”’ - 1, and let a be a primitive element of the 
field F = GF(2m). Let M(‘)(x) be the minimal polynomial 
of &. 

The roots of M(‘)(x) are IXJX~,IX~,* * .,a2”‘-‘, and so 
M(l)(cc-‘) # 0. Thus M(l)(x) and M’-l’(x) are distinct. 
Let ‘$?i and %‘-1 be the (2” - 1,2”,2”-I) codes having 
check polynomials M”‘(x) and M’-“(x), respectively. 
(Since the codewords are the coordinate vectors of a simplex 
inscribed in the n-cube, these are called simplex codes.) 

Let g2 be the (2m,2m+1 ,2”- I) first-order Reed-Muller 
code obtained from V, by including the complements of 
all codewords and adding an overall parity check. Similarly, 
let %?-, be obtained from V-,. 

Theorem 4: The code %? consisting of all codewords 
(a + x,b + x,a + b + x), where a E g2, b E %7,, x E %?-,, 
is a 

(3 * 2”,2 3m+32Y 

linear code, for m = 3,4,5, * * *. 

2 The following corrections should be made to this table: for n = 73, 
d I 13; delete the line n = 97; for n = 103, d = 19; for 12 = 113, 
d = 15; for n = 151, d = 19; for 12 = 191, d 5 27; for n = 223, 
d 5 31. 
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TABLE III 
NEW (n',M,d') CODESFROM CONSTRUCTIONS Yl, Y2, Y3 

r 
1 

“1 k1 dl % d2 "4 d4 

63 46 7 49 5 67 7 
63 36 11 42 7 74 11 

31 6 15 11 11 41 15 

63 28 15 30 13 66 15 

63 21 18 24 14 66 17 

63 17 20 20 18 66 19 

63 19 19 21 16 68 19 

63 19 19 22 15 70 19 

63 19 19 25 15 74 19 

127 71 19 78 15 139 19 

63 18 21 24 15 77 21 

63 11 26 17 22 73 25 

63 10 27 16 23 74 27 

127 50 27 57 23 139 27 

63 7 31 13 24 78 29 

Proof: It is easy to see that the code is linear and 
contains 23mf3 codewords. Let w be the weight of (a + x, 
b + x,a f b + x), and for convenience let us write u for 
2”-‘. Each of a, b, and x has weight 0, u, or 2”. We con- 
sider three cases. i) If at most one of a, b, and x has weight 
u, then w = 0 or w 2 2”. ii) If two of a, b, and x have 
weight u, then we find that w 2 min (2’“,u + 2d,}, where 
d, = min wt {a + x 1 a E qZ,x E qe2,a # 0,x #O}. By 
Corollary 6 following, dl 2 2m-’ - 2”” - 4. Direct 
calculation shows that for m = 3, when %?Z and %7-2 are 
extended Hamming codes, d, = 2. Hence w 2 2” holds 
for m 2 3. iii) Suppose wt (a) = wt (b) = wt (x) = u and 
a = b. Then w 2 u + 2d, 2 2” for m 2 3. For the 
remaining case when a # b we use the following lemma. 

Lemma-[I] : For any binary vectors a,b,x, 

wt la + XI + wt lb + xl + wt la i- b + xl 

2 2 wt la + b + abl - wt 1x1. 

The proof is straightforward and is omitted. 
Returning to the proof of the theorem, in the last case 

we have wt la + b + abj = 3 * 2”-’ and wt 1x1 = u, so 
by the lemma w 2 2”. Q.E.D. 

For example, when m = 3, % is a (24,212,8) linear 
code, which must be the Golay code since Pless [ 151 has 
shown that code to be unique. 

It remains to prove Theorem 5 and its corollary. 
Theorem 5: Let d,,” be the Hamming distance between 

the pth codeword of %I and the vth codeword of %?- 1. 
Then either both codewords are zero or 

+n - 2”i2 I dp,, I +n + 2”12. 

Proof: The proof uses the Carlitz-Uchiyama [3] 
bound for Kloosterman sums. Let 

m-l 

T(x) = c x2’. 
r=O 
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Then it is known (see, for example, Solomon [21, p. 2521) 
that the polynomial fi(x) = T&x), for ,u any element of 
F, has the property that fr(a-‘) is the Zth bit, c,(p,E), say, 
of the @h codeword of %?I. Similarly if f-l(x) = T(vx), 
for v any element of F, .f-r(a’) is the Ith bit, c-,(v,l) say, 
of the vth codeword of %‘-r. (This sets up a one-one 
correspondence between F and the codewords of V, and 
of %?-1. The polynomials fi and f-r are the Mattson- 
Solomon polynomials.) 

