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ABSTRACT 
 

The contribution of this paper is two-fold. First, we describe an improved version of a blind steganalysis method 
previously proposed by Holotyak et al.1 and compare it to current state-of-the-art blind steganalyzers. The features for 
the blind classifier are calculated in the wavelet domain as higher-order absolute moments of the noise residual. This 
method clearly shows the benefit of calculating the features from the noise residual because it increases the features’ 
sensitivity to embedding, which leads to improved detection results. Second, using this detection engine, we attempt to 
answer some fundamental questions, such as "how much can we improve the reliability of steganalysis given certain a 
priori side-information about the image source?" Moreover, we experimentally compare the security of three 
steganographic schemes for images stored in a raster format – (1) pseudo-random ±1 embedding using ternary matrix 
embedding, (2) spatially adaptive ternary ±1 embedding, and (3) perturbed quantization while converting a 16-bit per 
channel image to an 8-bit gray scale image.  
 
 

1. INTRODUCTION 
 
Steganography is often formulated as the prisoners’ problem. Two inmates, Alice and Bob, imprisoned in two different 
cells are trying to secretly hatch an escape plan.2 The only way they can communicate with each other is through a 
channel that is monitored by warden Wendy. If Wendy detects any encrypted messages or anything that indicates covert 
communication between Alice and Bob, she will throw both of them into solitary confinement. The steganography 
problem is: “How can Alice and Bob prepare an escape plan by communicating through the monitored channel in a 
manner that doesn't raise Wendy’s suspicion?” The steganalysis problem is the other side of this game: “How should 
Wendy analyze the channel traffic so that she doesn’t miss any secret messages and also doesn’t throw Alice and Bob 
into solitary confinement if they are innocent?” 
 
In the first part of this paper, we concentrate on Wendy’s task. We assume that Alice and Bob have access to a source of 
digital images (cover images). They use a steganographic algorithm for embedding messages by altering the image 
content and then exchange these stego images to communicate the message. The algorithm requires a secret key that they 
agreed upon before imprisonment. Wendy does not know the images before alteration and she does not know the secret 
key. Often, it is assumed that Wendy knows the steganography algorithm (Kerckhoffs’ Principle) and, possibly, the 
source of cover images.  
 
In practice, Wendy may not know which stego algorithm is in use, in which case she is interested in a “blind” 
steganalysis that does not assume any a priori knowledge about the embedding algorithm. In the past, the problem of 
blind steganalysis was approached using feature extraction and machine learning. Construction of blind steganalysis 
methods starts by extracting a set of features from the cover and stego objects and then training a classifier on this data 
with the goal to distinguish between cover and stego objects. 
 
It is a firm belief of the authors of this paper that the best (most sensitive) features for steganalysis are obtained when 
they are calculated directly in the embedding domain. Thus, for example for JPEG images, the features should be 
constructed from DCT coefficients rather than their spatial representation. This principle is supported by recent 
comparisons of different blind steganalysis methods.3,4 Accepting this principle implies a necessity to divide the task of 
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blind steganalysis according to the embedding domain (e.g., JPEG and spatial domain steganalysis). In this paper, we 
focus on image steganography that is performed in the spatial domain. 
 
The concept of blind steganalysis appeared for the first time in the work of Avcibas et al.5 Farid et al.6,7 proposed a 72-
dimensional feature space (for grayscale images) consisting of the first four statistical moments of wavelet coefficients 
and their prediction errors. Harmsen et al.8 used a simple three-dimensional feature vector obtained as the center of 
gravity of the three-dimensional Histogram Characteristic Function (HCFa). While this method gives good results for 
steganalysis of color images with a low noise level, such as previously compressed JPEG images, its performance is 
markedly worse for grayscale images and raw, never compressed images from digital cameras or scanners. Ker9 
substantially improved this method by introducing the concept of calibration. Holotyak et al.1 used an approach similar 
to Farid’s except they calculate the features from the noise component of the image in the wavelet domain. The authors 
also advocate usage of high statistical moments and show that a substantial benefit can be obtained by considering higher 
order moments. Xuan et al.10 proposed features calculated as the first three absolute moments of the HCF of all 9 three 
level subbands in a Haar decomposition. 
 
