2110.02071v1 [physics.gen-ph] 2 Oct 2021

arxXiv

*

New black hole solutions in three-dimensional f(R) gravity

G.G.L. Nashed*
Centre for Theoretical Physics, The British University,
P.O. Box 43, El Sherouk City, Cairo 11837, Egypt

A. SheykhiJr
Department of Physics, Shiraz University, Shiraz 71454, Iran
Biruni Observatory, Shiraz University, Shiraz 71454, Iran
(Dated: October 6, 2021)

We construct two new classes of analytical solutions in three-dimensional spacetime and in the
framework of f(R) gravity. The first class represents a non-rotating black hole (BH) while the second
class corresponds to a rotating BH solution. The Ricci scalar of these BH solutions have non-trivial
values and are described by the gravitational mass M, two angular momentums J and Ji, and an
effective cosmological constant Acyr. Moreover, these solutions do not restore the 3-dimensional
Banados-Teitelboim-Zanelli (BTZ) solutions of general relativity (GR) which implies the novelty of
the obtained BHs in f(R) gravity. Depending on the range of the parameters, these solutions admit
rotating/non-rotating asymptotically AdS/dS BH interpretation in spite that the field equation
of f(R) has no cosmological constant. Interestingly enough, we observe that in contrast to BTZ
solution which has only causal singularity and scalar invariants are constant everywhere, the scalar
invariants of these solutions indicate strong singularity for the spacetime. Furthermore, we construct
the forms of the f(R) function showing that they behave as polynomial functions. Finally, we show
that the obtained solutions are stable from the viewpoint that heat capacity has a positive value,
and also from the condition of Ostrogradski which state that the second derivative of f(R) should
have a positive value.
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I. INTRODUCTION

The investigations on GR solutions in (2 4+ 1)-dimensions provide a powerful background to study the physical
properties of gravity and examine its viability in lower spacetime dimensions. In particular, it can be simulated as
a toy model of quantum gravity. This property has been discovered after the arguments presented connecting the
possible links between (2+ 1)-dimensional gravitation and the Chern-Simons theory [1, 2]. A great step put forwarded
by the authors of [3] who discovered a novel solution of GR in (2 + 1)-dimensions. They constructed their solution’s
using the SO(2, 2) gauge group with a negative cosmological constant. This BH solution, looks like the features of
the (3 4 1)-dimensional Schwarzschild and Kerr black holes which mean that it has a credible physical significance.

The BTZ BH solution has been given further improvements, modifications and generalizations [4-10], and later,
Witten has calculated the entropy of the BTZ BHs [11]. The BTZ BH solution has been studied by different ful-
fillments, from different physical viewpoints. For example, the construction of geodesic equations of the uncharged
BTZ BHs [12], the quasi-normal modes [13-16], the scattering process of test particles [17, 18], the hydrostatic
equilibrium conditions for finite distributions [19], and solutions for fluid distributions matching the exterior BTZ
spacetime [20-24]. Moreover, by taking into account a non-constant coupling parameter with the energy-scale, the
scale-dependent version of the BTZ solution has been derived and analyzed [25-29]. It has been also debated that, if
the energy-momentum complexes of Landau-Lifshitz and Weinberg are used for a rotating BTZ BH, the same energy
distribution is obtained [30].

The rotating BTZ spacetime has been generalized through the addition of terms connected to the non-linear
electrodynamics [31, 32] and the conformal group [33]. Moreover, concerning the BH thermodynamics, the BTZ BH
solutions have been analyzed by using their critical behavior and phase transitions. Another viewpoint of studying
the thermodynamics of the BTZ BH was carried out by calculating the equilibrium thermodynamic fluctuations [34],
in which the extremal BTZ BH with angular momentum serves as the critical point, and the density of the states in
the micro-and grand-canonical ensembles has been calculated [35]

Moreover, if the cosmological constant is dealt with as a thermodynamical parameter, the AdS Kerr and the
BTZ BH solutions have been discussed in [36]. The quantum corrections to the enthalpy and the equation of state
of the uncharged BTZ BH solutions have been investigated [37]. A general class of BTZ BH solution has been
studied from the viewpoint of Ruppeiner geometry of the thermodynamic state space, and it is shown that such a
geometry is a flat one for the rotating BTZ and the BTZ-Chern-Simons BHs, in the canonical ensemble [38]. The
establishment of geometrothermodynamics and the one introduced in [39], is a method that is used to specify a flat
(141)-dimensional space of equilibrium states, which is endowed with a thermodynamic metric. A generalization
of geometrothermodynamics is discussed [40], in which the thermodynamics of the charged BTZ BH is explained
in the frame of the Weinhold and Ruppeiner geometries where it was shown that such geometry cannot describe,
the BH thermodynamics. To tackle this issue [41], a new metric (the HPEM metric) was inserted by a particular
formalism and it was shown that the corresponding Ricci scalar was able to bring together, different types of phase
transitions. The HPEM metric was proved to give a consistent formalism to study the thermodynamics of the BTZ
BH solutions [42]. The introduction of quantum scalar fields in the study of BH thermodynamics was carried out
[43] and yields the introduction of entanglement thermodynamics for mass-less scalar fields. It has been also shown
that the thermodynamics of BTZ BHs can be deformed in the frame of gravity’s rainbow, however, the Gibbs free
energy remains unchanged [44]. The gravity of the rainbow has been utilized to study the BH heat capacity and
phase transition of BTZ BHs [45, 46]. There are also some other extensions of the BTZ BHs that are obtained as
alternative theories of gravity for example the Noether symmetries of the rotating BTZ BH in f(R) gravitation has
been employed to create new BTZ-type solutions [47]. In the same direction some thermodynamic features of the BTZ
BHs, such as the Carnot heat engine, are investigated in the frame of massive gravity [48]. Moreover, Horndeski’s
action is considered as the source field of the BTZ BH, and reduce it to the familiar Einstein-Hilbert action involving
a cosmological constant has been studied where the usual 3-dimensional Smarr formula by using a scaling symmetry
of this reduced action [49]. Additionally, the rotating BTZ BHs, have been proven to display no kind of superradiance,
if we considered Dirac fields to vanish at infinity [50]. Some thermodynamic aspects of the rotating BTZ BH have
been investigated in [51].

