
New Block Encryption Algorithm MISTY

Mitsuru Matsui

Information Technology R&D Center

Mitsubishi Electric Corporation
5-1-1, Ofuna, Kamakura, Kanagawa, 247, Japan

matsui@iss.isl.melco.co.jp

Abs t rac t . We propose secret-key cryptosystems MISTY1 and MISTY2,
which are block ciphers with a 128-bit key, a 64-bit block and a variable

number of rounds. MISTY is a generic name for MISTY1 and MISTY2.
They are designed on the basis of the theory of provable security against
differential and linear cryptanalysis, and moreover they realize high speed

encryption on hardware platforms as well as on software environments.

Our software implementation shows that MISTY1 with eight rounds can
encrypt a data stream in CBC mode at a speed of 20Mbps and 40Mbps on

Pentium/100MHz and PA-7200/120MHz, respectively. For its hardware
performance, we have produced a prototype LSI by a process of 0.5p

CMOS gate-array and confirmed a speed of 450Mbps. In this paper, we

describe the detailed specifications and design principles of MISTY1 and

MISTY2.

1 Fundamental Des ign Policies of M I S T Y

Our purpose of designing MISTY is to offer secret-key cryptosystems that are

applicable to various practical systems as widely as possible; for example, soft-

ware stored in IC cards and hardware used in fast ATM networks. To realize

this, we began its design with the following three fundamental policies:

1. M I S T Y should have a numerical basis for its security,

2. M I S T Y should be reasonably fast in software on any processor,

3. M I S T Y should be sufficiently fast in hardware implementation.

For the first policy, we have adopted the theory of provable security against

differential and linear cryptanalysis [1][2][4], which was originally introduced by

Kaisa Nyberg and Lars Knudsen. As far as we know, MISTY is the first block

encryption algorithm designed for practical use with provable security against

differential and linear cryptanalysis. Although this advantage does not mean

information theoretic provable security, we believe that it is a good starting point

for discussing secure block ciphers.

Secondly, we have noticed the fact that many recent block ciphers were de-

signed so that they could be fastest and/or smallest on specific targets; for

example, 32-bit microprocessors. This often results in slow and/or big imple-

mentation on other types of processors. Since we regarded seeking applicability

to various systems as more important than pursuing max imum performance on

New Block Encryption Algorithm MISTY 55

specific targets, we decided to design a cipher that could be reasonably fast and

small on any platform, and hence not to adopt software instructions that are

effective on special processors only.

For the last policy, we should note that DES is reasonably fast in both software

and hardware, while many recent ciphers are seriously slow and/or big when

they are implemented in hardware because of their software-oriented structure.

On the other hand, since one of our target systems is a fast ATM network of

several hundreds Mbps, which cannot be reached in software for the present,

we have carefully optimized the look-up tables of MISTY from the viewpoint of

its hardware performance. It should be also noted that, in general, a choice of

substitution tables does not significantly affect their software execution speed;

i.e. memory access time.

2 D i s c u s s i o n s o n B a s i c O p e r a t i o n s

In this section we classify basic operations that are frequently used in block

ciphers into four categories and discuss their applicability to MISTY in terms of

compatibility between their security level and software/hardware efficiency.

- Logica l O p e r a t i o n s

Logical operations such as AND, OR and especially XOR are most com-

mon components of secret-key ciphers and are clearly small and fast in any

software or hardware system. However we cannot expect much security of

them.

- A r i t h m e t i c O p e r a t i o n s

Arithmetic operations such as additions, subtractions and sometimes multi-

plications are also commonly used in software-oriented ciphers because they

can be carried out by one instruction on many processors and fairly contrib-

ute to their security. However, in hardware, their effect on data diffusion is

not necessarily high enough, considering their encryption speed, since their

delay time due to carry-spreading is often long and expensive.

- Shi f t O p e r a t i o n s

Shift operations, especially rotate-shifting, are frequently used in designing

secret-key ciphers. They indirectly improve data diffusion, and in hardware

they are obviously cheap and fast if the number of shift counts is fixed. We

should note, however, that software performance of shift operations heavily

depends on their target size; for instance, when a rotate shift of 32-bit data

is executed on 8-bit or 16-bit microprocessors, its speed may be quite slow.