In this paper, we focus on the choice of the features rather than the classifier part. Good features should be sensitive to 
embedding modifications and insensitive to the image content. We follow the philosophy introduced in Ref.,1 in which 
the features are not calculated from the stego image directly but from its noise component in the wavelet domain. This 
improves the SNR between the stego signal and the rest of the image and leads to more reliable detection. Instead of 
working with very high order normalized even moments of the noise residual as in Ref.,1 we use absolute non-
normalized moments of order 1 to 9. We call this method Wavelet Absolute Moment steganalysis (WAM). A closer look 
reveals that the first four moments are conceptually the same as the prediction errors used by Farid.6 The denoising filter 
provides predictions for wavelet coefficients. A particular difference is in the type of the wavelet transform, quality of 
prediction, and skipped moment normalization. 
 
In Section 2, we describe the features and construct a classifier using Fisher Linear Discriminant (FLD). We carefully 
compare its performance to current state-of-the-art blind steganalyzers on exactly the same databases. In Section 3, we 
study how much blind steganalysis can be improved by utilizing side information about the cover image source. As one 
might expect, narrowing the training set to better match the source of cover images improves steganalysis. In the last 
experimental part of this paper (Section 4), we use the WAM classifier to compare the security of several steganographic 
methods. Final conclusions are drawn in Section 5.  
 
 

2. WAM BLIND STEGANALYSIS 
 
In Ref.,1 the authors proposed a new idea to calculate the features for steganalysis only from the noise component of the 
stego image in the wavelet domain. The noise component was obtained using the denoising filter due to Mihcak et al.11 
We reiterate that the denoising step increases the SNR between the stego signal and the cover image, thus making the 
features calculated from the noise residual more sensitive to embedding and less sensitive to image content. The 
denoising filter is designed to remove Gaussian noise from images under the assumption that the stego image is an 
additive mixture of a non-stationary Gaussian signal (the cover image) and a stationary Gaussian signal with a known 
variance (the noise). As the filtering is performed in the wavelet domain, all our features (statistical moments) are 
calculated as higher order moments of the noise residual in the wavelet domain. The detailed procedure for calculating 
the WAM features in a gray scale image is similar as in Ref.1 and is shown below. 
 
We point out the main differences of WAM features when compared to Ref.1 In particular, we use absolute moments that 
are not normalized by variance and we do not use a nonlinear log transform. Using absolute moments allowed us to 
eliminate the need for very high moments that are not very significant discriminators between cover and stego image 
classes. The total number of features for a grayscale image is 3×nmom. For color images, the features are calculated for 
each color channel, bringing the total number of features to 9×nmom. As stated above, in this paper, we use nmom = 9. We 
set the parameter σ0

2 = 0.5, which is the same value as in the referenced paper1 and corresponds to the variance of the 
stego signal for an image fully embedded with ±1 embedding (see (1) below). 
                                                 
a HCF is the amplitude of the Fourier transform of the color image histogram. 



                                                                                                                                                                                                 . 
Algorithm:  Feature calculation                                                                                                                                           .                         
Step 1.  Calculate the first level wavelet decomposition of the stego image with the 8-tap Daubechies QMF.12 Denote 

the vertical, horizontal, and diagonal subbands as h(i, j), v(i, j), d(i, j), where (i, j) runs through some index set 
J. 

Step 2.  In each subband, estimate the local variance of the cover image for each wavelet coefficient using the  
MAP estimation for 4 sizes of a square N×N neighborhood, for N∈{3, 5, 7, 9} 
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Step 3.   The denoised wavelet coefficients are obtained using the Wiener filter 
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Step 4.  Calculate the noise residual in each subband 
den( , ) ( , ) ( , )hr i j h i j h i j= −  and similarly rv and rd for v(i, j), and d(i, j), (i, j)∈J. 