The modified gravitational theory, f(R), was introduced in the scientific community as an attempt to prescribe the
early and late cosmological story of the universe [52-62]. From the recent results of the cosmological observations,
cosmological models of f(R) gravity were used to explain the transmission of deceleration and acceleration. This yields
to impose limitations on the f(R) cosmological models to allow for viable choices of f(R) [63]. The theories of f(R)
eliminate the contributions of any curvature invariants except the Ricci scalar, R and they avoid the Ostrogradski
instability [64] that us usually exists in higher derivative gravitational theories [65]. Many BH solutions in the theories
of f(R) were derived and they either are deviations from the well-known BH solutions of GR, or they have new
properties that could be discussed. Static and spherically symmetric BH solutions in (3 4+ 1) and (2 + 1)-dimensions
are derived and analyzed [66-69], while charged and rotating BH solutions were explained in [70-76]. Meanwhile



static and spherically symmetric BH solutions were discussed with constant curvature, with/without electric charge
and cosmological constant [77, 78]. It is the aim of this study, to extend the above catalog with a new family of
3-dimensional in f(R) modified theory and derive analytic generalizations of the BTZ rotating/non-rotating metric
describing BHs. The new BH solutions display one or several horizons and have satisfactory thermodynamical results.

The arrangement of this study is as follows: In Sec. II we give the action and field equations of f(R) gravitational
theory. In Sec. III we apply the field equations of f(R) gravity to 3-dimensional spacetime, rotating one, having
three unknown metric potentials, b(r), bi(r) and by(r) which is responsible for rotation. The resulting differential
equations are classified into four different cases:(i)fr(r) = const. and ba(r) = 0, (ii) fr(r) = const. and ba(r) # 0,
(iii) fr(r) = co + % and bo(r) = 0, and (iv) fr(r) = co + % and by(r) # 0 '. Note that here fr = df(R)/dR
and we use the chain rule i.e., fg = df(R)/dr x dr/dR. The first two cases do not give any new results different
from the BTZ BH rotating/non-rotating of Einstein GR. The last two cases are discussed in detail regarding their
analytic solutions and their asymptote. The most amazing thing is that our starting point of the field equation has
no cosmological constant and our derived solutions behave as AdS/dS spacetimes. Also, we calculate the invariants,
Kretschmann scalar, the Ricci tensor square, and the Ricci scalar, showing that the trace of f(R) gravity on such
invariants makes the singularity stronger than those of 3-dimensional GR BHs because of the non-triviality of the
Ricei scalar associated with those solutions. In Sec. IV we derive the form of f(R) and its second derivative, of the
last two cases, and draw them showing that their behaviors have a positive manner which means that our solutions
avoid the Ostrogradski instability. In Sec. V we calculate the thermodynamical quantities of the two cases (iii) and
(iv) showing their horizons, entropy, Hawking temperature, and heat capacity analytically and graphically. In the
final section, we conclude our study with the main novel results.

II. FIELD EQUATIONS OF f(R) GRAVITY

In this section, we consider a three-dimensional action of f(R) gravity and construct the corresponding field equa-
tions in three spacetime dimensions. It is ingredient to mention that f(R) gravity is an amended of Einstein gravity
and restores the general relativity in the limiting case f(R) = R and when f(R) # R then the theory becomes different
from GR. The action of f(R) theory can be written as [79-86]

lo =5 [ Pov=s(R), 1)

where k2 = 87G, and G is the Newtonian gravitational constant and g is the determinant of the metric.
Varying the above action with respect to the metric g, yields the vacuum field equations of f(R) as [87]

Rl = 50 (B) + g ¥ = V¥, )f, = 0, @
where V? =V, V#. Taking the trace of the field equations (2) in 3D yields
2V?fr + Rfr — == =0. (3)
Using Eq. (3) yields the function f(R) in 3-dimensional in the following form
f(R) = ; 2V fr + Rfg| . (4)
Substituting Eq. (4) in Eq. (2) yields the field equations of f(R) as

1 1
R#VfR - gg#’/RfR + gg#VVQfR - v,uvufR =0. (5)

Thus, it is important to check Egs. (3) and (5) to a spherically symmetric ansatz having two unknown functions [89].

I We assume the form of the first derivative of f(R) to depend on the radial coordinate since our present study using spherically symmetric
ansate.



III. THE 3-DIMENSION BLACK HOLE SOLUTIONS

The line element of the rotating 3-dimensional spacetime in the coordinates (¢,7, ¢) can be written as [90]

dr?

b1 (T)

with b(r), b1(r), and by(r) are functions depending on the radial coordinate r. The Ricci scalar of the metric (6)
figured out as

ds® = —[b(r) — r2022(r)|dt + 21202 (r)drde + —— + r2d¢?, (6)

26204 — bbby + by b + 2rbbib” — rbib4? + 2b1b'b

R(T) = 2b2T ) (7)
where b = b(r), by = by(r), by = ba(r), b = 92 " = &b pt = & apq py = 2 Plugging Eqs. (3), (5) with Eq. (6)

and by using Eq. (7) into the field equations (5), we get the following non-linear differential equations, in the vacuum
case
. 1

L= ——
T 1202y

{F[b;(3br3b2bg — 3r3bobi b + 18br2boby + 4br3bibl) — b (2by1b — rby b + 7bb) + 4b)b* — 2rbbyb” 4 6br3byby bY]

+F'[4b1b? — 4bbyrb 4 216 + 6b1br3bobh) + 4F”b1b2r} =0,

1
L% = yTET {2 boFrbbi b — 27 Fbby (12bs” + b) by — A Fbr®bibobly? — (r?bo® + b) {(Frb) + 2by (3F +1F'))b— rFbyb'} b

+by [rb (2F'by + FV,) b — 2b% (2F'by + Fb) — Frob’?] } =0,

L Frbib' — SFbybr — 2Frbbyb’ — {Frb — 2by (2F + rF')}bb + 2b [2by (bF' + Frib2) — (F+ 2rF')bb}]
" 127 -
T [2Fbrb by + 05 (F'rbb — {—2bF'r + F (rb" — 6b)} b1)]

Lo" = 412 =0

1
Ly® = ol {4F”b1b2r — 6Fbrbaby by + AFrbbyb” — 8Fbr®biby” — 3[(Frb), + 2by {3F + rF'}) b — rFby b byr?b,

—2Frb1b'? + 2 [Frb) + by (rF' — F)]bb +2 [(rF' — F) b} — 4Fb,] b2} =0, (8)

where F' = F(r) = %&D = A o dr = 2D and BT = %. Since we are dealing with a spherical
symmetry spacetime we assume f(R) = f(r). Finally, the form of the trace equation given by (3) takes the following

form
F [br3byby? — 2b16% — rbybb' — 2rbbyb” + rbyb'® — 2b10'b] + F' [20b17b’ + 20107 4 4b1b%] + 4F"bib*r — 3 fb*r
2rb? N

0.
9)

Now, we are going to study special cases of the above differential equations given by Eqs. (8) and (9), trying to find
analytical solutions:

A. When F(r)=co and b2 = 0?

When F(r) = constant = ¢y and by = 0, the differential equations (8) reduce to the well-known BTZ differential
equation and in that case by and by take the following form [16]:

b(r) = bi(r) = Ar? —m, (10)

where A and m are integration constants.

