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ABSTRACT

We use the weighted integral form of spherical Bessel functions and introduce a new analytical

set of complete and biorthogonal potential–density basis functions. The potential and density

functions of the new set have finite central values and they fall off, respectively, similar

to r−(1+l) and r−(4+l) at large radii, where l is the latitudinal quantum number of spherical

harmonics. The lowest order term associated with l = 0 is the perfect sphere of de Zeeuw. Our

basis functions are intrinsically suitable for the modelling of three-dimensional, soft-centred

stellar systems and they complement the basis sets of Clutton-Brock, Hernquist & Ostriker

and Zhao. We test the performance of our functions by expanding the density and potential

profiles of some spherical and oblate galaxy models.

Key words: stellar dynamics – methods: analytical – methods: numerical – celestial mechan-

ics – galaxies: kinematics and dynamics.

1 IN T RO D U C T I O N

Solving Poisson’s equation is an important step in the study of

self-gravitating stellar systems (Binney & Tremaine 2008). Ex-

panding the density distribution and its conjugate potential field

in terms of a complete basis set is one of the most efficient methods

that investigators have extensively applied to N-body simulations

(Fridman & Polyachenko 1984; Hernquist & Ostriker 1992; Earn &

sellwood 1995; Meza & Zamorano 1997; Buyle et al. 2007;

Weinberg & Katz 2007) and to the first-order stability analysis

of both flat (Kalnajs 1977; Pichon & Cannon 1997; Jalali & Hunter

2005; Jalali 2007) and three-dimensional galaxies (Saha 1991;

Weinberg 1991). Consequently, the success of those studies highly

depends on the choice of basis set. Desirable potential and den-

sity basis functions should be biorthogonal and converge rapidly

in order to decrease the computational noise and cost. Neverthe-

less, finding a suitable basis set is not an easy task and only few

analytical basis sets have been found for three-dimensional stellar

systems.

For stellar systems of finite size, spherical Bessel functions are

the classical biorthogonal eigenfunctions of the Laplace operator

and they have been used in the stability analysis of certain spher-

ical galaxies (Fridman & Polyachenko 1984; Allen, Palmer &

Papaloizou 1990; Weinberg 1991). For galaxy models of infi-

nite extent, three biorthogonal potential–density (PD) basis sets

have been developed by Clutton-Brock (1973, hereafter CB73),

Hernquist & Ostriker (1992, hereafter HO92) and Zhao (1996).

⋆E-mail: rahmati@strw.leidenuniv.nl (AR); mjalali@sharif.edu (MAJ)

CB73 and HO92 set the lowest order terms of their basis functions

to the Plummer (1911) and Hernquist (1990) models while Zhao

(1996) uses an α-model with the density

ρ(r) =
C

r2−1/α(1 + r1/α)2+α
, (1)

where C is a constant parameter. The lowest order term of a PD

set does not necessarily need to be spherical (Syer 1995), but an

orthonormalization using the standard Gram–Schmidt procedure

must be adopted (Saha 1991; Robijn & Earn 1996) to guarantee the

completeness of the set.

Apart from the quoted analytic basis functions, numerically

generated sets have also become available. Weinberg (1999) as-

sumed the form of the lowest order basis functions and numeri-

cally solved the Strum–Liouville equation to obtain biorthogonal

basis functions of higher orders. Despite this worthwhile contri-

bution, the propagation of computational noise during the applica-

tion of numerical basis functions has become problematic in recent

N-body experiments (Kalapotharakos, Efthymiopoulos & Voglis

2008), which justify the ongoing search for new analytical basis

functions.

In this paper, we introduce a new analytical set of biorthogonal PD

basis functions whose potential and density components have finite

central values, fall off similar to HO92 functions as r → ∞, and

their lowest order term is the perfect sphere of de Zeeuw (1985). We

derive and evaluate the weighted integral forms of spherical Bessel

functions in Section 2, and obtain the radial basis functions in terms

of associated Legendre functions. In Section 3, we use the new basis

set and generate the series representations of certain spherical and

oblate galaxy models. We end this paper with concluding remarks.
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1460 A. Rahmati and M. A. Jalali