Step 5.  Denoting the mean value with a bar, calculate the absolute central moments of each noise residual for 
p = 1,2,…, nmom  
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2.1 Comparing the WAM classifier to other blind classifiers 

We now compare the performance of the proposed WAM classifier with the results reported for current state-of-the-art 
classifiers1,9,14. To make the comparison fair, we always compare on the same image database and the same testing 
methodology. 
 
We start with the classifier by Holotyak et al.1 and use the same classifier (FLD) and embedding method – random ±1 
embedding. This trivial embedding method is arguably the simplest possible embedding that imposes the smallest 
distortion (pixel values are modified by at most one). Later, in Section 4, we use random ±1 embedding as a baseline 
with respect to which other embedding methods are compared. 
 
We will assume that the cover and stego images are vectors of integers in a fixed range (e.g., for grayscale images this 
range is the set {0, 1, …, 255}). In random ±1 embedding, one message bit is communicated at pixel x by applying the 
embedding operation Emb1 to x, obtaining thus the pixel value y from the stego image 
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x
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where r is an i.i.d. random variable with uniform distribution on {–1,1}, b is the message bit, and LSB(x) is the least 
significant bit of x. The word “random” in “random ±1 embedding” emphasizes that the pixels are selected (pseudo) 
randomly using a shared stego key for embedding. Note that for a given payload, the total energy of the stego signal is 
the same as for LSB embedding. However, steganalysis of ±1 embedding is much more difficult than for LSB 
embedding, for which astonishingly accurate detectors exist.13 
 
In Figure 1, we show ROC curves representing the percentage of correctly detected stego images as a function of false 
positives (cover images detected as stego). The three curves correspond to relative payloads of 0.1, 0.25, and 0.5 
bits/pixel (bpp). The FLD classifier with 3×9=27 features was trained separately for each payload size on 390 images 
divided into 195 cover and 195 stego images. All 195 source images were never compressed grayscale images taken with 



the Kodak DC290 camera. Note the significant reduction of false alarms for small payloads 0.1 and 0.25 bpp compared 
to the approach1. As in Ref.1, the ROC shows the results of the training phase only – the separability of cover and stego 
images in the feature space. 
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Figure 1.  Class separability from Ref.1 (a) and the WAM classifier (b) on raw images from Kodak DC290 
camera. 
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Figure 2.  Class separability from Ref.1 a) and the WAM classifier b) for a database of never compressed 2375 
raw images from 22 digital cameras.  

 
We now compare the detection results for a much more diverse source of cover images. Figure 2 shows the performance 
comparison of the WAM classifier with the method of Ref.1 on 2375 never compressed images originated from 22 
different digital cameras (see Appendix A). This database was partially obtained fromb and partially from our own 
resources. It includes a wide variety of images, indoor/outdoor scenes, scenes taken with a without a flash, close-ups, 
landscapes, and images taken under different light conditions, temperature, etc. Those images that were originally taken 
in the 16-bit raw format were converted to 8-bit grayscale images. This database, which we call CAMERA_RAW in this 
paper, is also used in our experiments in Section 3 and 4.  
 
We see again a radical improvement for small payloads and an overall reduction of false alarms. Also, by comparing 
Figure 1 with Figure 2, we note that the steganalyzer constructed for a specific image source (images from Kodak 
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DC290) performs substantially better than for a more diverse source. This indicates that if prior information about the 
image source is available, training the classifier on a narrower source can improve the reliability of blind steganalysis by 
a large factor.  
 
The third database, on which we compared the results, is a set of 2375 raw scans of negativesc. This is the most difficult 
class of images on which we test because raw scans of analog photographs or films are inherently very noisy and the 
detection of steganography is the most difficult. This is why the detection results for this class of images are the worst. In 
Table 1, we include the comparison with Holotyak et al.1 and also with Ker9. Instead of showing the ROCs, we report the 
false positives for 50% and 80% detection rates (as in Ker9). The results for the two methods referenced above are taken 
from Ref.1 
 

 False positives at 50% detection rate False positives at 80% detection rate 
WAM 1.77 7.45 
Blind Statistical Steganalysis in Ref.1 3.45 16.25 
Steganalysis of LSB matching in Ref.9 7 27 

Table 1. Percentage of false positives at 50% and 80% true detection rates compared to two published methods. 
 