2 Tt is important to stress that the form of F(r) cannot assume zero value in this study because when F(r) = 0 yields that f(R) = constant
which is out the scope of this study.



B. When F(r) =co and bz # 0

When by # 0 and F(r) = ¢o the differential equations (8) coincide with those presented in [38] and we get the
solution of these differential equations after rescaling the constants as:

b(r):bl(r):ArQ—m—i-riQ, b2(r) = A+ g (11)

C. When F(r) # constant and by = 0

When F(r) # constant, i.e., when, for example, F(r) = c¢op + % and when by = 0 we get after rescaling the

T2
constants®:

C1 701 C’l’l”2 612 013
b(r)=C |r?1 =) - = _ _
) " n(co * r2> 8co  24Csco® + 4r2co?  24cp3rt
1 c 6c12¢ c®
bi(r) = Cir? — Cy {r2003 In <co + T—;) —2leie? + ;2 0 _ ;—4}1 . (12)

6
c

The line-element of solution (12) takes the form:

24¢0372 In <Co + %) )
2
ds* = — — 3¢ 760—ﬂ —Ci—i-cy"2 dt?
c1 r2 r4
6
<Co — %) dr?
+ +rde?, (13)
24co37r2in <c0+i—§>
o — 3¢ [760 — QT%] — %2 + cor?
where we have assumed C = 240&3, C1 = ¢, and Cy = —%4. The above line-element, (13), shows clearly that the

constant ¢; cannot equal to zero which means that this solution can not coincides with the BTZ GR BH solutions
and this yields that such BH solution is a new one. Moreover, the metric (13) asymptotes AdS/dS spacetime when
¢o = 0. Now using Eq. (13) to calculate the invariants of GR we obtain the following forms:

04 05 07 08

R#VPUR#VPU:R#VR#V503+T—2+T‘—4, Rz06+7‘_2+7‘_47 (14)
where the constants C;, i = 3...8 are combinations of ¢y, ¢, and ca, i.e.,
2

12 4C 24¢4?

Cs = —5 <02 + 24¢03 lnco> , Oy = 24 ) Cs = —% <Cz +8co” + 2460317160> <Cz + 24cy® lnCo) ;
Co Co Co
6 2C; 6,2

Co=——s <C2 - 24co3lnco> L G =" o= <7c2 —8cp” — 168co3lnco> : (15)

Co €o )

3 There are many forms that one can assume for F'(r) but in this study we restrict ourselves to the form that can give reasonable physical
results.
4 These assumptions of the constants C, C7 and C2 give a relations between the two unknown functions b(r) and by (r) to take the form

c
co—%

bi(r) = ﬁﬁ



Here (RW,MR””W, R, R, R) are the Kretschmann scalar, the Ricci tensor square, the Ricci scalar, respectively
and all have a true singularity at »r = 0. Moreover, the above equations show that ¢y must not equal zero. It is
important to stress on the fact that the constant ¢; is the main source for the deviation of the above results from
GR that has the following values (RWPUR“”P‘T, R, R*, R) = (12A27 12A2, $8A). Equation (14) indicates that the
leading term of the invariants (R, ,c R, R, R", R) is (C3,C3,Cs). Therefore, Eq. (14) indicates that scalar
invariants of our solutions are stronger than the BTZ spacetime of GR.

D. When F(r) # constant and by # 0

Now let us turn our attention to the general case, i.e., when F'(r) # constant F(r) = co + % and when by # 0 we
get the following solutions:

Cy?

12 10 , 2 2 8 6
= 10. 2 +er e +21C0r " cg’ct —6c1°cgr°Crg + Cric
367 C1 011

b(r) (576 Cyq cobr? l (ln (co r? 4+ cl))2 +4 (In r)2

+24 In (CO T2 + Cl) 12 TSCO4011 612 — 42 T10005011 C1 — 2 TGCO3613011 - ’I”12C()3010 — 96 T12006011 Inr + 441 0126047”8011

+48603T6 Inr TGOl() + 420027”401101 - 12COT2011012 + 2013011 - 66030117”2 427”4003 + 137”200261 - 260012

+ 0037”6010) )

T2

bi(r) = ———— (576 Ch1co®rt? [ (In (cor® + cl))2 +4(In r)?

+ o T12 + 21 ClO T1000261 - 661260 Tgclo
(cor? — 1)

+24C()3T6 In (CO r? + Cl) 12 ’I”2COCH 612 — 2613011 — TGOlo — 42 T4002011 c1 — ’1”6003 In rCq1| + C11 016 + 78 C11 T4CO2614

+48¢3r% In r|7°Cyy + 011{42002r4 c1 — 12¢cor?er® 4+ 2¢1°}

+ Cy1repe® [4410037°6 — 925211t cp? — 12642

+ 01376010> ,

_baa 70 +48 Co co®rS1n 7 — 24 Cy 16¢¢3 In (co r? 4 cl) + 21 Cortep?eq — 6Cy12co 12 + Cy c1®

6¢cq 76

b2 (T> ’ (16)

where c3, ¢4, Cy, C19 and C11 are constants. Re-scaling the constants by putting Cg = 6¢1, C1p = & and Cq; =1 in
Eq. (16) we get

Co3ln (Co =+ %) 5 A
288 48
b(r) =cor? +21c2 — ——~ L 4oad 1~ 24eePin| o+ L) $r2 4 1008¢2¢ 2 — 2220 | oL
c1 r2 r2 rd

30061 [2 — 14701603] + 612[1 — 25200301] + 78002614 1200615 016

r2 o 76 8 7107
b 21 2 6 2 3
bl (r) :L bQ(’r') = Cq4 — 24003171 <CO + %) + i02 a - Cﬁjl + % . (17)



The line-element of the BH solution (17) takes the following form:
ds* =
24T061003 (1 —2¢4¢1)1n (Co + %) +2c13cq — (1 + 1204007“2) 12 + 6egr? (1 + 704007“2) c1+ ((042 — 02) r? — 21002) rd
- dt?

