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Abstract. We investigate authentication codes with splitting, using the mathe- 
matical model introduced by Simmons. Besides an overview of the existing bounds, 
we obtain some new bounds for the probability of deception of the transmitter/ 
receiver in case of an impersonation or substitution game. We also prove some new 
bounds for a "spoofing attack of order L." Further, we give several new construc- 
tions for authentication/secrecy codes with splitting, derived from finite incidence 
structures such as partial geometries and affine resolvable designs. In some of these 
codes the bounds are attained with equality. 
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1. Introduction 

W e  deal  with codes which are  uncond i t iona l ly  secure. This means  tha t  we assume 
tha t  any  o p p o n e n t  has  unl imi ted  c o m p u t a t i o n a l  resources.  W e  use the mathe-  
mat ica l  au then t i ca t ion  mode l  as in t roduced  by S immons  [18], [19]. In  this mode l  
there  a re  three  par t ic ipants :  a transmitter, a receiver, and  an opponent. The t rans-  
mi t te r  wants  to communica t e  cer ta in  in format ion  to the receiver, whereas  the 
o p p o n e n t  wants  to deceive the receiver, by causing him to accept  a f raudulent  
message as or ig inal  (impersonation) or  modi fy  a message which has  been sent by  the 
t r ansmi t t e r  (substitution) tha t  results  in the receiver being mis informed with respect  
to wha t  the t r ansmi t t e r  in tended  to communica t e  to him. 

M o r e  formally ,  we have a set of  k source states S, a set of  v messages M, and  a 
set of  b encoding  rules E. A source  state s e S is the in format ion  tha t  the t ransmi t te r  
wishes to communica t e  to the receiver. The  t ransmi t te r  and  receiver will have 
secretly chosen  an  encoding  rule e ~ E beforehand.  The "key"  is the ident i f icat ion 
of  the encoding  rule they choose.  An encoding  rule e will be used to de te rmine  the 
message e(s) to be sent to communica t e  any  source state s. I t  is poss ible  tha t  more  
than  one message can  be used to communica t e  a pa r t i cu la r  source state; this is cal led 
splittino. Defining le(s)l = I{m e M :  e(s) = re}l, spl i t t ing means  le(s)l > 1. However ,  
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in order for the receiver to be able to determine uniquely the source state from the 
message sent, there can be at most one source state which is encoded by any given 
message m ~ M (i.e., e(s) # e(s') ifs # s'). We denote by AC(k, v, b) an authentication 
system with k source states, v messages, and b encoding rules. 

In this paper we investigate codes with splitting. We use the following notations. 
Given an encoding rule e, we define M(e) = {e(s): s e S}, i.e., the set of messages 
permitted by encoding rule e, and let IM(e)l = x(e). For  a set M'  of distinct messages 
and an encoding rule e, define fe(M') = {s: e(s) ~ M'}, i.e., the set of source states 
which will be encoded under encoding rule e by a message in M'. Also, for a set M' 
of distinct messages, define E(M') = {e ~ E: M' ~_ M(e)}, i.e., the set of encoding 
rules under which all the messages in M' are permitted. 

In [181, 1-191, and [23] the following scenario for authentication is investigated. 
After the observation of i messages M'  c M, the opponent sends a fraudulent 
message m' to the receiver, hoping to have it accepted as authentic. Since he wants 
to mislead the receiver as to the state of the source, m' has to correspond to a different 
source state than those which are determined by a message in M'. This is called a 
spoofing attack of order i, with the special cases i = 0 and i = 1 corresponding 
respectively to the impersonation and substitution game. These two games have 
been studied extensively by several authors [3], [191, [201, [221, [23]. 

We are interested in the security of these codes with respect to both secrecy and 
authentication. Suppose an opponent  observes i distinct messages being sent over 
the communication channel (where i > 0). He knows that the same key (encoding 
rule) is being used to transmit the i messages, but he does not know what that key 
is. If  we consider the code as a secrecy system, then we make the assumption that 
the opponent  can only observe the messages being sent. Our goal is that the 
opponent  be unable to determine any information regarding the i source states from 
the i messages he has observed. 

For  any i, there will be a probability on the set of i source states which occur. We 
ignore the order in which the i source states occur, and assume that no source state 
occurs more than once. Also, we assume that any set of i source states has a nonzero 
probability of occurring. Given a set of i source states S', we define p(S') to be the 
probability that the source states in S occur. 