We now compare the WAM classifier to the classifier based on Binary Similarity Measures (BSM).14 Since the authors 
of Ref.14 show comparison of their results with Farid’s classifier,6 we obtain at the same comparison for both Ref.14 and 
Ref.6 We use the same “Greenspun” image databased and preprocess the images as in Ref.14. The images were converted 
to grayscale, black borders around them were cropped, and finally the images were recompressed with a quality factor of 
75. We randomly chose 720 images and prepared an even mix of 4 times 180 stego-images embedded with ±1 
embedding with relative payloads 0.01, 0.05, 0.1, and 0.15 bpp for training the classifier. The remaining set of 1080 
images was randomly partitioned for testing to 540 original images and 540 stego for each payload. Figure 3a shows the 
ROC for Ref.14,6 and WAM (b) averaged over 50 tests. We remark that Figure 3a was obtained using support vector 
machine classifier while our WAM classifier was implemented using a simple FLD classifier. Thus, further performance 
boost is expected after incorporating a better classifier.  
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Figure 3.  a) ROC for detection of ±1 embedding with four different payloads for the classifier based on BSMs14  
(solid line) and Farid’s classifier6 (dashed lines), b) Performance of the WAM with 3×9 features (data for figure 

3a is provided courtesy of Mehdi Kharrazi from14). 
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3. WAM CLASSIFIER WITH SIDE INFORMATION ABOUT COVER SOURCE 
 
When designing a blind steganalyzer in practice, when no prior information about the stego method or the cover image 
source is available, the best strategy is to train the classifier on as diverse image database as possible. However, in some 
cases, we may have some side information available about the source of covers. For example, we may know that the 
images are coming from a digital camera of a certain model. Obviously, we can incorporate this side information by 
training the classifier on images from a camera of the same make and model. Quick comparison of Figures 1 and 2 
shows that detection of steganography in images produced by a specific Kodak DC290 camera is substantially more 
accurate if the classifier is only trained on images from the same camera. Intuitively, using side information about the 
cover source to narrow the training database should improve the detection results. 
 
When dealing with images taken with digital cameras, the stego image itself is a source of additional information that 
might be taken into account, such as its size, format, color histogram, power spectrum, semantic content (e.g., 
indoor/outdoor scene, city/country), camera settings (e.g., with/without flash, ISO), camera sensor type (CCD/CMOS), 
camera make and model, etc.  
 
3.1 Experiment  
In this section, we use our WAM classifier to experimentally investigate how much improvement in steganalysis one can 
obtain by training the classifier on a narrower database determined by specific side-information about the cover image 
source. In particular, we ask the following questions 
 

− If we know the camera make and model for the cover image source, how much improvement in detection 
reliability can be expected by training the classifier on images from the same camera model? 

− How much does the detection improve if we train the classifier on images from the exact same camera that took 
the stego image compared to detection using classifier trained on images from a mixture of different cameras of 
the same model?  

 
For this experiment, we used the CAMERA_RAW database of 2375 never compressed digital camera images because 
detection of spatial-domain steganography in raw images is much harder than in images previously JPEG compressed 
(description of the image database is in Section 2). Among the images from 22 cameras were 300 images from Olympus 
C765#1. To complete the experiments, we prepared another 400 images from another camera of the same model 
(Olympus C765#2) that contained mostly the same or similar scenes. All images were converted to grayscale.  
 
In Figure 4a), we show the ROC for an FLD classifier trained on 300 cover images from Olympus C765#2 and their 
embedded forms (300 stego images). The testing was performed on the remaining 100 images divided into 50 cover 
images and 50 stego images from Olympus C765#2. The test was carried out separately for three relative payloads, 0.1, 
0.25, and 0.5 bpp. The ROC curves in Figure 4 were averaged over 50 random partitions of the test set. The remaining 
three experiments shown in Figure 4 b)–d) were performed using the same steps for different sets of the training and 
testing database. 
 