6
<co — %) ridr?
_l’_

24T061003 (1 —2¢4¢1)In <co + f—%) + 2¢13¢q — (14 12¢4¢012) €12 + 6cor2 (1 + Tegepr?) e + ((ca? — ea) r2 — 21¢p2) r4

car® +48¢e®r®In r — 24 ¢¢% In (co r 4 c1) 8 4+ 21 rteper — 67%¢co a1 + 1 ®

+r2de? + -
.

dtde. (18)

Now use Eq. (17) in order to calculate the invariants as in the case of non-rotating case we obtain the following
expressions:

Rupo RMP7 = R, R = Cho + % + % , R~ Ci5+ % + % . (19)
where Cs - -+, Cy7 are defined as:
2
Cia = % <0201 — 24c0® In o[l — 24co®cy In CO]> , Ci3 = 4050
Ch "1 €o

24 <02c1 — 24¢o3 In co[1 — 24cpcy In co]> (576 cober (In(c))? + (=24 co® + 384 coc1) In(co) + 12 — 8 co3>

014 - — 0014 9
6 2C
015 = — G <0261 - 24003 In 00[1 - 2460361 In Co]> 5 016 == 0t 5
Co 1 Co
6
Cy7 = % <70201 — 8co® + 24c0® In co[16¢9® — ez + 168¢0® In co]> ) (20)
o

Equation (19) shows that all the invariants have a true singularity at » = 0. Moreover, the above equations show that
c1 must not equal zero. It is important to stress on the fact that the constant ¢; is the main source for the deviation
of the above results from the BH BTZ of GR.



IV. PHYSICAL PROPERTIES OF THE BH SOLUTIONS (12) AND (17)

In this section, we are going, to understand the physical properties of the BH solutions (12) and (17).

A. Physical properties of the non-rotating BH solution, Eq. (12)

For the BH solution (12), we write the asymptote behaviors of the metric potentials, b(r), and b1(r), given by Eq.
(12) and get the following expressions:

co — co’ln <Co + %)

1 6 2
g =—= T2+21002— 0001_1,
tt g,. ¢ r2 rd
J TP _
9u (r = 00) m 1 Aeyp = M+ 5 = = —O(™"),
24 3 2 4.7 3.4
g,,(r—0)=~ {Aeff -2 {lnco +c1ln (T—>] }T2 —TM 4 2T o@r%, (21)
C1 C1 C1

where M = 3co?, Ajp = @2a=24c’ince 7 _ 6eoey, J;2 = Tey2. Using Eq. (21) in (6), when by = 0, we get

Cc1

2 d2
ds® ~ —[TQAej'f — M + % — j—14 dt? + !
T T

+r?de?. (22)

TQAej’f_M+le_J_l2

rd

The line element (22) is asymptotically approaching AdS/dS spacetime and does not coincide with the BTZ spacetime
due to the contribution of the extra terms that come mainly from the constant ¢; whose source is the effect of higher-
order curvature terms of f(R) [16]. Moreover, Eq. (21) shows in a clear way that the constant ¢; cannot take the
value zero which indeed indicate that the BH solution (12) cannot rerun to GR. This means that the BH solution
(12) is a new one in the f(R) modified theory.

Now we are going to use Eq. (12) in Eq.(7) to calculate the Ricci scalar and get:

r8

R(r) = 5 = 24r% ¢y In (co r?+ cl) rOco® — 3c1 1t — 9e1%1%cy — 5er® Y — 3¢p?re; [co ro + 12013]
6(cor?+c1) (cor? —c1)

+48¢3r In T{3 co®rter — 8¢y + 9cor?ei? + 5013} —24e118¢0® + T6 1210t + coea 10 + 1727%¢o3e1® — 9 ca 8¢

—4co 1® = 5¢s 0131"4) ,

6 12 6c12
R(r — o0) =~ —— <02 — 24¢y? lnc()) - % <cz — 24¢y3 lnco> + % (762 — 8¢y — 168603ln00> + 0%,
Co Co'Tr rCy
24cor®  96¢y%rt0 12
R 0) ~ — @)
(r—0) o o +0(r?),
3 (cac1 — 24 ¢o®1n ¢p) 1
R) ~ +2 — 00. 23
r(R) \/co (144 co3In cop — Recpbcy — 6 cacy) T (23)
Eq. (23) shows that
co >0, and c >0, and cac1 —24¢03In ¢ > 0, and 144 ¢y 1In ¢ — Repber — 6caer > 0,
or c <0, and cac1 —24¢03In ¢ <0, and 144 ¢y In cg — Rep®er — 6caer > 0,
or c1 <0, and cac1 — 24 ¢ In ¢ > 0, and 144 ¢ In ¢ — Repber — 6 eaey < 0,

or c1 >0, and cac1 —24¢0%In ¢g < 0, and 144 ¢ In ¢ — Rep®er — 6eaeq <0, (24)



otherwise we will have an imaginary quantity. Also we stress that the constant ¢y must take a positive value as Eq.
(23) shows. The form of f(r), that reproduces solution (12), after using the form of F'(r) = co+ 7%, takes the following
form:

1 o
r)= 9671%%¢; (cor? +c1) (dercor? +9¢1? — co’r? 1n(c+_)_613T16
f( ) C05 (CO r2 —61)7 (CO r2 +C1)01{ 0“1 ( 0 1) ( 10 1 0 ) 0 2 0

2
+96 o3y (co r?+ cl) (co r? — 01)7 In (g) — 14 ¢ttrt2e? + (96 e ?rtt 4+ 14 r10013) co'® — 288 ¢3¢ 1% 4+ 6 ¢ 2rtte;
— (14 8¢5 4+ 1088 cl4r10) co® + (14 rte 8 — 12620 ey — 288 cl5r8) co’ + (—6 e1"r? +32r5¢% + 108 cl3r1202) o8

+ (018 —20 cl4r1002) co® +567%3¢1%¢o — 56 01702 r4002 +24¢18¢q1r%¢y — 401902} ,

2 2
96¢; In (3—) —o0” 12ei(ea+ 2400’ In co) | 1261 (3cs + 4o + T2e0In co)

—0) =~ O —6
f(?” ) C0201 606T2 6077”4 + (T ) )
96¢03cy In (2) —cobb +4cica 32c¢
—0) ~ 3 — 5+ 008, 25
7r—0) g 1+ 0r*) (25)

The use of the last equation of (23), r(R), in the first equation of (25) we get:
f(R = 00) ~ dy + daR + d3R?