2 POTEN TIA L–DENSITY PA IRS

We define r = (r, θ , φ) as the position vector expressed in terms of

usual spherical coordinates, with r, θ and φ being the radial distance

from the origin, colatitude and azimuthal angle, respectively. We

also assume that the mean-field potential and density functions of a

stellar system admit the following expansions:

�(r) =
∑

nlm

Pnlm�nlm(r), (2a)

ρ(r) =
∑

nlm

Dnlmρnlm(r). (2b)

The basis functions �nlm(r) and ρnlm(r) satisfy Poisson’s equation

∇2�nlm(r) = 4πGρnlm(r), (3)

where n and l are the radial and latitudinal quantum numbers cor-

responding to r and θ , respectively, and m is the azimuthal Fourier

number associated with φ. G is the universal constant of gravita-

tion. We proceed with a case that ρnlm is proportional to �nlm. This

reduces Poisson’s equation to the eigenvalue problem

∇2�nlm(r) = −4πGk2�nlm(r) (4)

that involves the Laplace operator ∇2 and a constant parameter k.

Since the Laplace operator is Hermitian, its associated eigenfunc-

tions form a complete biorthogonal basis set. The coefficients Pnlm

and Dnlm thus become identical. The spherical harmonics Y lm(θ , φ)

and the spherical Bessel functions jn(kr) are the classical solutions

of (4).

While Y lm(θ , φ) show an acceptable performance in the expansion

of physical quantities in terms of angle variables, Bessel functions

do not look like galactic profiles and cannot generate efficient ex-

pansions (Weinberg 1999). We extend the method of Clutton-Brock

(1972) to three-dimensional systems and express the eigenfunctions

as

�nlm(r) = −Ylm(θ, φ)ψnl(r), (5a)

ρnlm(r) = Ylm(θ, φ)ρnl(r), (5b)

where

ψnl(r) =
∫ ∞

0

jl(kr)gnl(k) dk, (6a)

ρnl(r) =
1

4πG

∫ ∞

0

jl(kr)gnl(k)k2 dk. (6b)

The functions gnl(k) (n, l = 0, 1, 2, . . . ) are to-be-determined func-

tions that we require to satisfy the biorthogonality condition
∫

�nlm(r)[ρn′l′m′ (r)]∗dr = Inlmδnn′δll′δmm′ . (7)

Here, the asterisk denotes complex conjugation and δii′ is the

Kronecker delta. Substituting from (5) and (6) in (7) and using

the identity

∫ 1

−1

d (cos θ )

∫ 2π

0

dφYlm(θ, φ)Y ∗
l′m′ (θ, φ) = δll′δmm′ , (8)

the orthogonality condition (7) reduces to

−
1

4πG

∫ ∞

0

gnl(k)dk

∫ ∞

0

gn′ l

(

k′) k′2 dk′

×
∫ ∞

0

jl(kr)jl

(

k′r
)

r2dr = Inlmδnn′ . (9)

The innermost integral on the left-hand side of (9) is evaluated

according to the Fourier–Bessel theorem (Ugincius 1972) as
∫ ∞

0

jl(kr)jl(k
′r)r2 dr =

π

2k2
δ(k′ − k), (10)

with δ(k′ − k) being the Dirac delta function. Substituting (10) in

(9) leads to

−
1

8G

∫ ∞

0

gnl(k)gn′l(k) dk = I nlδnn′ ≡ Inlmδnn′ . (11)

This condition requires gnl(k) to be any orthogonal set of functions

over the semi-infinite k-domain. Our special choice is gnl(k) =
klL2l

n (2k)e−k , where Lp
q(k) are the associated Laguerre polynomials

that obey the following orthogonality relation:
∫ ∞

0

e−kkpLp
q (k)L

p

q ′ (k) dk =
(q + p)!

q!
δqq ′ . (12)

Consequently, the constant parameters on the right-hand side of

equation (11) become

I nl = −
(n + 2l)!