Then 

2m-2 
S,, A c (- l)cdlr.l)+C-l(",l) = n _ 2d,,, 

t=o 

since the sum contributes +I when the codewords agree 
and - 1 when they disagree. 

2m-2 
s,, = c (- l)m-'+~~') 

I=0 

where b = pa-‘, y = VP. The last expression is a Klooster- 
man sum and it is shown in [3] that IS,,1 I 2*m+1. The 
theorem then follows. An immediate consequence of 
Theorem 5 is the following. 

Corollary 6: Let 

d, = min wt {a + x I a E %7=,x-~ %?-,,a # 0,x # O}. 

Then d, 2 2”- ’ - 2”12 - 3. 

Remark 

It is perhaps worth pointing out that the code %? con- 
structed in Theorem 4 is a union of cosets of the direct- 
product code %‘= x g3, where V, is the code {OOO,ll l}. 
(For the definition of a direct-product code, see [14, p. 811 
or [2, p. 3391.) 
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Note Added in Proof: A different method of extending Preparata 
codes from the ones given here has been described by H. Miyakawa, 
H. Imai, and I. Nakajima, “Modified Preparata codes-Optimum 
systematic nonlinear double-error-correcting codes,” Electron. Com- 
mun. Japan, vol. 53A, pp. 25-32, 1970. However, their method does 
not appear to be as powerful as ours, because for example they obtain 
only a (266,2”’ ,5) code, whereas we construct a (271,2255,5) code 
with the same redundancy. 
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Corremondence 

Coding Theorem and Its Converse for Continuous 
Incrementally Stationary Channels With Finite 

Incremental Memory 

T. T. KADOTA 

Abstract-We define continuous incrementally stationary channels 
with finite incremental input- and output-memories and prove the coding 
theorem and its converse for such channels. These channels include, 
as special cases, stationary channels with finite input- and output- 
memories and incrementally stationary and memoryless channels. The 
former is defined here and the latter has been defined previously. It is 
emphasized that, with an elementary measure-theoretic formulation, 
the standard method of proving the coding theorem for discrete channels 
becomes directly applicable for continuous channels. Consequently, the 
tedious step of representing a continuous channel by an infinite series of 
discrete channels can be avoided entirely. 

I. INTRODUCTION 

Mutual information has long been defined for continuous 
channels where the input and the output are functions [l]-[3]. 
Yet the coding theorem and its converse have been proved 
primarily for discrete channels where the input and the output 
are sequences [4], [5]. In a few specific cases they have been 
proved by first representing the continuous channel by an 
infinite series of discrete channels [5, pp. 355-4411, [6]. In this 
correspondence we note that, once continuous channels are 
properly characterized, the standard method of proving the 
coding theorem and its converse for discrete channels becomes 
directly applicable. Thus, we can avoid the tedious representation 
by infinite series and an additional continuity condition for the 
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convergence. Of course, some elementary use of measure theory 
is necessary both for characterizing channels and for proving 
the coding theorem. 

We define the class of continuous incrementally stationary 
channels with finite incremental memory. This class of channels 
includes, as special cases, the stationary channel with finite 
memory and the incrementally stationary and memoryless chan- 
nel. The former is a generalization of the discrete stationary 
channel with finite memory [4] and is defined for the first time 
here. The latter is not a generalization of the discrete stationary 
memoryless channel and has been defined previously [7]. Math- 
ematical definitions of these continuous channels are given in 
Section II. The coding theorem and its converse are stated in 
Section III, where in the remarks we give a comprehensive 
interpretation of the theorem and the converse. The explicit 
proof is omitted due to space limitations. For the benefit of 
mathematically inclined readers, however, we have made copies 
of the proof available.’ 

Before we begin the mathematical presentation, it is instructive 
to give a heuristic characterization of continuous channels by 
using simple examples. First, consider the following additive- 
noise channel : 

Y(t) = x(t) + 4th --co <t< co, (1) 

where x and y are the input and the output of the channel and 
v is the additive noise. Observe that the probability distribution 
of the output for each fixed input, i.e., the transitional measure 
of the channel, is the noise probability distribution with its 
mean shifted by the signal. Suppose v is a stationary zero-mean 

1 Shortly after this correspondence was written, we proved the coding 
theorem and the converse for a more general channel [8]. This is another 
reason for omitting the proof here. 