(26)
where d; are constants that have the form:
B 1 3072 Incoer co® + 729 ¢o® — 73056 ¢ o> In 2 4+ 69984 ¢ ¢o3 In 3 + 256 ¢1 co® — 2788 ¢4 2

" 79 cober :
g — 64 aco (408 In coco® — 408 ¢o® In 2 + 358 ¢¢® + 17 c2)

27 6561 24 In cocp® — c; ¢ ’
g 32 co"e1? (1704 Incoco® — 1704 ¢p® In 2 4 952 ¢p® + 71 ¢2) @7)

® 7 759049 (24 In coco® — ¢1 ¢2)° '

To avoid the tachyonic instability, we check the Dolgov-Kawasaki stability criterion [52-55] which states that the
second derivative of the gravitational model frr must be always positive. Using the chain rule we get
df(R) _ df(r) dr _ ¢

IR="0p = =t (28)

d>f(R) B df_R dfr(r) dr

Jern=—pe =GR~ "4 4R

= (co r?— 01)8 (co r? + 01)3 cl{l2r10 [24 In (co r? 4+ cl) r'2¢07 — 288 In (co r? 4+ cl) c1 1% — 1008 In (co r?+ cl) e 2r8ey®

—1056 In (co r? 4+ cl) 12180t — 360 In (co r? 4+ cl) et rtee® — 48 In rr'2e¢y” 4+ 576 %70 1In rep — 32 ¢4 r10¢°

42016 co°r2c12 In 7 + 280 ¢121%¢o® + 2112 o181 2 In 7 + 816 ¢1°1%co® + 656 11t co® + 720 co®rert In 480 ¢1°r2 ¢y

-1
—8¢18¢co — ear2epter + 1201203 + 42 13 o 18 e0? + 44 ¢t o 8¢o + 15 ¢1°¢o r41 } . (29)

The behavior of the Ricci scalar, f(r), fr and frr are given in Figure 1. As figure 1 (a)-1 (d) shows that the
Ricei scalar, f(r), the first derivative of f(R) and the second derivative of f(R) all of them have positive value which
means that the condition of stability given by Dolgov-Kawasaki is satisfied [52-55].
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Figure 1. Systematic plots of; (a) the Ricci scalar given by Eq. (23); (b) the analytic function f(r) given (25); (c) the derivative
function fr given by Eq. (28), and (d) the second derivative frr given by Eq. (29). All the figures are plotted using the
following values of the constants, M =1, co = 0.1, ¢1 = 10, co = —10°. These values satisfy the constrains given by Eq. (24).
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B. Physical properties of the rotating BH solution, Eq. (17)

Now, let us turn our attention to the rotating case to where the asymptote behaviors of the metric potentials, g (r),
gro(r), and g,(r) are given by Eq. (17) and get

C1

241r%¢° (1 - 26461) In (Co + 7%) + 2@1304 — (1 + 1204007*2) 012 + 6007’2 (1 + 704601"2) c| + ((042 — 02) r2 — 21602) ré

gtt =

i ’
7 _g2

gii(r — 00) zrzAleff - M+ i e O(r~°y,

242 — 1eo*r®
grt(r = 0) = <A18ff —48¢p3(1 — 2¢1¢4) In r) r?—TM — [2ercs 5 Jeo'r +0(r%),
C1
g gt
rr c 6 )
(co— %)
(r = 00) c1¢0° 3c12co®(2c1c0 — co®[1 — 481n co{1 + co3er (1 + 241n ¢p)}])
(17— 00) &
g (c1c2 — 24¢o3 In ¢l — 24¢p3¢q In ¢o))r? (c1c0 — 24cp® In cp[1 — 24cp3er In cp))?r
+0(r™°),
242 — 1]eprt
grr(r—0) = (Aleff — 48003(1 —2c1¢4) 1In r) r2—TM — [2ercs 5 Jeor — (9(7‘6) ,
. .
cor® — 24¢¢37% In (co + %) + 21coeirt — 6eger?r? + ¢1®
gt¢ = T4 )
6coci?  Terd _
i (1 — 00) = (4 — 24co® In co)r?® — 3co?er + % - 7’—‘11 — 0@ %
2 Wyt
gio(r — 0) = 21co’e; + [04 + 24¢o® In (T—)] p2o 20T o(r%). (30)
C1 C1

where M = —3¢p?(1-2c1¢4), Aiepr= 24eo® (1 — 2c4c1) In co+ca®—coy T = —6cger (1—2¢1¢4), T12 = —Ter2(1-2¢1¢4).

Cc1

Using Eq. (21) in (6), when by # 0, we get

AN/ P dr®
r2 r4 1008 + 3c12¢0°(2c1c2—cp3[1—=481n co{14co3c1(14241n ¢o)}])
(c1c2—24¢03 In co[1—24co3¢cq In co])r? (c1c2—24¢03 In co[1—24cp3cq In ¢g])2r?

ds? ~ — r2A16ff - M+

a8+ 480 ¢3ln r — 24 ¢ In (co r2 + cl) 0+ 217r%¢o2c1 — 671%co 1 + 1°

rd

+ride? + dt de . (31)

The line element (22) is asymptotically approaching AdS spacetime and as we discussed in the non-rotating case it
does not coincide with the rotating BTZ spacetime [39] due to the contribution of the extra terms that come from
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the higher-order curvature terms of f(R) [16]. Now we are going to use Eq. (17) in Eq. (7) and get

6
c1 (eor? + 01)2 (c1 —cor?)
+576 74130 — 17212613 ¢ — 76 co*rtter? 4 268 cotrei® + 24 ¢®rt%er — 2940 ¢0°r0ct® + 20 co 21 — 5o eyt
+2478 In r[96 6086121"8 — 304 0076137”6 — 688006014r4 — 144 0050157“2 — 18 6046127”6 — 10 0036137”4 -6 00501 r® +16 004016]
+24CO4T801 In (CO r? 4+ cl) [9 OS¢y + 152T6612C()3 + 3447’4613602 + 72cor2014 —192¢,° + 300r8 + 5rt¢,? — 0021"10}

R(r) =

= {co?’cg r8e —3¢p2ea e — 9cgea ey + 48 ¢ In rr'® — 1968 r12014006 — 410

—576¢0%c1r2 In ((co r?+ cl))2 [3T4co2cl +9r2¢1%¢o + 501372003} —24¢®r%¢1” — 24 ¢ rte® — 36 ¢o?rCeit + 4o el

—2304¢0%c4 (In r)2 ri? [3 coleirt +9coer?r? +5¢° — rﬁcog] +1152r%7¢1 In (co r?+ cl) Inr llS 1215 4+ 6eperr® — 2rt0¢y?