G22l+4n!
, (13)

and our radial basis functions read

ψnl(r) =
∫ ∞

0

jl(kr)L2l
n (2k)e−kkl dk, (14a)

ρnl(r) =
1

4πG

∫ ∞

0

jl(kr)L2l
n (2k)e−kkl+2 dk. (14b)

The integrals in (14) converge rapidly, which makes their evalua-

tion a straightforward task by numerical methods. However, closed-

form analytical expressions can also be derived for ψnl(r) and ρnl(r)

as we explain below. We utilize the series form of the Laguerre func-

tions

L2l
n (2k) =

n
∑

i=0

(−1)i
(

n + 2l

n − i

)

(2k)i

i!
, (15)

and express jl(kr) in terms of Bessel functions to rewrite (14b) in

the form

ρnl(r) =
1

4πG

n
∑

i=0

(−2)i
(

n + 2l

n − i

)
√

π

2r

1

i!

×
∫ ∞

0

Jl+ 1
2
(kr)e−kkl+i+3/2 dk. (16)

Carrying out a change of independent variable as kr → u, transforms

equation (16) to

ρnl(r) =
1

4πG

n
∑

i=0

(−2)i
(

n + 2l

n − i

)
√

π

2

r−l−i−3

i!

×
∫ ∞

0

Jl+ 1
2
(u)e−u/rul+i+3/2 du. (17)

The integral in (17) can be calculated using equation (6.621) in

Gradshteyn & Ryzhik (2000). Defining ξ = 1/
√

1 + r2, ν1 = l +
i + 3, ν2 = l + i + 3/2 and μ = −1/2 − l, we obtain

ρnl(r) =
1

4
√

2πG

n
∑

i=0

(2l + i + 2)(2l + i + 1)(n + 2l)!

i!(n − i)!

× (−2)iξ ν1 (1 − ξ 2)−1/4P μ
ν2

(ξ ) , (18)

where Pμ
ν (x) are associated Legendre functions. Following a similar

procedure, one can show that

ψnl(r) =
√

π

2

n
∑

i=0

(n + 2l)!

i!(n − i)!
(−2)iξ ν3 (1 − ξ 2)−1/4P μ

ν4
(ξ ) , (19)
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New biorthogonal PD basis functions 1461

where ν3 = l + i + 1 and ν4 = l + i − 1/2. The associated Leg-

endre functions can be determined through the recursive relations

(Gradshteyn & Ryzhik 2000):

(ν − μ + 1)P
μ

ν+1(ξ ) + (ν + μ)P
μ

ν−1(ξ ) = (2ν + 1)ξP μ
ν (ξ ), (20a)

P
μ

ν−1(ξ ) − P
μ

ν+1(ξ ) = (2ν + 1)(1 − ξ 2)1/2P μ−1
ν (ξ ), (20b)

which start from

P −1/2
ν (ξ ) =

√

2

π sin β

sin [(ν + 1/2) β]

(ν + 1/2)
, cos β = ξ. (21)

The lowest order members of our PD family are

ψ00(r) = −
1

r
arctan r, (22a)

ρ00(r) =
1

2πG

1

(1 + r2)2
, (22b)

which define the perfect sphere of de Zeeuw (1985). We have there-

fore found a biorthogonal basis set that is distinct from CB73, HO92

and Zhao’s (1996) functions. Moreover, from (21) and the recur-

sive relations (20), we deduce that the functions P μ
ν4

(ξ ) and P μ
ν2

(ξ )

behave, respectively, similar to r0 and r−1 in the limit of r → ∞. It

can thus be verified that ψnl(r) ∼ r−(1+l) and ρnl(r) ∼ r−(4+l) hold at

large radii. The potential functions of CB73, HO92 and ours have

finite central values and they fall off similar to r−(1+l) at large radii.

Our density functions are analytic at the galactic centre as are the

functions of CB73, but they behave like HO92 functions in the limit

of r → ∞. The best performance of our basis set is thus expected

in soft-centred systems whose outer density profiles are similar

to r−4.

In Fig. 1, we have displayed several members of our basis func-

tions for l = 0, 2. At the centre, both the potential and density

Figure 1. Left-hand panels display the radial parts of the potential basis functions, ψnl (r), for n = 0, 1, 2, 3, 4, and right-hand panels show their conjugate

density functions ρnl(r). Top and bottom panels correspond to l = 0 and 2, respectively. All functions have been normalized to their maximum values.

functions have finite, non-zero values for l = 0, and they vanish

there for l �= 0. The expected yet interesting property of ψnl(r)

and ρnl(r) is their oscillatory nature. The number of peaks of our

functions (in the radial direction) is equal to n + 1. Our numeri-

cal experiments show that the series built by oscillatory functions

have a faster and more accurate mean convergence as compared to

functions that do not share this feature.