- L o o k - u p Tab le s

In software, efficiency of loop-up tables strongly depends on memory access

speed. In early microprocessors, memory access was much more expensive

than register access, while many recent processors can read from and write to

memory in one cycle (or often less than one cycle due to parallel processing)

under certain conditions. On the other hand, in hardware, the use of ROM

is slow in general, but if the tables are optimized for direct construction by

56 Mitsuru Matsui

logic gates, their delay time can be drastically reduced. Moreover, as for

the security, the look-up table method clearly contributes to data diffusion

effectively.

Taking the above discussion into consideration, we have concluded that logical

operations and look-up tables arranged in terms of security level and hardware

performance meet our design policies and hence they are desirable as basic com-

ponents of MISTY.

3 T h e o r y o f P r o v a b l e S e c u r i t y

This section briefly summarizes the theory of provable security against differen-

tial and linear eryptanalysis. For more detail, see [4]. This theory forms a basis

of the security of MISTY.

D e f i n i t i o n l . Let Fk(x) be a function with an n-bit input x and an t-bit para-

meter k. We define average differential probability D P F and average linear prob-

ability L P F of the function F as

D p F dr! 1 ~ #{x[Fk(x) e F k (x @ A x) = Ay}
= m a x 2 n , (1) Ax~tO,Ay

def 1 (2~(x,xoFx____ Fk(x) o Fy })2
L p F = 2 [Z max 2n - 1 , (2)

k Fx,FyytO

respectively. We also apply this definition to a function F(x) without the para-

meter k by setting g = 0.

When Fk(x) is an encryption function with a key k, D P F and L P F represent a

strict level of security of the function against differential and linear cryptanalysis,

respectively. Since we can prove that F is secure against the two attacks when

these values are small, we say that F is provably secure if D P F and L P F are

proved to be sufficiently small.

The following three theorems give relationships between average differen-

tial/linear probability of a "small" function and that of a "large" function that

is a combination of the small functions. That is to say, using these theorems, we

can construct a "large and strong" function from "small and strong" functions.

Theorem 2 was first proved for average differential probability by Nyberg and

Knudsen [1], and then shown for average linear probability by Nyberg [2].

T h e o r e m 2 . In figure 1, assume that each fi is bijective and D P]' (resp. L P]')

is smaller than p. I f the entire function Fk (k = klllk21[k3...) shown in the figure

has at least three rounds, then D P F (resp. L P F) is smaller than p2.

Note : The authors of [1] originally proved 2p 2 (not p2) for a cipher with bijective

fi and at least three rounds, and for a cipher with any fi and at least four rounds.

Recently Aoki and Ohta improved this bound to p2 when fi is bijeetvie [3].

New Block Encryption Algorithm MISTY 57

We proved in [4] that the above theorem is valid for the algorithm shown in figure

2. An essential difference between figures 1 and 2 is that the functions fi can

be processed in parallel in figure 2, and consequently the structure of figure 2 is

faster than that of figure 1.

T h e o r e m 3 . In figure 2, assume that each fi is bijective and D P I' (resp. L P y')

is smaller than p. I f the entire function Fk (k = kl [[k2[[k3...) shown in the figure
has at least three rounds, then D P F (resp. L P F) is smaller than p2.

We found that a similar formula holds even if the input string is divided into two

strings of unequal bit length. Specifically, consider the algorithm shown in figure

3, where the input string is divided into nl bits and n2 bits (nl >_ n~). Now

assuming that in odd rounds the right n2-bit string is zero-extended to nl bits

before XOR-ed with the left hi-bit string, and in even rounds the right nl-bit

string is truncated to n2 bits before XOR-ed with the left n2-bit string, we have

the following general theorem [4]:

T h e o r e m 4 . In figure 3, assume that each fi is bijective and D P I' (resp. L P / ')

is smaller than p. I f the entire function Fk (k = kl[[k2[[k3...) shown in the figure
has at least three rounds, then D P F (resp. L P F) is smaller than

max{pip2, P2P3, 2n~-"2PlPs}. (3)

nl n2

' , k l

Figure 1. Figure 2. Figure 3.

58 Mitsuru Matsui

4 D e s i g n o f t h e D a t a R a n d o m i z i n g P a r t

In this section we discuss the structure of the data randomizing part of MISTY.

For a complete description of MISTY1 and MISTY2, see an appendix.

4.1 T h e F r a m e w o r k

Our basic strategy in designing the data randomizing part of MISTY is to build

the entire algorithm from small components using the methods shown in the

previous section recursively. This enables us to easily evaluate the security level

of the total algorithm by that of the small ones. For instance, let us apply the

structure of figure 2 recursively to all fi functions given in figure 2. In this case,

if the average differential/linear probability of the smallest function is less than

p, we can prove from theorem 3 that the probability of the entire algorithm is
less than p4.