—r0¢® + 10013r41 } ,

6 2 3
 Bleacs +57600° (Ineg)” — 24 coPes Ineg] 12 (0201 +576¢o°cr (Inco)” — 24 ¢0” In 00)
fir = oo) &~ = coler - coTr?

6¢q (7 2 + 4032 ¢8 (In 00)2 — 168 co3cs Inco — 8 cpies + 384 ¢p% In Co)
J’_

—6
CQST‘4 + O(T ) )

48¢o?rt

012

R(r —0)~ —24+ +0(r%),

F(R) ~ +2 3cq(eaer + 576 ¢pb¢; (In 00)2 — 24 ¢¢% Incp) i
co(144 co3egInecyg — Repbey — 6 cacy — 3456 ¢pbey (Ineg)”)

, T — 00. (32)

Equation (23) shows that when the constant ¢y must not equal to zero also Eq. (23) shows that either

co >0, and c1 >0, and (cac1 4 576 co%cy (In 00)2 —24¢0® Incg) >0,
and (144 co®cylncg — Repey — 6 cacy — 3456 co%¢ (In 00)2) >0,

or c1 <0, and (cac1 + 576 cobcq (In 00)2 —24¢¢ In co) <0, and
(144 co®csIncg — Rcp®ey — 6 cacy — 3456 c%¢y (In 00)2) >0,

or c <0, and (coc1 + 576 cobeq (In 60)2 —24¢y® In co) >0, and
(144 co®calncog — Reo®ey — 6 cacy — 3456 ¢y (In 00)2) <0

or c1 >0, and (cae1 + 576 cobey (Incg)® — 24¢° Ineg) < 0, and

(144 co®ealncyg — Reobey — 6 cacy — 3456 ¢y (In 00)2) <0. (33)
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The form of f(r) of the BH solution (17) has the following form:

1
f(r) = Cr? T e ( o )7 {4c1902 — 96 ¢o!r®In (co r? + 01) +esc’er? +12¢0 ey ¢1? — 2461512 ¢ o
cor c1)co® (—cor c1) 1

+56 6177”460 ¢o — 56 ¢157° co co + 20 CO5T1002 — 108 1 006r co + 192 ¢y 161y — 14 Cs 6080161"6 + 96 00107“1401

+864 ¢13¢o%r19 In (CO re + cl) + 1248 ¢12¢0%r1% In (CO re + cl) + 288 ¢y!0rte; In (CO 2+ cl) — 4608 In (co r? + cl) cotBeq 2t
—20736 119! (ln (co r? 4+ cl))2 = 29952 r2¢, 12 (ln (co r? + cl))2 c1® — 691271y t3 (ln (co r? + cl))2 2

+2304 r16¢ 14 (ln (CO r? 4+ cl))2 c1 + 13824 In (co r? + cl) c0'%c1°r® — 1536 In (co 4+ cl) co?c1%7% + 480 ¢, 8r 607
+52224 In (CO 2+ cl) coMterrt? 4+ 13824 In (CO r? + cl) cot2e®r1? — 1280 ¢1 " rte® + 2880 ¢1%7% ¢y — 21696 ¢1°¢o'Or®
—119808 712¢('? (In T) 12 — 27648 rtte '3 (In r)2 12 + 9216 7014 (In r)2 c1 4 3072¢15¢%r% In 7 — 27648 ¢1°¢o 7% In r
—104448 c14 oM 0 In r — 27648 ¢1%¢o 2 r 2 In r + 9216 ¢12¢o 3 In r — 288 1% ¢ Tr® — 7200 et co M0 + 2304 ¢13 ¢ 1212
+1In (CO r? + cl) [27648 coter?In rrtt — 9216 coMeq 719 1n 7 + 119808 Incp*2e1®r2 In r + 82944 Incp e *r'0 In r]
—64c1%co® + 14 e5¢07crr* — 65 c0%c13% + 14 500 0 — 1d 5 cott e 3r1? + 665 CO 201 r14 — 82944 r0¢y 11 (In r)2 c1
—c5cotBer 1% — 1728 ¢o® In e 3110 — 2496 ¢” In re?2r'? — 576 ¢ 0 rn r+32¢,%r8 co® — 1088 ¢13¢o3r10 — 288 ¢4 2y 12

4

2
+96 In (5) co® [14 %8¢ — e1® — 60 rt ey — 14?1t + 6 coer 1% — 14 ¢ 0 + o816 + 14 012006r12] } ,

1 3
flr—o00)~ ﬁ{% co’rt In (§> — 96 ¢o°r* In ¢y + 2304 ¢o®rtey (In 00)2 —co"rtes ep — 288 ¢y 2ot In ¢
Co'c1T
—c5c0™3er 18 — 1728 ¢o® In rer2rt0 — 2496 ¢” In rer 2112 — 576 ¢ ¢y v In v+ 32¢1%70¢0% — 1088 ¢13¢o Bt — 288 12 ¢ 112
+6912 ¢4 %12 ¢ (ln co) +12¢1%r% ¢y ca + 864 ¢1%¢o> In ¢ — 20736 ¢1°co® (In 00)2 —36¢1%ca — 2304 ¢13¢% In ¢ + 48 003012}

—c5 03 18 — 1728 ¢o® In rer2rt0 — 2496 % In et 2112 — 576 ¢ ¢y vt In v+ 32¢1%70¢0% — 1088 ¢3¢ Bt — 288 ¢12 ¢ 112
+0(r™7),
4deg 1?2 496 ¢ ¢ ln (%) +c5co’c1? — 64c0%ci? 4+ 96 ¢y coTr? + 192748

fir—0) = el +0(r%). (34)

To avoid the tachyonic instability, we check the Dolgov-Kawasaki stability criterion [52-55] which states that the
second derivative of the gravitational model frr must be always positive. Using the chain rule we get
df(R) _ df(r) dr c

In="ar = "o ar=""p (3%)

frRRr = (Co r 4+ 01)3 (co r? — 01)8 01{121"6 lln (CO r? + cl) [24 co'r® —101376¢07c1*r0 In r — 34560¢0% ¢, °r® In r] —8co?ey?