Figure 4b) shows the FLD classifier trained on 400 test images from Olympus C765#1 and tested on 400 images from 
Olympus C765#2. Figure 4c) is the ROC for the FLD classifier trained on 400 test images from Olympus C765#2 and 
tested on 400 images from Olympus C765#1. In Figure 4d), the classifier was trained on all 2567 images, including 
Olympus C765#1, and tested on 400 images from Olympus C765#2. 
 
The experimental results suggest that there is a significant gain when the WAM classifier is trained on images from the 
same camera make and model compared to the classifier trained on a much diverse database that included images from 
22 other cameras (compare d) with c) or b) in Figure 4). For example, we have 1.1% false alarms for 50% detection 
when trained on the same camera at 0.25 bpp compared to 28.5% when trained on many other cameras that included 
Olympus C765#1 (the only Olympus in the set) but tested on Olympus C765#2 (see Table 2). On the other hand, the 
difference between the results for a classifier trained on images from the very same camera and the classifier trained on 
the same make and model (but different camera) is smaller (compare rows (a) and (b) in Table 2). More experiments 
need to be carried out to verify this result on more camera models, however. 
 



 
False positives at 50% detection 0.1 bpp 0.25 bpp 0.5 bpp 
a) training and testing on Olympus C765#2 7.02 1.10 0.00 
b) training on Olympus C765#1, testing on Olympus C765#2 13.75 1.59 0.03 
c) training on Olympus C765#2, testing on Olympus C765#1 22.55 7.11 0.99 
d) training on 22 cameras, testing on Olympus C765#2 36.09 28.51 8.81 

Table 2. Percentage of false positives at 50% true detection for all experiments reported in Figure 4. 
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Figure 4.  ROC curves for detection of random ±1 embedding with relative payloads 0.1, 0.25, and 0.5 bpp. a) 
training and testing on Olympus C765#2, b) training on Olympus C765#1, testing on Olympus C765#2, c) training 
on Olympus C765#2, testing on Olympus C765#1, d) training on images from 22 cameras, testing on Olympus 
C765#2. 
 
 

4. USING BLIND CLASSIFIER AS BENCHMARK FOR STEGANOGRAPHY 
 
Given a blind steganalyzer, we can use it to compare the security of different steganographic schemes as well as an 
oracle for constructing the least detectable embedding scheme. Of course, this verdict is dependent on the steganalyzer 



and may change when a different, more advanced steganalyzer is used. Nevertheless, some authors advocate that the 
concept of steganographic security should be relative to a steganalyzer.15 In any case, it is quite intriguing to ask the 
question “what is the most secure steganographic method given the best current steganalysis engine.” In this section, we 
use the WAM classifier to investigate the security of three advanced embedding techniques. We now explain each 
technique one by one. 
 
4.1 Ternary ±1 embedding combined with matrix embedding 
The ±1 embedding can be obviously improved because we can embed a ternary symbol t per each pixel x as t = x mod 3, 
rather than a bit, using the same distortion. Moreover, for small relative payloads we can apply matrix embedding16,17  
and further substantially decrease the number of embedding changes. We now briefly explain the principles of matrix 
embedding realized using a ternary [13, 10, 3] Hamming code with a parity check matrix 
 

H

1 0 0 0 1 1 0 2 1 2 1 1 1

0 1 0 1 0 1 1 0 2 1 2 1 1

0 0 1 1 1 0 2 1 0 1 1 2 1

⎡ ⎤
⎢ ⎥
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.                  (2) 

 
The message is first transcoded from bits to ternary symbols {0,1,2}. The cover image is then divided into disjoint 
blocks of 13 pixels x = (x1, x2, …, x13). We will embed 13–10=3 ternary message symbols m in each block by changing 
at most one xi by 1, obtaining the modified block of pixels y. The message symbols m are communicated as the 
syndrome mT = Hty

T of the vector ty = y mod 3. Because the covering radius of the Hamming code is 1, the coset leader 
of every non-zero syndrome has Hamming weight 1 and thus it is guaranteed that we will never have to change more 
than one pixel in each block. 
 