Now by applying theorem 2 or theorem 3 to a 64-bit block cipher, where

theorems 2 and 3 correspond to MISTY1 and MISTY2, respectively, we have a

"small" function with 32-bit input/output, which is called an FO function in

MISTY (figure 4). Next by applying theorem 2 again to the FO function, we

have a "smaller" function with 16-bit input/output, which is referred to as an

F I function in MISTY. Since the size of the F I function is still big to use as a

look-up table, we have divided the 16-bit string into 9 bits and 7 bits, not 8 bits

and 8 bits, using the algorithm given in figure 3.

This unequal division is due to the fact that bijective functions of odd size are

generally better than those of even size from the viewpoint of provable security

against differential and linear cryptanalysis. More specifically, when the size n

of a function is odd, the possible minimal value of its average differential/linear

probability is proved to be 2 -n+l , but when it is even, it is only conjectured that

the possible minimal value is 2 -'~+2 (an open problem). Therefore, if we divide

the 16-bit into 8 bits and 8 bits, the average differential/linear probability of the

entire 64-bit cipher is proved to be less than (((2-8+2)2)2)2=2-48 (on condition

that the above conjecture is correct), while if we divide it into 9 bits and 7 bits,

then we can guarantee that the probability is less than ((2-9+12-7+1)2)2=2-56

from theorem 4 whenever all subkey bits are independent.

This shows that an unequal division generally has an advantage for secur-

ity against differential and linear cryptanalysis. On the other hand, it has two

penalties in implementation; the first is an obstruction to parallel computation,

and the second is a decrease in software performance caused by handling data

with an odd number of bits. We have nevertheless adopted the unequal division

because of its security. In the following, we refer to the first and third functions

of the lowest level as $9, and the second function as $7, which are "smallest"

components of MISTY. For reducing the size of software, we use the same table

in the first and third rounds.

In both MISTY1 and MISTY2, for the sake of flexibility of their security

level, the number of rounds n of level 1 (see figure 4) is variable on condition that

n is a multiple of four, while that of levels 2 and 3 is fixed to three rounds. Now

New Block Encryption Algorithm MISTY 59

compare encryption/decryption speed of MISTY1 and MISTY2. If we do not

take any parallel processing into consideration, the total complexity of MISTY1

and MISTY2 with the same number of rounds is clearly the same; however i.f

we allow parallel computations, their encryption speed is not the same. This is

mainly because MISTY1 can carry out two FI's at a time, while MISTY2 can

execute four FI's in parallel.

Table 1 gives encryption/decryption time of MISTY1 and MISTY2, where

each entry shows the number of calculations of $9 assuming the computation

time of $7 is the same as that of $9. For simplicity we have ignored the time

for XOR operations. It is clearly seen from table 1 that MISTY2 is faster than

MISTY1 in encryption, but MISTY1 is faster in ECB and CBC decryption. This

is because parallel computations are impossible in inverse calculation of MISTY2.

MISTY2 is therefore suitable for OFB and CFB modes.

Encryption Decryption Decryption

ECB,CBC,OFB,CFB ECB,CBC OFB,CFB

n-round MISTY1 3n 3n 3n

n-round MISTY2 1.5n 9n 1.5n

Table 1. Encryption/Decryption time of MISTY1 and MISTY2

(number of calculations of $9).

3 2 3 2 3 2 3 2

I I I I

, , , , (3 rounds)
i i I i

MISTY1 Levell MISTY2 Levell

(n rounds) (n rounds)

Figure 4: Recursive structure of MISTY

60 Mitsuru Matsui

4.2 S~, and So

In selecting $7 and $9, we have the following three criteria:

1. Their average differential/linear probability must be minimal,

2. Their delay t ime in hardware is as short as possible,

3. Their algebraic degree is high, i f possible.

For the first criterion, a sequence of power functions over finite fields is known

to attain the minimal value (that is, 2 -6 for $7 and 2 - s for $9), and as far as we

know, this is the only example that can be obtained in a systematic way. Hence

we first planned to investigate the hardware delay, whose exact definition we

adopted will be given below, for all functions that have the form Si (x) = A o x % B

(i = 7, 9), where A and B are arbitrary bijective linear transformations and a is

an integer such that (2 i - l, a) = 1. The last equality is a necessary and sufficient

condition that a power function can be bijective.