—cotes rlﬁcl —88872¢13¢0® + 648071 %1% co” + 15848 r8¢15¢o8 4+ 656 rBeitey® — 32 ¢®rtter + 7712 ¢0® 1578 + 280 ¢®rt2 ey ?
—488 cotey Trt + 816 cotrci® + 12¢03ca 112 + 42 coea 1 2e1® + 44 g a0t + 15 o r8e1® + 16 ¢ r? ey ® + 80 ¢y ° 8

+2304r800601 (In T)2 [44000131"2 +15¢% — 18 CO + 1200 cq7 —|—42co c1 2pt | 4 48p% Co 3ciln v 446061 6 — 16 0001 + 15¢:%r

—64 o8¢m0 + 560 ey 2r® + 1632 coter 310 + 12603110 + 160 co2e1°r2 + 42 ¢ eyr® + 1312 0030147“41 — 8¢y 0167°4

+24r%¢1¢0% In (co r? —i—cl) 6471%¢1¢0% — 560r8¢12c0® — 16321%¢;3co* — 1312r%c1% e — 126031312 — 160 co2c1® — 42¢0%r8¢y

+16¢oc1® — 44eorbey? — 15rt e — 1152¢0% 1m0 1In | + 576¢1¢0%r (ln (co e+ cl))2 llQ rSeico® + 4214 ¢ 2e0? + 4412 ¢3¢

-1
+15¢,% — r8004‘| —48¢¢"r'®In r — 96768 In (co r? + 01) coer®rt?1n v+ 2304 In (CO 2+ cl) ri1n reg 6010] } . (36)
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Figure 2. Systematic plots of; (a) the Ricci scalar given by Eq. (32); (b) the analytic function f(r) given (34); (c) the derivative
function fr given by Eq. (35), and (d) the second derivative frr given by Eq. (36). All the figures are plotted using the
following values of the constants, co = 10%, ¢; = 10, ¢ca = —10°, ¢c3 = 1 and ¢4 = 1. These values satisfy the constrains given by

Eq. (24).

The behavior of the Ricci scalar, f(r), fr and frr are given in Figure 2. Following the same procedure of the
non-rotating we get the behavior of the Ricci scalar, f(r), fr and frgr, in the rotating case, as: As figure 2 (a)-2 (d)
shows that the Ricci scalar has a positive value, f(r) has a costive value then a non-defined value then a negative
value; the first derivative of f(R) has a positive value as well as the second derivative of f(R).

V. THERMODYNAMICS OF THE BHS

Now, we are ready to study the physical properties the BHs (12) and (17) from the thermodynamics viewpoint. To
do this, we are going to write the basic definitions of the thermodynamical quantities that we will use.
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Figure 3. Systematic plots of; (a) the metric potentials given by Eq. (12); (b) the horizons of the temporal component of g (r)
given (37); (c) the Hawking temperature given by Eq. (39), and (d) the second derivative frr given by Eq. (36). All the
figures are plotted using the following values of the constants, M = 1, ¢o = 0.01, ¢; = 0.001, ¢o = —10°, ¢ = 1 and ¢4 = 1.
These values satisfy the constrains given by Eq. (24).

A. Thermodynamics of the BH (12)

The asymptote form of the temporal component of the BH solution (12) has the form:

2472931 6
g 0020, 3,2 - 20 (37)
C1 T
Equation (37) has four real roots given as:
\/(:I:\/9 co? + 576 cotlncyg —24cocacy — 3 002) cl
T =
* \/2(24co3ln cop — Ca 1)
\/(:I:\/Q cot + 576 cotlncy —24coeacy — 3 002) c1
T =—
2 \/2(24 co*ln cop —caeq)
(38)

where Ty, are the inner and outer horizons of the spacetime. In Fig. 3 (a) we plot the metric potentials of g¢; and g,
showing their behavior. In Fig. 3 (b) we show the horizons given by Eq. (38) showing that for the specific values of
the constant ¢ we can have two horizons, inner and out, or the two horizons coincide constitute a degenerate horizon
or we can enter a region where there is no horizon, appearance naked singularity.



16

The temperature of Hawking is given by [91-96]

g 24 7% 1n (co + %) codrico + c1] — r8eaer,co — 8¢z 12 — 2415¢o3e1 — 6rtc?er? — dr?eger® + 2¢1t

T(ry)

4 7 (cor? 4 ¢1) errd
(39)

In Fig. 3 (c) we show the behavior of the Hawking temperature of the BH solution (12) showing that the temperature
is always positive. The semi classical Bekenstein-Hawking entropy of the horizons is defined as

S(ry) = %f}%(ﬂ) = dn?ry fr(ry) = 4n°ry (Co + Ti_—lg> ; (40)

with A = 27r; being the area of the event horizons and the gravitational constant G equals G = 8%1-' The behavior
of the entropy is depicted in Fig. 3 (d) showing that the BH solution given by Eq. (12) has always positive entropy.
Finally, the heat capacity is figured out as [97, 98]

S'(ry)
T'(r+)

C(ry)="T(ry) ( > = { (24 r81n (co r? 4+ cl) c04 +247%1In (co r 4+ cl) c03c1 —18cqcq co — rScqc1? — 24 7’6c0301

—487%n rco4 — 4875 1n regle; — 6% c?e? — 4r%co e + 2 cl4> 2 (r4002 — 012) }{4r <24 r%1n (co r? 4+ cl) ¢’
—247r8¢o%c; — 8¢y c1® — 5475¢03 12 — 48 r101n rep® + 26 rtcp?er® — 21%co et + 4818 1n (co r? 4+ cl) cotey

-1
+247%1n (co r? 4+ c1) codc1? — %4 1 o — 278¢5 12¢9 — 9678 In 7’004c1 —487%1n regdei? — 10 cl5> } , (41)

where S’(r1) and T'(r1) are the derivative of entropy and Hawking temperature with respect to the outer horizon
respectively. We depict the behavior of the heat capacity given by Eq. (41) in Fig. 3 (e) which shows that we have a
stable model because the heat capacity is always positive.

B. Thermodynamics of the BH (17)

Now we are going the same steps used in the non-rotating case and get the asymptote form of the temporal
component of the BH solution (17) to has the following form:

24 12¢¢3 In ¢
git ~ — r2eo + 1204% — 48 7’260364 In ¢g + 3002 —6c c0204 + 12 2 —6 2
1

C1 264 Co C1 Co

(42)

Equation (42) has four real roots given as:

\4/00012\/3 co3/2[2cac1 — 1] +V3v/2¢1cq — 1\/6 codegcr — 8cq?er — 33 +192¢p3 Incp2cac1 — 1]+ 8oy

r = ,
2 \/2(24 co®Incy —caer + eq?c; — 48 cpdeq 1 Incy)
\4/00012\/3 co3/2[2cac1 — 1] — V/3y/2¢1cq — 1\/6 codegcr — 8cq?er — 33 +192¢p3 Incp[2cac1 — 1] + 8oy
Tiog = + .