To give a specific example, let us assume that tx = x mod 3 = [2 1 1 0 0 1 0 2 1 0 2 1 0] and that we wish to embed the 
following three message symbols m = [1 0 2]. We first calculate the difference mT – Htx

T = [2 0 1]T, where “T” denotes 
transposition. Because the parity check matrix of the Hamming code contains all possible non-zero triples of symbols (up 
to a multiplication by a non-zero scalar), we can find in H a column that is a multiple of [2 0 1]T. Indeed, the 8th column 
is actually exactly equal to this vector. Thus, to adjust the syndrome Htx to the required message triple m, we modify x8 
to y8 = x8+1 and set yi = xi otherwise. Thus, the block of pixels y in the stego image is such that ty = y mod 3 = [2 1 1 0 0 
1 0 0 1 0 2 1 0] (because 2 + 1 = 0 in ternary arithmetic). The recipient will simply read the three ternary message 
symbols as mT = Hty

T. Note that in the lucky case when mT = Htx
T, no embedding change is necessary. Assuming the 

message is a random stream of ternary symbols, this will happen with probability 26/27. Thus, the average number or 
changes per message bit is 26/27 (3log23)–1 ≈ 0.2025. Note that the regular binary ±1 embedding (1) needs 0.5 changes 
per embedded bit. 
 
In general, for ternary ±1 embedding realized using matrix embedding with ternary Hamming codes [(3r–1)/2, (3r–1)/2–
r, 3], r = 1, 2, …, we embed rlog23 bits per (3r–1)/2 pixels using on average 1–3–r changes. Thus, for relative message 

length 22 log 3
3 1r

r
−

 we embed 2log 3
1 3 r

r
−−

 bits per embedding change or, equivalently, we make on average 
( )2 1 3

3 1

r

r

−−

−
 

changes per pixel. Table 3 shows the expected number of modifications for several relative payloads for different values 
of r.  
 

 r=2 r=3 r=4 r=5 

Relative payload (bpp) 0.7925 0.3658 0.1585 0.0655 
Embedding changes per pixel 0.2222 0.0741 0.0247 0.0082 
Theoretical lower bound 
for embedding changes 0.1595 0.0557 0.0196    0.0068 

Table 3. Relative payload and expected number of embedding changes per pixel as a function of the parameter r 
in matrix embedding using ternary Hamming codes. 
  



We note that the theoretical lower bound for the average relative number of changes for any ternary code is the inverse 
ternary entropy of the relative payload p, H3

–1(p).19 This bound is asymptotically approached with almost all [n, n(1–p)] 
codes as their length approaches infinity. A version of this statement for binary codes is in Ref.20 in Theorem 12.3.5 on 
page 325. 
 
4.2 Adaptive ternary ±1 embedding 
The second embedding method is a simple version of adaptive ±1 embedding. Following the intuitive argument that 
embedding changes are more difficult to detect in textured or noisy areas of the image, we select the pixels that carry 
message symbols as pixels with the largest variance in their 3×3 local neighborhood. Note that it is necessary to use wet 
paper codes (WPC)19 because the local variance will change after embedding and the recipient may not identify exactly 
the same set of pixels from the stego image. Obviously, we can again use ternary alphabet for the message to improve 
the embedding efficiency. However, since we only embed in pixels with the largest variance, we now do not have any 
space for matrix embedding as in the case of random ±1 embedding. 
 
The embedding function is Emb3 (3). Values x = 0 and x = 255 are changed to 1 and 254 before applying Emb3 to avoid 
under and over-flowing. 
 

  (3) 
1 if ( 1 mod  3)

Emb3( ) if (  mod  3)
1 if ( 1 mod  3),

x t x
y x x t x

x t x

− = −⎧⎪= = =⎨
+ = +⎪⎩

 
where t is a ternary message symbol. Note that we are now embedding log23 bits per pixel and making an embedding 
change with probability 2/3. Thus, we need on average 2/3 / log23 ≈ 0.4206 changes per embedded bit. 
 