However, because it was time-consuming for us to calculate the delay for all

functions above, we next restricted our search to the functions that have the form

Si (x) = A o x ~ (i = 7, 9) and have a polynomial basis or a normal basis over

GF(2) . In other words, we investigated all possible linear transformations for

A and a limited number of linear transformations for B. Note that the average

differential/linear probability does not depend on a selection of A or B, but the

delay does. Now the following is our formal definition of the hardware delay and

the algebraic degree of Si (x):

D e f i n i t i o n S . For a function y = f (x) with an/ -b i t input x = (x0, xl, x2, ..., xi-1)

and a j -bi t output y = (Y0, Yl, Y2,-.., Yj-1), we call the following equation an al-

gebraic normal form of the a-th output bit Ya of f :

Ya e(a,O) + ~ (a,1)

O<kl<i O(kl<k2<~

+ Z + , (4)
O<_kl<ku<ka<i

where o(a,0) ~(a,t) ~(~,~) (a,3) '~kl '~ka,k2' ekl,k2,k3 are binary values, and the sum ~ denotes

an XOR operation.

The hardware length of y~ is defined as the number of non-zero terms of

equation 4, and the hardware length of the function f is the maximal hardware

length of all output bits of f . Also, the algebraic degree of y~ is defined as the

maximal degree of equation 4, and the algebraic degree of the function f is the

maximal algebraic degree of all output bits of f .

Note that the hardware length of y~ minus 1 is equivalent to the number of two-

input XOR gates required for constructing Ya from xk (0 < k < i) in hardware,

and the logarithm of the hardware length of f indicates its hardware delay time.

Although we have to count the number of AND gates and fan-outs to see the exact

delay time in hardware, we have adopted the above definition for simplicity. Also

note that the algebraic degree of S~(x) = A o x '~ o B agrees with the binary

hamming weight of c~.

New Block Encryption Algorithm MISTY 61

]Selection of $ 7 I

For all functions having the form Aoz ~ over GF(27) with a polynomial or normal

basis and (27 - 1, a) = 1, we first calculated the algebraic degree and hardware

length of each output bit; as a result, we obtained the following:

- If the algebraic degree is at least 4, then the hardware length of any output

bit is at least 21.

- If the algebraic degree is equal to 3, then the hardware length of any output

bit is at least 10.

- If the algebraic degree is equal to 2, then the hardware length of any output

bit is at least 7.

Since we regarded the length as too long when the algebraic degree is four or

more, we decided to adopt a function whose algebraic degree is equal to three.

Then for all functions whose algebraic degree is three, we calculated their entire

hardware length, and found that the minimal length is 13 and the function that

attains this length is unique up to the order of output bits. Lastly, by adding a

constant value to its output, we determined the final form of $7, whose concrete

logic is as follows:

Y0 ~ X0 -~- X l X 3 "3 L XoX3X4 -~ X l X 5 -~- XoX2X5 -~ X4X5 "3 I- X 0 X l X 6 "31- X2X6 ~ XoX5X6 -~ X3X5X6 -~- 1

Yl = x~x2 .~i-x~x4--~x3x4 --i-x~ x5-9cx2 x4x5-~Lx6-~x~x6-~-x3x6-- i -x2x3x6-~x ~ x4x6-~-x~x5x6..4 -1

Y2 = x l x 2 + x o x 2 x 3 + x4 + x l x 4 + x o x l x 4 + xox~ + x o x 4 x 5 + x s x 4 x 5 + x i x s + x 3 x s +

XoX3X6 "~ X4X6 "JP X2X4X6

Y3 = xo -4- x l -4- x o x l x 2 + xox3 -4- x2x4 -4- x l x 4 x 5 -4- x 2 x 6 -t- x l x 3 x 6 4- x o x 4 x 8 + x s x s -4- 1

Y4 = x2x3 + xox4 + x i x 3 x 4 + x5 + x 2 x s + x l x 2 x 5 -4- x o x 3 x 5 + x l x 6 + x l x s x s + x 4 x s x s + 1

y5 = xo + x l + x2 + x o x l x 2 + x o x 3 + x l x 2 x 3 + x l x 4 + x o x 2 x 4 + x o x 5 + x o x l x 5 +

x 3 x 5 -4- XoX6 -4- X2XsX6

!/6 = X O X l -l- x3 .9 f f x o x 3 "JF x 2 x 3 x 4 + x o x 5 -~- x 2 x 5 "-~ x 3 x 5 .9ff X l X 3 X 5 -4- x l x 6 -~- XlX2X6-3 t-

XoX3X6 -~ X4X6 .9ff X2X5X6

[Selection of $9 I

Similarly, for all functions having the form S9(x) = A o x ~ over GF(29) with a

polynomial or normal basis and (29 - 1, a) = 1, we first calculated the algebraic

degree and hardware length of each output bit; as a result, we had the following:

- If the algebraic degree is at least 3, then the hardware length of any output

bit is at least 27.