Given the probability distribution on the source states as described above, the 
receiver and transmitter will also choose a probability distribution for E, called an 
encoding strategy. Even though the choice of the encoding strategy depends on the 
probability distribution of the source states, after this choice is made, the two 
probabilities are independent in the sense that 

p(s, e) = p(s). p(e). 

If splitting is possible, then they must also determine a splitting strategy to determine 
m ~ M, given s e S and e E E (this corresponds to nondeterministic encoding). Note 
that the receiver does not need to know the splitting strategy in order to interpret 
messages correctly. However, the encoding strategy is (in general) functionally 
dependent on the splitting strategy, so it is reasonable to say that the transmitter/ 
receiver jointly determine the encoding and splitting strategies. The transmitter/ 
receiver will determine these strategies to minimize the chance that an opponent  
can deceive them. 
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Once the transmitter/receiver have chosen encoding and splitting strategies, we 
can define for each i > 0 a probability denoted by Pa,, which is the probability that 
the opponent can deceive the transmitter/receiver with a spoofing attack of order i. 

Many of the bounds for I'd, depend on the entropies of the variables used. For a 
probability distribution on a set X, we define the entropy of X, H(X), as follows: 

H(X) = -- ~ p(x)'log p(x). 
x c X  

The conditional entropy H(X[ Y) is defined by 

H(XI Y) = - Z ~ p(y).p(xly).log p(xly). 
y ~ Y  x ~ X  

The concept of authentication codes with splitting was first introduced by 
Simmons 1,171 and studied later by Brickell 1,3] and Stinson [22]. It is the aim of 
this paper to perform some further investigations on these codes and to give some 
new constructions. 

2. Secrecy 

Considering the secrecy of a code, we desire that no information be conveyed by 
the observation of the messages. A code has perfect L-fold secrecy if, for every set 
M 1 of at most L messages observed in the channel, and for every set $1 of at most 
I Mll source states, we have p(SIlM:) = p(S~). This means that observing a set of at 
most L messages in the channel does not help the opponent to determine the L 
source states. At the opposite extreme, a code is said to be Cartesian I-3], [22] if any 
message uniquely determines the source state, irrespective of the encoding rule. 

3. Bounds on Pal, 

Several authors have been investigating bounds for authentication codes [3], [7], 
I-9], 1,13], 1,181, 1,19], 1,221, [23]. In this section we give an overview of the existing 
bounds (both combinatorial bounds and bounds based on entropies) (see 1,31, [18] 
and 1,19]). Besides, we show that some of the known bounds for codes without 
splitting are still valid when splitting occurs [22]. Furthermore, new combinatorial 
bounds are given for Pa,, i > 0, and for b, the number of encoding rules. 

3.1. Bounds on the Values of the Impersonation Game 

Theorem 3.1 1,181, 1,19]. In an authentication system with splitting, 

~c(e) 
"~ > m i n -  

e e E  V 

Proof. Suppose the opponent sends a message m. We denote the probability that 
the message m is accepted by the receiver by payoff(m). Then we have 

payoff(m)= ~ p(e). 
e E E(m) 
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It follows that 

E 
m e M  

payoff(m) = ~ E p(e) 
m~M  e~E(m) 

= Z Z p(e) 
e~E m~M(e) 

> min IM(e)l ~ p(e) 
eEE e~E 

= min IM(e)l = min x(e). 
e~E e~E 

Hence there must be some m such that 

r(e) 
payoff(m) _> rain - -  

e~E V 
[] 

Remark. It is clear from the above proof that 

x(e) 
/'do = m i n -  

e~E V 

if and only if x(e) is a constant, say x', for all e e E, which is equivalent to 

p(e) = -- for all 
e �9 E(m) I) 

m E M .  

Theorem 3.2 [18]. In any authentication system, 

Pdo >- 2HtMES)-HtE) -H(M)  = 2H(MIES)+HtS)-H(M). 

An authentication system achieving equality in the preceding bound is called 
perfect. Brickell determined some properties for perfect authentication codes. The 
following holds: 

Lemma 3.3 [3]. In a perfect authentication code with splitting, the following proper- 
ties are valid: 

�9 For all messages m, 
K'  

payoff(m)= ~ p ( e ) = - - .  
e ~ E(m) t) 

�9 For any message m, p(s).p(mle, s) is a constant for all s such that there is an e 
such that e(s) = m. 