Our functions have a length-scale that has been set to unity so

far. In general, changing the length-scale is necessary to reconstruct

galaxies of different core radii. A scaling parameter r0 can be eas-

ily introduced to our formulation by replacing gnl(k) with gnl(kr0)

(Clutton-Brock 1972). This implies the following transformations:

�nlm (r, θ, φ) → r−1
0 �nlm (r/r0, θ, φ) , (23a)

ρnlm (r, θ, φ) → r−3
0 ρnlm (r/r0, θ, φ) , (23b)

I nl → r−1
0 I nl . (23c)

3 R E C O N S T RU C T I O N O F M O D E L G A L A X I E S

Biorthogonal basis functions, similar to ours, have the advantage

that the coefficients Pnlm = Dnlm in (2) can be determined using

either the potential �(r) or the density ρ(r) through the following

formulae:

Pnlm ≡ Dnlm =
1

I nl

∫

ρ(r)[�nlm(r)]∗ dr

=
1

I nl

∫

�(r)[ρnlm(r)]∗ dr, (24)

where we have used the orthogonality conditions (7) and (11). In

what follows, we examine the performance of our basis functions by

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 393, 1459–1466
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1462 A. Rahmati and M. A. Jalali

the series reconstruction of the density profiles and potential fields

of some model galaxies.

3.1 Spherical models

We followed the standard procedure of using spherical harmonics

for the expansions of physical quantities in terms of angular vari-

ables and introduced a new set of radial basis functions. So we

need to examine the performance of our radial set by reproducing

some spherical models. As case studies, we choose the isochrone

and Plummer models of total mass M and length-scale b (Binney &

Tremaine 2008). Our basis functions have finite values at the centre,

and it would be interesting to learn whether they are suitable for the

reconstruction of models with central density cusps. For doing so,

we also analyse the performance of our basis functions by applying

them to Dehnen’s γ models (Dehnen 1993). The density profiles of

Dehnen’s models diverge similar to r−γ in central regions and fall

off proportional to r−4 at large radii. Dehnen’s models also have a

length-scale b. The model with γ = 0 has an intrinsic core at the

centre, and for γ = 3/2 a central cusp with an intermediate slope

between Hernquist (1990) and Jaffe (1983) models is created. In

our study, we choose two models with γ = 1/2 and 3/2.

We have set r0 = 1 and used equation (24) to compute the coef-

ficients of expansion Dnlm for the Plummer, isochrone and Dehnen

models. The parameters of the isochrone model have been set to

GM = 1 and b = 0.5. For other models, we have used GM = 1

and b = 1. Our results are displayed in Fig. 2, which shows how

|Dn00| vary versus n. We note that all coefficients with l, m �= 0

vanish because of the spherical symmetry. It is evident that |Dn00|
decrease several orders of magnitude by including more terms in

the series expansions. Although for γ = 1/2 the coefficients of

Dehnen’s model fall off similar to other soft-centred models, they

decay mildly for γ = 3/2. This shows very slow and unfavourable

convergence of our series expansion in steeper cusps as is expected.

Having expansion coefficients, the original model can be con-

structed using (2). Denoting the original PD pair by [�0(r), ρ0(r)]

and their series representations by [�(r), ρ(r)], we compute the

relative errors Eρ = (ρ − ρ0)/ρ0 and E� = (� − �0)/�0 and

their absolute magnitudes δρ = |Eρ | and δ� = |E�| to measure the

performance of the basis set. We have used the first 10 radial basis

elements (nmax = 9) to compute [�(r), ρ(r)]. The results are shown

in Fig. 3. It is seen that δ� is below 2 per cent in all parts of the

Plummer, isochrone and Dehnen’s γ = 1/2 models, and also for

Figure 2. The absolute magnitudes |Dn00 | of the expansion coefficients

versus the radial quantum number n for several spherical models.

r > 0.1 in Dehnen’s γ = 3/2 model. The reason is the similarity of

ψn0(r) defined in (19) to the potential profiles of the chosen mod-

els. The large error magnitude near the centre of Dehnen’s γ = 3/2

model is due to its sharper density cusp that prohibits a simultaneous

convergence of the density and potential series.