- If the algebraic degree is equal to 2, then the hardware length of any output

bit is at least 9.

Since we regarded the length as too long if the algebraic degree is three or more,

we decided to adopt a function whose algebraic degree is equal to two. Then for

all functions whose algebraic degree is two, we calculated their entire hardware

length, and found that the minimal length is 12 and there are nine functions that

attain this length up to the order of output bits. Lastly by selecting one of them

randomly and adding a constant value to its output, we determined the final form

of $9, whose concrete logic is as follows:

62 Mitsuru Matsui

yo = xox4 + x o x s + x l x 5 + x l x 6 + x2xr + x2x7 + x sx7 + x 3 x s + x 4 x s + 1

y~ = xox2 + x3 + x l x3 + x2x3 + x3x4 + x4x5 + xox6 + x2x6 + x7 + x o x s + x3xs + x sx8 + 1

Y2 = XOXl "~- XlX3 -~ X4 "Jr XoX4 "~- X2X4 -~- X3X4 "~- X4X5 "~- XoX6 "~- X5X6 "~- XlX7 "~- X3X7 "~- X8

Y3 : XO "~ XlX2 + X2X4 "~ X5 -~ XlX5 "4- X3X5 -~ X4X5 "~ X5X6 -~- XlX7 -~- X6X7 + X2X8 -~ X4X8

Y4 = Xl + XoX3 + X2X3 + XoX5 + X3Xs + X~ + X2X~ + X4X~ + XsX8 + X6X7 + X2Xs + XTXs

Y5 = X2 "~ XOX3 "~- XlX4 Jff X3X4 "JF XlX6 • X4X6 "~ X7 Jff X3X7 ~- X5X7 -~" X6X7 "~- X0X8 "JF X7X8

Y6 = XOXl + X3 + Xl X4 + X2X5 + X4X5 + X2X7 + XsX7 + XS + XOX8 + X4Xs + XsX8 + XTXs + 1

Y7 = Xl + XoXl + XlX2 + X2X3 + XoX4 + X5 + XlX6 + XzX6 + XoX7 + X4X7 + X6X7 + XlX8 + 1

Y8 = XO + XoXi + XlX2 + X4 + XoX5 + X2X5 + X3X6 + XsX6 + XoX7 + XOX8 + X3X8 + X6X8 + 1

4.3 T h e f u n c t i o n F L

For the purpose of avoiding possible attacks other than differential and linear

cryptanalysis, we have supplemented an additional simple function F L , whose

design criteria are (1) to be a linear function for any fixed key and (2) to have a

variable form depending on a key value.

Since this function is linear as long as the key is fixed, it does not affect

the average differential/linear probability of the entire algorithm. Moreover, this

function is obviously fast in both software and hardware since it is constructed

by logical operations such as AND, OR and XOR only.

5 D e s i g n o f t h e K e y S c h e d u l i n g P a r t

In designing the key scheduling part of MISTY, we set up the following criteria

from the viewpoint of compatibility between its security level and applicability

to various systems:

1. T h e s i z e o f k e y is 1 2 8 bi ts ,

2. T h e s i z e o f s u b k e y is 2 5 6 bi ts ,

3. E v e r y r o u n d is a f f e c t e d by al l k e y bi ts ,

4. E v e r y r o u n d is a f f e c t e d by as m a n y s u b k e y bi ts as pos s ib l e .

For security reasons we have adopted the 128-bit key, and for practical reasons

we have limited the size of the subkey to 256 bits. Reducing the size of subkey has

two important performance advantages. The first advantage can be obtained in

systems whose resources are limited such as in IC cards. In these systems, since

RAM size for temporary use is usually strictly limited, it is generally impossible

to store all subkey bits in RAM if its size is large; hence we have to carry out

the key scheduling part in every data block, which could be a heavy penalty on

performance. We decided to choose subkeys of 256 bits, so that all the bits could

be stored in RAM even for extremely restricted software environments.