3.2. Bounds on the Values of the Substitution Game 

Next we deal with bounds on Pall" The following bound is valid for substitution 
with secrecy. 

Theorem 3.4 [3], [18], [19]. 

Pd, > 2-H(EIM) = 2H(M)-H(E)-H(S)+H(MIES)" 
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Brickell has also given the conditions under which equality is attained for the 
substitution game. 

Lemma 3.5 [3]. I f  equality is attained, then the following properties are 
satisfied: 

�9 For all e, and for all m such that m e M(e), 

p(m)" Pdl = p(e) 'p(S = fe(m)).p(m]e, S = f~(m)) 

holds. 
�9 For any m, m' e M ,  m ~ m', there is at most one encoding rule e such that 

m, m' ~ M(e) and f~(m) v~ f~(m'). 

Stinson [22] mentioned a generalization of this bound for codes which includes 
cases where the second condition does not hold. He gave a proof for codes without 
splitting. We prove that the same bound is valid for systems with splitting. First we 
introduce the following notations. 

Given an encoding rule e' and given any m, m' ~ M(e ' )  with fe,(m) ~ f~,(m') define 

~" p(e). p(S = f~(m))" p(mle, S = fdm))  
e r g ( m , m ' )  

6(e', m, m') = f a(m)~ f~ 
p(e')" p(S = f~,(m))" p(mle', S = f~,(m)) " 

with E(m, m') = (e ~ E: m, m' ~ M(e)}. Let 

6 = min{6(e', m, m'): m, m' ~ M(e'),  m ~ m', f~,(m) v~ f~,(m')}. 

Note that ~ > 1 in general and that 6 = 1 if and only if the second condition in the 
foregoing lemma is satisfied. 

Theorem 3.6. In an authentication system with splitting, 

Pdl >-- 6" 2 -meIM), 

where t~ is defined as above. 

Proof. The proof is essentially the same as in [3]. Suppose the opponent 
substitutes message m with message m', m # m'. We denote the probability that the 
message m' is accepted by payoff(m, m'). We obtain 

~, p(e) 'p(S = f~(m))" p(mle, S = fe(m)) 
e r s  

payoff(m, m') = fe(tn)~f'(m') 
p(e). p(S = f~(m))" p(mle, S = f~(m)) 

e r E(m)  

~" p(e)" p(S = fe(m)" p(mle, S = f~(m)) 
e r E ( m , m ' )  

_~_ f o(m)  ~ f o(nt ' )  

p(m) 

We define P.h(m) = max{payoff(m, m'): m ~ m'}. Then 

Pd, = ~., p(m)'Pd~(m) 
m e M  
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holds. For any m, m', and e' such that m :# m' and m, m' e M(e'), fe,(m) ~ fe,(m'), 
we have 

Pd,(m) > payoff(m, m') 

p(e')" p(S = fe,(m))" p(mle', S = f~,(m)) 
= cS(e', m, m') 

p(m) 

~.p(e') .p(S = f ~ , ( m ) ) ,  p(mle', S = f,,(m)) 
p(m) 

p(e') 'p(S = f~,(m)), p(mle', S = f~,(m)) Pd,(m) < - -  
p(m) 

and hence 

It follows, for H(EIM), that 

H(EIM) = - ~, ~ pim).p(elm).log p(elm) 
m c M  e c E  

= -  ~ ~, p(e)" p(mle)" log p(elm) 
m E M  e E E ( m )  

= - ~, ~ p(e).p(S = fe(m))'p(mle, S = f~(m)) 
r a e M  e e E  

�9 logp(e ) �9 p(S = f~(m))'p(mie, S = f~(m)) 
p(m) 

Pdl(m) 
>_ - ~, ~ p(e)'p(S = f~(m))'p(mle, S = f ~ ( m ) ) - l o g ~  

m e M  e c E ( m )  

�9 Pd,(m) 
= - - ~  log ~- " ~ p(e).p(S=f~(rn)).p(mle, S=f~(m))  

m c M e c E(rn) 

P~(m) 
= - m~t~ I o g ~ "  p(m) 

> - - l o g  ~ Pd,(m)'p(m) 
ra ~ M (~ 

since log is convex and ~_,m~Mp(m) = 1. Hence 

H(EIM) > - l o g  P"' - -  ~ " 
[] 

Remark. Recently another bound for codes with splitting based on entropies was 
found by Jimbo and Fuji-Hara (see 1-12]). 