\/2(24 co®Incy —caer + eq?c; — 48 cpdeq 1 Incy)
(43)

As Eq. (43) shows that there will real roots if ¢g > 0, ¢; > é and

6codeact —8ca?er —3co® +192¢0° Inco [2c4¢1 — 1] +8¢a¢1 > 0. In this case we will deal with one horizon which we
call it 7, that given by

\4/00012\/3 co3/2[2cac1 — 1] +V3v/2¢1cq — 1\/6 codegcr — 8cq?er — 33 +192¢3 Incp[2cac1 — 1]+ 8cacy

T o=
\/2(24 colncy — cacr + ca?c1 — 48 coeq 1 Incy)

h

(44)
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Figure 4. Systematic plots of; (a) the metric potentials given by Eq. (17); (b) the horizons of the temporal component of g:(r)
given (43); (c) the Hawking temperature given by Eq. (45), and (d) the heat capacity given by Eq. (41). All the figures are
plotted using the following values of the constants, M = 1, ¢o = 0.01, ¢1 = 0.001, ¢a = —10°, ¢3 = 1 and ¢4 = 1. These values
satisfy the constrains given by Eq. (24).

In Fig. 4 (a) we plot the metric potentials of ¢;;, gr,, and g;, showing their behavior. In Fig. 4 (b) we show the
horizons given by Eq. (44) showing that for specific values of the constant ¢; we can have one horizon a degenerate

horizon or we can enter a region where there is no horizon, appearance naked singularity.

The temperature of Hawking of the BH solution (17) is given by [91-96]:

1
T =
(r.) 21 (cor? + 1) oy

—r8¢1 ¢a co + 8¢y 04200 —deqPeq + 24 T8004 In (CO r? 4+ cl) — 48 r8004 Inr—24 r600301 — 61"4602612 — 47’260 12— 1%¢q 12

{24 r8¢0% In (co r? + cl) e — 48 7%¢o3 In rey + 48 1%¢o3 1y + 1272130y + 8172 ¢o et ey

+r8¢,%¢1% — 48 T8004 In (CO r? + cl) c1cq — 48 7’6003 In (co r?+ cl) c12cq + 96 T8004 In req eq + 96 T6003 Inreieq + 26

(45)

In Fig. 4 (c) we show the behavior of the Hawking temperature of the BH solution (17) showing that the temperature
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is always positive. Finally, the heat capacity of the BH solution (17) is figured out as [97, 98]

e (3) -

+87%¢co crtey — 18y o g + 8¢ ch®cy — 481r8¢p* In (co r? 4+ cl) c1cq —4815¢3 In (co r? + cl) c12eqs +961r8¢o* In req ey

4 <2 ot +24 r8¢0% In (co r? + cl) 1 — 487%¢o% In rey + 48 7%¢3 1 ey + 127413 o’ ey

+967%¢0% In reg?eq — deqPey + 24 r8004 In (co r? + cl) —4878co* In 1 — 247%¢y3c, — 6 r4002012 —4r%chcr® — 18y
+r6042012> 72 (0021"4 — 012) ] {T <108 T661360304 + 48 T8004612C4 — 19 ¢ 002 — 52 T401400204 —278¢1%¢, co + 10 C42CO2

+278¢12¢4%co + 4r%co ey — 48119¢° In (co r? 4+ cl) ¢y cq —9678¢0* In (co r? 4+ cl) c12eq — 48 1%¢y% In (co r? 4+ cl) c13eq
+96719%% In 7¢q cq + 19278¢o* In rer2es + 96 15¢o3 In rerdes + 20 ¢1%¢s + 26 7t e13eo? — 2¢9 2t — 5470¢p3 ¢y
+48 r8¢y* In (co r?+ cl) c1 + 24 ¢9% In (co r? 4+ cl) 8¢ — 9618  In rey — 48 ¢ In r18¢12 — 10 ¢,° — 24r8¢oey + r8ey?ey®

-1
—r%¢q 1 +247%4° In (CO 2+ cl) — 4871945 In 7“) } , (46)

where S’(r, ) and T'(r, ) are the derivative of entropy and Hawking temperature concerning the event horizon respec-
tively. We depict the behavior of the heat capacity given by Eq. (46) in Fig. 4 (d) which shows that we have a stable
model because the heat capacity is always positive.

VI. DISCUSSION AND CONCLUSIONS

In this work, we have explored two new classes of three dimensional BH solutions in f(R) gravity. By varying the
action we derived the field equations. Taking the trace of the field equations, we have rewritten the field equations in
the form of Eq. (5). We applied the form of the field equation of f(R), written in terms of fg, to 3D spacetime that
has three unknown functions, one of them is responsible for making the metric to have a rotating form, i.e., ba(r).
We classified the resulting field equations into four cases: (i) fr = constant and by(r) = 0, (ii) fr = constant and
ba(r) # 0, (iii) fr # constant and by(r) = 0, and finally, (iv) fr # constant and by(r) # 0. We focus on the last two
cases because the first two coincide with the rotating/non-rotating three dimensional solutions of GR.

Assuming the form of fr(r) = co + % we are able to solve the field equation with/without an unknown rotating
function. Our solutions cannot coincide with the 3D solutions of GR because the constant ¢; is not equal to zero.
Although our field equation do not involve the cosmological constant term, however the study of the asymptote of
these BH solutions showed that they behave as AdS/dS. In fact, the constant ¢g plays the role of the cosmological
constant which indeed means that this constant cannot be vanished. We also showed that the invariants of these BHs
have a true singularity at the origin and a strong one as compared to the 3D solutions of GR. The source of the strong
singularity comes from the non-trivial forms of the Ricci scalar of the two BHs. We calculated the form of f(R) of
the BHs and showed that both of them behave as a polynomial one. Moreover, we calculated the second derivative of
f(R), i.e., frr of the two BHs and showed analytically and graphically that they have positive values, which means
that the Dolgov-Kawasaki stability criterion is satisfied [69] and this ensures that our BHs avoid tachyonic instabilities
[52, 54, 55, 99].

We also investigated the causal structure of the solutions and showed that they possess several horizons. We
found out that these solutions show stable thermodynamic behavior in all regions since the Hawking temperature
and heat capacity are always positive and free from singular points, which indeed ensure stable BHs thermodynamics
configuration where no phase transitions occur.

Finally, we would like to mention that many issues remain for further investigations. One may consider the geodesic
structure and Penrose diagrams of these spacetimes. Besides, the techniques presented in [100, 101] could be applied
for describing the issue of the structure and nature of the horizons and singularities of the obtained solutions. It
would be also interesting to explore thermodynamic properties of the BH solutions, as well as possible holographic
applications.
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