The second advantage comes from the fact that in microprocessors with many

integer registers such as RISC processors, the 256-bit subkey can be loaded com-

pletely into the registers. In most implementation of block ciphers, all subkey bits

are written into memory in key scheduling process, and in encryption process they

are read from the memory round by round. Hence if all the subkey bits are kept

New Block Encryption Algorithm MISTY 63

in the registers during the entire encryption process, the total performance is

expected to be significantly improved.

On the other hand, in compensation for this small number of subkey bits and

simple key scheduling algorithm, we have established the third and fourth design

criteria. In MISTY, an F O function and an F L function use 112 subkey bits

and 32 subkey bits, respectively. To generate the 112 subkey bits, all of 128 key

bits are required. The number of total independent subkey bits of MISTY1 or

MISTY2 with eight rounds, for example, is 1216.

6 E x a m p l e s o f I m p l e m e n t a t i o n o f M I S T Y

In this section we show two examples of our software implementation and one

example of our hardware implementation of MISTY1 with eight rounds.

6.1 P e n t i u m

Pentium has two independent integer execution units called U-pipe and V-pipe,

where the U-pipe is usually used for carrying out instructions. However some in-

structions can be also executed in the V-pipe while the U-pipe is being occupied

by special "pairable" instructions. Though the number of these pairable instruc-

tions is small, if we write a program so that these two pipes can be efficiently

used, the performance of the software is extremely improved, possibly twice or

more due to resolution of register contentions.

We wrote an assembly language program of MISTY1 with eight rounds on

Pentium 100MHz, which encrypts an input plaintext stream in CBC mode at

a speed of 20Mbps. The program heavily uses V-pipe because of the highly

parallel structure of MISTY; it takes approximately 300 cycles to process one

block, where the U-pipe has no idle time and the V-pipe is used in more than

95% of the 300 cycles.

6.2 P A - 7 2 0 0

PA-7200 can also execute two integer instructions at a time under various re-

strictions. Moreover PA-RISC series microprocessors have 32 integer registers,

almost all of which can be used freely by users; this means that it is easy to load

all 256-bit subkey information of MISTY, even every 16 bits in each register.

PA-7200 has 512KB on-chip cache (256KB for code and 256KB for data),

which enables us to reduce computational time of MISTY by having a big pre-

defined table. That is to say, we can make a 128KB table that represents the

first two rounds of the F I function in advance. By doing this, calculation of F I

is significantly simplified. Note that this technique cannot be used in Pentium

because Pentium has only small cache (8KB for data) which generally causes

serious penalty cycles due to cache misses.

We wrote an assembly language program of MISTY1 with eight rounds on

PA-7200 120MHz using the above techniques. It can encrypt an input plaintext

stream in CBC mode at a speed of 40Mbps.

64 Mitsuru Matsui

6.3 H a r d w a r e

We have also designed a prototype LSI of MISTY1 with eight rounds, which has

the following specifications:

Encryption Speed:
Clock:
I/0:
Supported Modes:
Design Process:
Number of Gates:
Package:

This LSI has no repetition

450Mbps (typica 0
14MHz
32-bit parallel x 3 (plaintext, ciphertext, key)
ECB, CBC, OFB-6~, CFB-6~
0.5p CMOS gate-array
65K gates
208-pin fiat package

structure; that is, it contains the full hardware of

eight FO functions and ten FL functions. It takes two cycles to encrypt a 64-bit

plaintext. It also has three independent 64-bit registers that store a plaintext,

an intermediate text after the fourth round, and a ciphertext, respectively. This

structure makes the following pipeline data processing possible:

plaintext 1 plaintext 2 plaintext 3
Cycles 1 and 2 Input
Cycles 3 and 4 Encryption Input
Cycles 5 and 6 Output Encryption Input
Cycles 7 and 8 Output Encryption

plaintext 4

Input

7 Conclusions

This paper proposed new secret-key block cryptosystems MISTY1 and MISTY2.

At present, the author recommends to use MISTY1 with eight rounds, and to

use MISTY2, which has a newer structure, with twelve rounds. The next four

pages show a complete and self-contained description of MISTY1 and MISTY2.