The reconstruction of ρ0(r), however, has not been successful in

Dehnen’s γ = 3/2 model because of its sharper cusp. Large values

of δρ are also observed in the central part of Dehnen’s γ = 1/2

model (due to its cuspy nature), and at large radii of the Plummer

model due to its rapid density falloff, which is steeper than our

ρn0(r) ∼ r−4. The isochrone model is the only case that has been

reproduced with a reliable accuracy in all parts of the galaxy. In fact,

the isochrone model shares two basic features of our new basis set:

(i) it has a soft core and (ii) its outer potential and density profiles

decay, respectively, similar to r−1 and r−4 as do the envelopes of the

functions ψn0(r) and ρn0(r). In Fig. 3(a), for nmax = 9 the magnitude

of δρ is less than 1 per cent over the range 0 ≤ r � 20 and it saturates

at a level of δρ ≈ 5 per cent for r > 20. By increasing nmax to 14,

both δρ and δ� remain smaller than 1 per cent over the range 0 <

r < 100. This result can also be deduced from Fig. 2 that shows a

monotonic decay for |Dn00| versus n.

In general, the density error δρ is larger than δ�. We explain this

by calculating Eρ in terms of E� and its derivatives. The original

potential and density functions satisfy Poisson’s equation, and since

our basis functions are biorthogonal, the relation ∇2� = 4π Gρ also

holds between the expanded quantities. We can therefore write

∇2 (� − �0) = 4πG (ρ − ρ0) , (25)

which is divided by ρ0 to obtain

1

ρ0

∇2 (� − �0) ≡
1

ρ0

∇2 (�0E�) = 4πGEρ . (26)

For the Laplace operator with spherical symmetry, equation (26)

leads to

1

ρ0

[

�0∇2E� + E�∇2�0 + 2
d�0

dr

dE�

dr

]

= 4πGEρ . (27)

Substituting 4πGρ0 for ∇2�0 in (27) yields

�0

ρ0

∇2E� + 4πGE� +
2

ρ0

d�0

dr

dE�

dr
= 4πGEρ . (28)

We are interested in the local extrema of E�. There are nmax number

of such points whose existence is deduced from the oscillatory

nature of basis functions. The derivative dE�/dr vanishes at the

extrema of E�, and equation (28) reads as

Eρ

E�

= 1 +
�0

4πGρ0

1

E�

d2E�

dr2
. (29)

This is a useful relation that gives a credible estimate of Eρ/E� based

on the quotient �0/ρ0 and the curvature of E�. For each model,

we have independently computed δρ from (29) and have plotted the

results (scattered squares in Fig. 3) against the numerical graph of

δρ obtained from the series expansion of ρ0(r). There is a close

agreement between the results of the two methods, confirming the

fact that the drift δρ − δ� is independent of the choice of basis set

and it persists in any series solution of Poisson’s equation.

Neither the isochrone nor Dehnen’s γ = 1/2 models match the

zeroth-order terms of CB73, HO92 and our basis functions. There-

fore, the performance of these basis sets can be fairly compared by

expanding the isochrone and Dehnen’s γ = 1/2 models (Fig. 4). It

is seen that CB73 functions have a poor performance in reproduc-

ing both models. Our functions have performed better than HO92

functions for r � 1 in the isochrone model. Nevertheless, HO92

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 393, 1459–1466
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New biorthogonal PD basis functions 1463

Figure 3. The relative errors δρ (thin solid lines) and δ� (thin dash-dotted lines) in the series reconstruction of the density ρ0 (thick solid lines) and the absolute

magnitude of its associated potential �0 (thick dash-dotted lines). The basis functions are those of equations (18) and (19). Panels a, b, c and d correspond,

respectively, to the isochrone, Plummer, Dehnen’s γ = 1/2 and Dehnen’s γ = 3/2 models. The functions �(r) and ρ(r) have been computed by taking the

first 10 basis functions (nmax = 9). In each error curve, there are nmax + 1 sharp minima that correspond to the locations of exact match between the original

functions and their series representations. The scattered squares show the magnitude of δρ calculated from equation (29). The central values of �0 and ρ0 have

been normalized to some arbitrary numbers just for the purpose of visualizing their profiles against the error curves.