We can prove another bound for codes with splitting analogous to a known 
bound for codes without splitting (see 1-22]). Since the proof is similar to the one in 
the nonsplitting case we have omitted it here. 



New Bounds and Constructions for Authentication/Secrecy Codes with Splitting 179 

Theorem 3.7. In an authentication system with splitting, 

6 
I'd, > -  

r 

with r = maXm~ u IE(m)f. 

N o w  we prove a new combinator ia l  bound  on the value of  the substitution game 
in an authent icat ion code with splitting. 

Theorem 3.8. In an authentication code with splitting, 

x(e) - max le(s)l 
Pd, > min ~ s  

e~E v -  rain te(s)l 
sES 

Proof. Suppose the opponent  substitutes message m with message m' (m # m'). 
We denote the probabil i ty that  the message m'  will be accepted as authentic by the 
receiver by payoff(m, m'). As before, we have 

~,, p(e)'p(S = fe(m))"p(mle, S = f~(m)) 
e ~ E(m,m') 

payoff(m, m') = S.(m)~S.tm') 
~" p(e)'p(S = f~(m))'p(mle, S = f~(m)) 

e E E(m) 

It follows that  
payoff(m, m') > min (x(e) - max le(s)l). 

m~m" e~g(m) s ~ S  
3e ~ E: f e(m) ~ f e(ra') 

Hence there must  be some m 0, m o ~ m and, for at least one encoding rule e, 
fe(mo) ~ f~(m), such that 

m a x ( v - m i n l e ( s ) l ) ' p a y o f f ( m ,  m o ) > m i n ( I x ( e ) - m a x l e ( s ) [ )  
e~E(m) s ~ S  eeE(m) s ~ S  

holds. It follows that  
r(e) - max [e(s)l 

payoff(m, mo) > min s~s 
e~e(m) v -  min le(s)l 

s ~ S  

For  every m, determine such an m o. This defines a substitution strategy in which 
the transmitter  can be deceived with probabil i ty at least 

x(e) - max le(s)l 
min ~ s  
e ~ E  V - -  min le(s)l 

s 6 S  

When equality holds (which means Pa, is a constant), 

x(e) - max le(s)l 
s ~ S  

v - min le(s)l 
s ~ S  

must  be a constant.  [ ]  
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3.3. Bounds for a "Spoofing Attack of Order L" 

The preceding result can be generalized for a spoofing attack of order L. 

T h e o r e m  3.9. In an authentication code with splittin#, 

x(e) - i. max [e(s)l 
Pd. > min ~ s  

' ~E v - i ' m i n l e ( s ) l  
s ~ S  

As a generalization of the L-fold security for codes without splitting (see [23]), 
an authentication system with splitting is said to be L-fold secure against spoofing if 

x(e) - i" max le(s)l 
Pd .=min  ~ s  for alli, 0 < i < L .  

' ~E v - i - m i n l e ( s ) l  - - 
sr 

Next we prove a lower bound for the number of encoding rules for codes with 
splitting. 

T h e o r e m  3.10. An authentication system with splitting which has perfect L-fold 
secrecy and (L - 1)-fold security against spoofing satisfies 

v . ( v -  maXims le(s)l)'"(v-(L-1)-maXims [e(s,I) 
b >  

L[ 

Proof. Let M 1 be a set of i < L - 1 messages which are permitted under a par- 
ticular encoding rule, in such a way that they define i different source states. Let x 
be a message which is not contained in MI. Suppose there is no encoding rule e 
under which all messages in M1 w {x} are valid and for which fe(x) ~ s How- 
ever, in view of the preceding theorem this contradicts the (L - 1)-fold security of 
the code. Hence, it follows that every L-subset of messages is valid under at least 
one encoding rule such that they define different source states. 

Now, pick any L-subset of messages of M, say M 2. In order to achieve perfect 
L-fold secrecy, the messages in M2 must encode every possible L-subset of source 

states. Hence, Mzisavalidsetofmessagesunderatleast(kL)encodingrules. Now, 

if we count L-subsets of messages in such a way that they correspond to different 
source states, we obtain 

v ' ( v - m a x  [e(s)l)...(v 

- L !  

It follows that 

v.(v--maXs~s ,e(s,l)...(v 
b >  

L! 