References

1. Nyberg, K., Knudsen, L.,: Provable Security against Differential Cryptanalysis.

Journal of Cryptology, Vol.8, no.1 (1995)
2. Nyberg, K.,: Linear Approximation of Block Ciphers. Advances in Cryptology -

Eurocrypt'94, Lecture Notes in Computer Science 950, Springer Verlag (1994)
3. Aoki, K., Ohta, K.,: Stricter Evaluation for the Maximum Average of Differential

Probability and the Maximum Average of Linear Probability (in Japanese). Pro-
ceedings of SCIS'96, SCIS96-4A (1996)

4. Matsui, M.,: New Structure of Block Ciphers with Provable Security against Differ-
ential and Linear Cryptanalysis. Proceedings of the third international workshop of
fast software encryption, Lecture Notes in Computer Science 1039, Springer Verlag
(1996)

New Block Encryption Algorithm MISTY 65

Block Cipher Algorithms MISTY1 and MISTY2

Edition 2 . 1 December 16 1996

This document shows a complete description of encryption algorithms MISTY1

and MISTY2, which are secret-key ciphers with a 64-bit data block, a 128-bit

secret key and a variable number of rounds n, where n is a multiple of four.

Data Randomizing Part

- Figure A and B show the data randomizing part of MISTY1 and MISTY2,

respectively: The 64-bit plaintext P is divided into the left 32-bit string and

the right 32-bit string, which are transformed into the 64-bit ciphertext C

by means of bitwise XOR operations denoted by ~ and sub-functions FOi
(1 <_i<n) and FL{ (1 < i < n + 2) . FO{ uses a 64-bit subkey KO{ and a 48-bit

subkey KIi. FLi uses a 32-bit subkey KLi.
- Figure C shows the structure of FOi: The input is divided into the left 16-bit

string and the right 16-bit string, which are transformed into the output by

means of bitwise XOR operations and sub-functions FIij (1 < j < 3), where

KO~j (1 < j < 4) and KIij (1 < j < 3) are the j- th (from left) 16 bits of KOi
and KIi, respectively.

- Figure D shows the structure of FIij : The input is divided into the left 9-bit

string and the right 7-bit string, which are transformed into the output by

means of bitwise XOR operations and substitution tables $7 and $9. In the

first and third XORs, the 7-bit string is zero-extended to 9 bits, and in the

second XOR, the 9-bit string is truncated to 7 bits by discarding its highest

two bits. KIijl and KIij~ are the left 7 bits and the right 9 bits of KIij,
respectively.

- Figure E shows the structure of FLi. The input is divided into the left 16-bit

string and the right 16-bit string, which are transformed into the output by

means of bitwise XOR operations, a bitwise AND operation denoted by (1

and a bitwise OR operation denoted by U, where KLij (1 < j < 2) is the j- th

(from left) 16 bits of KLi.
- In the next page, the substitution tables ST and $9 are shown in decimal

form.

Key Scheduling Part

- Figure F shows the key scheduling part of MISTY1 and MISTY2: Ki (1 _<

i _< 8) is the i-th (from left) 16 bits of the secret key K, and It" (1 < i _< 8)

is the output of FIij when the input of Flij is assigned to Ki and the key

KIij is set to Ki+l, where K9 is identified with K1.
- The correspondence between the round subkeys KOij,KIij,KLij and the

actual subkeys Ki,K~ is as follows, where i is identified with i - 8 when i > 8:

Round KO, l KO,2 KO,~ KO,4 Kl, l KI,2 KI,3 KL,~ KL,~

Actual Ki h',+2 K,+r K,+, K,+~ It:+, I(:+3 K,~t (odd i) K~._._~ (odd i)

K'+ (even i) (even i)