Figure 4. Variations of δρ (top panels) and δ� (bottom panels) for the isochrone (left-hand panels) and Dehnen’s γ = 1/2 (right-hand panels) models. Solid,

dotted and dash-dotted lines, respectively, correspond to the expansions by our, CB73 and HO92 basis functions. The length-scale of the isochrone model is

b = 0.5 and that of Dehnen’s γ = 1/2 model is b = 1. For both models, we have set GM = 1 and all basis functions have the length-scale of r0 = 1.

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 393, 1459–1466
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1464 A. Rahmati and M. A. Jalali

functions have resulted in the lowest magnitudes of δ� and δρ for

r � 1 in the isochrone model and for r � 0.005 in Dehnen’s γ =
1/2 model. Our results show that the envelopes of basis functions

must follow the radial profiles of both the density and the potential

functions of a spherical stellar system to assure a reliable expan-

sion. Dehnen’s shallow density cusp cannot be reproduced even by

cuspy set of HO92 (see Fig. 4b) because the central envelope of

HO92’s density functions is proportional to r−1, while Dehnen’s

density profile diverges as r−1/2.

3.2 Oblate galaxy models

The modelling of oblate galaxy models is a bigger challenge be-

cause the series of radial basis functions must converge together with

spherical harmonics. It is therefore hard to predict how the com-

bination of radial and angular functions will behave. As our case

studies of spheroidal galaxy models, we choose an oblate Kuzmin

& Kutuzov (1962) model and a perfect spheroid (de Zeeuw 1985),

and reproduce their density distributions using the series of CB73,

HO92 and our new biorthogonal sets. In the spherical limit, the

Kuzmin–Kutuzov model reduces to Hénon’s (1959) isochrone and

the perfect spheroid becomes the perfect sphere, which is the low-

est order term of our new basis set. Since our functions showed

slow convergence for Dehnen’s spherical models near the centre

(see Figs 2 and 3), we did not extend our analysis to their flattened

(Dehnen & Gerhard 1994) counterparts. Moreover, we proved in

Section 3.1 that the potential expansions are always more accurate

than the density ones. This applies to oblate models as well, and

therefore, we confine ourselves to computing δρ .

Defining u2 = a2c2 + c2R2 + a2z2, the density functions of the

Kuzmin–Kutuzov and perfect spheroidal models are, respectively,

given by (de Zeeuw 1985; Dejonghe & de Zeeuw 1988)

ρKK(R, z) =
Mc2

4π

(a2 − c2)R2 + a4 + 2u2 + 3a2u

u3
(

R2 + z2 + a2 + c2 + 2u
)3/2

, (30a)

ρPS(R, z) =
M

π
2
√

1 − e2

(

1 + R2 +
z2

1 − e2

)−2

, (30b)

where R = r sin θ and z = r cos θ , and z is the symmetry axis.

The parameter e is the flattening of the perfect spheroidal model.

Figure 5. Left-hand panel: density isocontours of a perfect spheroid. Solid lines correspond to the exact model density and short-dashed, long-dashed and

dotted curves are associated with density expansions using our, CB73 and HO92 basis functions, respectively. The ellipticity of the model is e = 0.5. Right-hand

panel: same as the left-hand panel but for an oblate Kuzmin–Kutuzov model with c/a = 0.5. In both figures, the levels of isocontours indicate the fraction of

maximum density.

The Kuzmin–Kutuzov model has equipotential surfaces of the axis

ratio
√

c/a near the centre, and we choose its length-scale so that

a + c = 1. Here, again, M is the total mass of the galaxy.

The isocontours of the original and expanded density functions

are displayed in Fig. 5 for a perfect spheroidal model of e =
0.5 and for a Kuzmin–Kutuzov model of c/a = 0.5. We have set

r0 = 1 and nmax = 9, and used lmax = 8 for the Kuzmin–Kutuzov

model and lmax = 4 for the perfect spheroid, respectively. The max-

imum deviation from the original model occurs near the R-axis

because of the slow convergence of spherical harmonics as θ →
π/2. Therefore, we have shown in Fig. 6 the variation of δρ versus

R in the equatorial plane. Note that the existence of a symmetry

axis implies Dnlm = 0 for odd latitudinal quantum numbers and for

m �= 0.