- (L -- 1).max [e(s)[) 

- ( L -  1).maXs~s le(s)l) 
[] 
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Analogously  as for codes wi thout  splitting [23] we define an optimal L-code as a 
code which achieves perfect L-fold secrecy, is (L - 1)-fold secure against  spoofing, 
and the preceding lower bound  for b is reached. 

4. Constructions for Codes with Arbitrary Source Distribution 

In this section we construct  authent ica t ion  codes which meet  one or  more  bounds  
of the previous sections with equality. 

4.1. Codes Derived From Partial Geometries 

A (finite) partial geometry (PG) is an incidence structure G = (P, B, I) in which P 
and  B are sets of  objects called points  and lines, respectively, with a symmetr ic  
incidence relat ion I satisfying the following axioms: 

1. Each point  is incident with t + 1 lines (t >_ 1) and two distinct points  are 
incident with at  mos t  one line. 

2. Each line is incident with s + 1 points  (s > 1) and two distinct lines are incident 
with at mos t  one point.  

3. I f x  is a point  and L i s a  line not  incident with x, then there are exactly 0t (~ > 1) 
points  x l ,  x 2, - . - ,  X~ and ct lines L 1 ,  L 2 . . . . .  L,  such that  x I L i I xi I L, i = 
1, 2, . . . ,  cc 

The  numbers  s, t, ot are called the pa ramete r s  of  the part ial  geometry.  These 
incidence structures were in t roduced by Bose in 1963 I-2]. Fo r  ~ = 1 they are 
generalized quadrangles  (see [14]); "p roper"  part ial  geometr ies  satisfy 1 < ~ < 
min(s, t). Therefore  IPI = (s + 1)(st + a)/a and IB[ = (t + 1)(st + ~)/a hold, hence 
so do ~[st(s + 1) and cclst(t + 1). 

Fur the r  informat ion  on part ial  geometr ies  can be found in [2] and [5]. 
We denote  coll inear points  x and y by x ~ y. Fo r  x ~ P, but  x • = {y ~ P: y ,-~ x}. 

No te  tha t  x ~ x ' .  A spread R o f a  P G  is a set of  lines such that  each point  is incident 
with exactly one line of R. I t  is easy to verify that  [R[ = (st + ~)/~. 

Using part ial  geometr ies  we obta in  the following construct ions for authent ica t ion 
codes with splitting. 

Construction 1. Let  G be a part ial  geomet ry  of order  (s, t), s, t > 1. Take  an 
arb i t ra ry  point  x. Let  the source states be defined by the t + 1 lines which are 
incident with x, the messages are the points  of  x l \ { x }  and the encoding rules are 
the points  of P \ x  • We define an encoding rule in the following way. Given  a point  
y ~ x • we define for a source state K, x I K, the message ey(K) = {zl . . . . .  z,}, with 
zl . . . . .  z,  the a points  on K such that  y ~ z~ I L, 1 < i < a. 

Theorem 4.1. I f  there exists a PG with parameters s, t > 1, a < s + 1, then there 
exists a Cartesian authentication code AC( t  + 1, (t + 1)s, st(s + 1 -- a)/a) which is 
O-fold secure against spoofing. 

Proof. It  is easy to verify that  k = t + 1, v = (t + 1)s, and b = (s + 1)(st + ~)/0t - 
(t + 1)s - 1 = st(s + 1 - ~t)/~. We use the uniform encoding and  splitting strategy. 
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To  verify Pdo, we choose an arbi t rary message m. Then  there exist, in view of 
the third axiom in Section 4.1, t(s + 1 - ~) encoding rules containing m. Hence, 
payoff(m), the probabil i ty that  the message m is accepted by the receiver, is given by 

t(s + l - ct) ~ x '  
payof f (m)=  ~ p ( e ) =  

~Et ,~  (st /~)(s + 1 - ct) s v ' 

with x'  = m i n ~ e x ( e  ) = (t + 1)ct. No te  that  we obtain the same value for the im- 
personat ion game for any source distribution. [ ]  

Remarks .  (i) Using the same set of source states we can define an A C ( t  + 1, 
(t + 1)s, st(s  + 1 - ~)(t + 1)/0t) with Pao = a/s, which is 0-fold secure against spoof- 
ing and which has perfect 1-fold secrecy. F r o m  each encoding rule of the pre- 
ceding theorem we define t + 1 new encoding rules in the following way. Let 
M(er) = My = { z1.1 . . . . .  zL~, . . . ,  zi.j . . . . .  z,+1,1 . . . . .  z,+L~}, then we define, for each 
O < i < t ,  

e(My,  i) = (ek.i, 1 < k < t + 1), 

where ek.j = Zk+~j with k + i taken mod( t  + 1). This illustrates the influence of the 
secrecy of the code on the number  of encoding rules b. 