4.3 Perturbed quantization while decreasing the color depth 
The third method is a version of perturbed quantization (PQ).21 In this approach, we assume that the sender has access to 
a more accurate or detailed version of the cover image and embeds data while processing the image using an operation 
that includes quantization (e.g., resizing, JPEG compression, AD conversion, color depth reduction, etc.). In this paper, 
we use the operation of decreasing the bit depth of the cover image from 16 bits per color channel to 8 bits per channel. 
Indeed, some cameras allow storing their digital images with higher bit-depths. According to the methodology of PQ, the 
sender selects those pixels whose 16-bit values are in the middle of the lattice determined by 8 bit values. Wet paper 
codes (codes for memories with defective cells) must be used to communicate a message to the recipient because it is not 
possible to determine from the 8 bit per channel image which pixels were selected by the sender. 
 
Note that PQ methods cannot benefit from ternary coding because each sample can only be rounded to two values.21 
 
4.4 Embedding distortion 
It is illustrative to calculate the expected embedding distortion for all three methods. We evaluate the embedding 
distortion as the mean square error (MSE) between the stego image and its raw, 16-bit form. To obtain closed-form 
expressions, we model each color channel of the raw 16-bit image as i.i.d. realizations of a real-valued random variable 
uniformly distributed in the interval [0,255]. For regular (binary) random ±1 embedding with relative payload p bpp, we 
have 

0.5 2 2 2
1 0

12 / 4(1 ) (1 / 2) / 4(1 )
12 2

pMSE p x p x p x dx± = + + − + − =∫ + .               (4) 

 
The distortion for both ternary ±1 embedding methods is obtained from (4) by substituting for p the equivalent length of 

random message that would incur 
( )2 1 3

3 1

r

r

−−

−
 embedding changes per pixel using binary ±1 embedding. Thus, for ternary 

±1 embedding using ternary Hamming codes, r = 2, 3, … 
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−
bpp is the relative message length.   (5) 



 
Because the adaptive ternary ±1 embedding is a special case of matrix embedding with Hamming codes with r = 1, from 
(5), we can write 

( )1
2

1 2
12 3 log 3T

pMSE p± = + ,                        (6) 

 
The embedding distortion for PQ embedding is 
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p .               (7) 

 
Figure 5 shows the plot of MSE as a function of the relative payload p for all three methods. As expected, the adaptive 
embedding has the largest distortion while PQ has the smallest distortion. Because matrix embedding imposes a limit on 
the possible length of the message that can be embedded, we only compared the embedding methods for two payloads of 
0.3658 and 0.1585 bpp, which correspond to r = 3 and r = 4 (see Table 3). We did not run the test for the higher payload 
(r = 2) because PQ embedding should not be used at such high payload. For the lower available payloads (r > 4), the 
steganalyzer does not perform too well and thus no meaningful conclusions can be drawn. 
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Figure 5. Embedding distortion as MSE for three embedding methods.  

 
4.5 Experiment 
We trained a WAM classifier for all three embedding methods on a subset of the CAMERA_RAW database consisting 
of 1520 raw 16-bit per channel camera images (because the selected version of PQ requires the 16-bit images, for a 
meaningful comparison we had to constrain all three methods to images that were originally 16-bit per channel; for their 
list see Appendix). Before applying both ±1 embedding methods, the 16-bit per channel cover images were converted to 
8 bits per channel. The PQ embedding was applied directly to the 16-bit images. 
 
The experiment produced ROC curves in Figure 6. Referring to this figure, Perturbed Quantization is the least detectable 
of all three methods but we need to realize that PQ needs substantial amount of side information – the 16-bit image, 
which the other two methods do not require. Adaptive ±1 embedding with ternary coding placed the second despite the 
fact that it imposes the largest embedding distortion. This confirms the well-known fact that embedding distortion is a 
poor indicator of steganographic security. This experiment also supports the principle that adaptive steganography 
generally improves steganographic security. This result can be intuitively expected because it is more difficult to 
distinguish the stego signal from content in textured areas. On the other hand, adaptive methods are a double-edged 
sword because the stego image provides information to an attacker about the placement of embedding changes. The 
attacker may be able to use areas that were most likely not used for embedding for calibration of certain statistics and 



compare them to areas likely used for embedding. Thus, adaptive embedding rules open up space for targeted attacks. 
Indeed, the leakage of information provided by content-adaptive selection channel has been used in the past to construct 
successful attacks.22 
 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positives

T
ru

e 
po

si
tiv

es

ternary ±1 with Hamming codes

adaptive ±1 ternary
PQ

 
a) 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positives

T
ru

e 
po

si
tiv

es

ternary ±1 with Hamming codes

adaptive ±1 ternary
PQ

b) 

Figure 6. ROC for all three embedding methods and relative payload a) p = 0. 3658, b) p = 0.1585.  
 