66 Mitsuru Matsui

Test Data of MISTY1 with eight rounds

Key (K, to Ks): 00 11 22 33 44 55 66 77 88 99 aa bb cc dd ee f f

Subkey (K I to tf~): cf 51 8e 7f 5e 29 67 3a cd bc 07 d6 bf 35 5e 11

Plmntext: O1 23 45 67 89 at) cd ef

Ciphertext: 8b ld a5 f5 6a b3 dO 7c

Table of 57

27 50, 51, 90, 59, 16, 23, 84, 91, 26,114,115,107, 44,102, 73,

31 36, 19,108, 55, 46, 63, 74, 93, 15, 64, 86, 37, 81, 28, 4,

11 70, 32, 13,123, 53, 68, 66, 43, 30, 65, 20, 75,121, 21,111,

14 85, 9, 54,116, 12,103, 83, 40, 10,126, 56, 2, 7, 96, 41,

25 18,101, 47, 48, 57, 8,104, 95,120, 42, 76,100, 69,117, 61,

89 72, 3, 87,124, 79, 98, 60, 29, 33, 94, 39,106,112, 77, 58,

1 109,110, 99, 24,119, 35, 5, 38,118, 0, 49, 45,122,127, 97,

80 34, 17, 6, 71, 22, 82, 78,113, 62,105, 67, 52, 92, 88,125

Table of 59

451,203,339,415,483,233,251, 53,385,185,279,491,307, 9, 45,211,

199,330, 55,126,235,356,403,472,163,286, 85, 44, 29,418,355,280,

331,338,466, 15, 43, 48,314,229,273,312,398, 99,227,200,500, 27,

1,157,248,416,365,499, 28,326,125,209,130,490,387,301,244,414,

467,221,482,296,480,236, 89,145, 17,303, 38,220,176,396,271,503,

231,364,182,249,216,337,257,332,259,184,340,299,430, 23,113, 12,

71, 88,127,420,308,297,132,349,413,434,419, 72,124, 81,458, 35,

317,423,357, 59, 66,218,402,206,193,107,159,497,300,388,250,406,

481,361,381, 49,384,266,148,474,390,318,284, 96,373,463,103,281,

101,104,153,336, 8, 7,380,183, 36, 25,222,295,219,228,425, 82,

265,144,412,449, 40,435,309,362,374,223,485,392,197,366,478,433,

195,479, 54,238,494,240,147, 73,154,438,105,129,293, 11, 94,180,

329,455,372, 62,315,439,142,454,174, 16,149,495, 78,242,509,133,

253,246,160,367,131,138,342,155,316,263,359,152,464,489, 3,510,

189,290,137,210,399, 18, 51,106,322,237,368,283,226,335,344,305,

327, 93,275,461,121,353,421,377,158,436,204, 34,306, 26,232, 4,

391,493,407, 57,447,471, 39,395,198,156,208,334,108, 52,498,110,

202, 37,186,401,254, 19,262, 47,429,370,475,192,267,470,245,492,

269,118,276,427,117,268,484,345, 84,287, 75,196,446,247, 41,164,

14,496,119, 77,378,134,139,179,369,191,270,260,151,347,352,360,

215,187,102,462,252,146,453,111, 22, 74,161,313,175,241,400, 10,

426,323,379, 86,397,358,212,507,333,404,410,135,504,291,167,440,

321, 60,505,320, 42,341,282,417,408,213,294,431, 97,302,343,476,

114,394,170,150,277,239, 69,123,141,325, 83, 95,376,178, 46, 32,

469, 63,457,487,428, 68, 56, 20,177,363,171,181, 90,386,456,468,

24,375,100,207,109,256,409,304,346, 5,288,443,445,224, 79,214,

319,452,298, 21, 6,255,411,166, 67,136, 80,351,488,289,115,382,

188,194,201,371,393,501,116,460,486,424,405, 31, 65, 13,442, 50,

61,465,128,168, 87,441,354,328,217,261, 98,122, 33,511,274,264,

448,169,285,432,422,205,243, 92,258, 91,473,324,502,173,165, 58,

459,310,383, 70,225, 30,477,230,311,506,389,140,143, 64,437,190,

120, 0,172,272,350,292, 2,444,162,234,112,508,278,348, 76,450

New Block Encryption Algorithm MISTY 67

P

32 32

KLI ~ KL2
KII, KOI

P

32 ~64 32

- KL3

KI 2, KO2

KI3.KO3 -~ FO3 I 1 -KL4

KI4, KO4

KI5, KO5 - KL7

KI 6. KO6

I I

I I

I I

I I

I I

KL n+l~ ~ KL ..2

1
C

Figure A: MISTY1

KI7,KO7 - KL8

 Is.Kos

I

I

I

I

I

KL n+1~___~ ~ KL n+2

C

Figure B: MISTY2

68 M i t s u r u Matsu i

32 16 16
KO i l ~

KI il

KO i2 ~_ 7

KI i2~i2

KO i3 r~__~

KI i 3 ~ i 3

KO i4 ~ ~

Figure C: FOi

KI ijl

16
9 7

~~ze tend [.....

1

Figure D: FIij

KL il

KL i2

KIij2

32 16 16

i i

Figure E: FLi

K1 K2 K3 K4 K5

K'I

K6 K7 K8

K'2 K'3 K'4 K'5 K'6 K'7 K'8

Figure F: Key Schedulihg