Our experiments show that by increasing lmax the density ex-

pansion near the equatorial plane is improved. It is evident that

HO92 functions have failed in reproducing the finite central den-

sities of both models but they have best fitted the outer parts. For

R � 0.2, the error indicator δρ is smaller for HO92 functions than

CB73 ones by almost 1 order of magnitude, and that of our new

functions lies between them. Nonetheless, only our functions result

in a very small error level of ≤1 per cent for R � 0.2 in both the

models. This shows that our new basis set is the most trusted tool for

modelling all parts of cored, oblate galaxies whose outer potential

and density profiles fall off similar to r−1 and r−4, respectively. We

note that the magnitude of δρ rises substantially and then saturates

beyond the radial distance R ≈ 10 where the density has fallen to

0.1 per cent of its central value. This property is shared by all tested

basis sets. It is by increasing the number of radial basis functions

(nmax) together with the precision of computations that the error

magnitude is suppressed at large radii.

It is helpful to compare our results with Robijn & Earn (1996) who

have designed a set of basis functions for the perfect spheroidal mod-

els. Their functions have been orthonormalized using the Gram–

Schmidt procedure. For nmax = 9 and lmax = 4 that match the

number of series terms in our setup, they reported a maximum error

of δρ ≈ 30 per cent in the density expansion for a perfect spheroid

of ellipticity e = 0.5 and inside the domain 0 < R, z < 2. In the

same region, our density expansion leads to a maximum error of

δρ ≈ 7 per cent, which is notably small.

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 393, 1459–1466
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New biorthogonal PD basis functions 1465

Figure 6. Radial variation of the relative error δρ (oscillatory curves) against the model density on the equatorial plane (z = 0) of the same prefect spheroid

(panel a) and Kuzmin–Kutuzov (panel b) models of Fig. 5. Dashed, dotted and thick solid curves correspond, respectively, to CB73, HO92 and our basis

functions.

4 C O N C L U S I O N

The lack of suitable PD basis sets is a serious problem in dynamical

studies that solve Poisson’s equation using the series expansions.

For three-dimensional stellar systems, only few analytic basis sets

have been found and most researchers have tailored numerical func-

tions to cope with their specific problems. In this paper, we gen-

eralized Clutton-Brock’s (1972) idea to three-dimensional systems

and introduced a new set of basis functions, which have the useful

property of biorthogonality. Our functions complement the CB73,

HO92 and Zhao’s (1996) basis sets because neither of them exhibits

the following properties together: (i) a finite central density and (ii)

an outer density falloff similar to r−4. For instance, the integrable

models of de Zeeuw (1985) and their perturbed states can be ef-

ficiently expanded by our basis functions. Thus, we get one step

closer to the stability analysis of elliptical galaxies whose poten-

tials are of the Stäckel form. Robijn (1995) and Sellwood & Valluri

(1997) investigated the instabilities of some spheroidal galaxy mod-

els but calculating the eigenspectra of more general triaxial systems

remains as a big challenge.

Our functions were derived in terms of elementary rational, and

associated Legendre functions for which recursive formulae are

available. We carried out a mathematical error analysis and then

compared its results by numerical experiments to show that density

expansions converge slower than the potential ones. By expand-

ing several spherical and oblate galaxy models, we showed that

an improper choice of basis functions can contribute potentially

dangerous errors to dynamical studies. Not only the nature of the

galactic centre (cuspy or cored) is an important factor for the selec-

tion of basis functions, but the outer density and potential profiles

also matter. Neither our new set nor other basis functions cited in

this paper are suitable for the modelling of cuspy dark matter haloes

whose density profiles decay outwards like r−3. It is possible to find

basis sets compatible with such systems, but that will require other

choices of the weighting functions gnl(r) that must be orthogonal

over the r-domain in three dimensions. It is remarked that we had

set the length-scale of our basis functions to r0 = 1 in all of our case

studies, but there is always an optimum value of r0 that gives the

best fit. For example, the isochrone model is best fitted by setting

r0 = 2b. We therefore recommend an optimal search for finding the

best minimizer of δ�.
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