Finally, we note that random ±1 method with ternary matrix embedding has a potential to be further improved with better 
codes (see the theoretical lower bound in the columns for r = 3, 4 in Table 3), which may change the conclusions reached 
in this section. 
 
 

5. CONCLUSION 
 
In this paper, we built an improved blind WAM steganalyzer for detection of embedding in raster image formats and 
compared its performance to four previously proposed blind steganalyzers. The comparison, which was performed on the 
same image databases under the same testing conditions, indicates that the proposed blind steganalysis offers improved 
performance over a wide class of images. The new WAM steganalyzer uses a set of 27 features (or 3×27 features for 
color images) calculated as absolute moments of noise residual in the wavelet domain. 
 
We used the WAM classifier to study some fundamental issues in steganography. First, we analyzed how much 
improvement one can expect in detection if some a priori side-information is available about the cover image source, 
such as the model of the camera used to take the cover images. We found that training the classifier on an image 
database narrowed to images taken by a different camera of the same model significantly improved the detection results 
when compared to a classifier trained on a mixture of 22 cameras. As expected, training on images coming from the 
exact same camera as the camera used for test images produced the best results, although the difference when training on 
images from the same camera model (but not the same camera) was not very big. 
 
It is likely that any side information about the image under investigation should be exploited in the classifier training 
phase. This may include information about the image quality (JPEG lossy compression), image processing (re-sampling, 
double compression), image size, and image source. We leave the investigation of such side informed steganalysis for 
our future research. 
 
The second issue we investigated was careful comparison of steganographic security of three advanced embedding 
paradigms in the spatial domain – the random ±1 embedding combined with ternary matrix embedding (to decrease the 
number of embedding changes), locally adaptive ternary ±1 embedding, and perturbed quantization while converting a 
16-bit per channel image to an 8-bit grayscale image. We used the WAM classifier as an oracle to decide which 
technique is the most secure. The tests were done using a linear classifier on 1520 16-bit raw cover images. The verdict 



was that the perturbed quantization was the least detectable, followed by adaptive ternary ±1 embedding, and random 
ternary ±1 embedding with matrix embedding. The adaptive embedding was better than the random ±1 embedding 
despite the fact that it imposes the biggest distortion measured as MSE. This confirms the intuition that adaptive 
embedding rules improve steganographic security. 
 
Our future work will focus on other open problems, such as how to utilize the inter channel correlation in an optimal way 
for blind steganalysis or the little researched problem of improving steganographic security by trading the number of 
changes for their amplitude. 
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6. APPENDIX A 
 
List of digital cameras used to produce the CAMERA_RAW image database. The second and third columns correspond 
to the number of images taken with each camera and the image color depth (in bits). 
 
 

Camera model # bits/channel
Canon EOS D30 149 16 
Canon EOS D60 119 16 
Canon PowerShot G3 75 16 
Canon PowerShot G5 141 16 
Canon PowerShot Pro90IS 73 16 
Canon PowerShot S100 80 16 
Canon PowerShot S50 59 16 
CanPS G2 195 8 
CanPS S40 197 8 
Kodak DC290 195 8 
Nikon CoolPix 5700 107 16 
Nikon CoolPix 990 25 16 
Nikon CoolPix SQ 32 16 
Nikon D10 143 16 
Nikon D100 27 16 
Nikon D100 160 8 
Nikon D1H 33 16 
Nikon D1X 115 16 
Olympus C765 300 8 
Sony CyberShot DSC F505V 46 16 
Sony CyberShot DSC F707 112 16 
Sony CyberShot DSC S75 117 16 
Sony CyberShot DSC S85 67 16 
Total 2567
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