(ii) For  ~ = 1, G is a generalized quadrangle  and we obtain an authent icat ion 
code without  splitting, which was already described in I-7] and 1-22]. Moreover ,  if 
x is a regular point  (see 1,14]) it was proven that  the code satisfies Pdo = Pal, = 1/S 
with k = t + 1, v = (t + 1)s, and b = s 2 (see Theorem 6.1 and the Remarks in [7]). 
Hence, for quadrangles of order  s (this means s = t) with a regular point, we obtain 
the same codes as the one defined by Gilbert  et al. in I-9]. 

(iii) We refer to [4] and I-5] for a description of the "known"  P G  which can be 
used to construct  the preceding schemes. 

Construction 2. Consider  again a P G  with parameters  s, t > 1, ct which contains 
a spread R = {L1 . . . . .  L<~t+~/, }. Define the source states as the lines of R (k = 
(st + ct)/ct) and the messages as the points of G (v = (s + 1)(st + ~t)/ct). Denote  the 
points as x l ,  1, x l ,2 ,  . . . ,  x i j ,  . . . ,  xtst+,)/,,s+~, with xi, ~ I El, 1 < j <_ s + 1, 1 < i <_ 
(st + ot)/~t. Then we define an encoding rule in the following way. We associate with 
each point  x~,j an encoding rule 

ex,.~(Lk) = {x2i+k,r, . . . . .  X2i+k.,:} 

with Xz~+k.q . . . . .  X21+k,l; the ~ points on the line L2i+k which are collinear with x~,~, 
if xi,~ I L2i+k or 

ex,. j(L,) = xi , j  

if x~.j I L2~+k. Note  that  in each case 2i + k is taken mod(st  + ct)/a. 
In this way we obtain b = (s + 1)(st + ct)/a encoding rules. 

Theorem 4.2. I f  there ex i s t s  a P G  with parameters  s, t > 1, ~ > 1 containing a spread 
R,  then there ex i s t s  an opt imal  l -code  wi th  spli t t ing f o r  (st q- ~)/~ source s tates  and 
(st + ct)(s + 1)/~ messages.  
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Proof. We use the uniform encoding and splitting strategy. Let us first verify that 

Pao = min,  ~ E x(e)/v. 
Consider a message m. Then m occurs in st + 1 encoding rules (since there are st 

points collinear with m, not on the line of the spread through m). Hence payoff(m) 
is given by 

payoff(m)= 
e ~ E ( m )  

On the other hand, 

p(e )  = 
s t +  1 

((st + cO/a)(s + 1)" 

min ~c(e) _ (st/e).e + 1 
e~E v (s + 1)((st + u)/u)" 

Hence the code is O-fold secure against spoofing. 
The code has perfect 1-fold secrecy since each message occurs exactly ~ times in 

st/e columns and once in exactly one column of the b x k matrix (hence each column 
contains s + 1 entries with one message and (s + 1)st/e entries with e messages). 

Since the number  of encoding rules satisfies the lower bound given in Theorem 
3.10, we indeed obtain an optimal 1-code. []  

Remarks. In the case ~ = 1, and hence the P G  is a generalized quadrangle, a 
similar technique can be used to define an optimal code without splitting (see [7]). 

Example. We give a short description of the P G  T*(K) which can be used for this 
construction [6]. For  other PGs containing a spread we refer to [5]. 

A maximal arc K r i0]  of degree d in a finite projective plane of order q (not 
necessarily desarguesian) is a (maximal) set of qd - q + d points of the plane such 
that any line of the plane intersects K in 0 or d points. If K is a proper subset of the 
plane, we can easily prove that d has to divide q. Let K be a maximal arc of degree 
d in the projective plane PG(2, q) over GF(q) (q = ph, p a prime). We define an 
incidence structure G = (P, B, I) as follows. Let PG(2, q) be embedded as a plane H 
in PG(3, q). The points of G are the points ofPG(3,  q)\H; the lines of G are the lines 
of PG(3, q) which are not contained in H and meet K (necessarily in a unique point). 
The incidence is that of PG(3, q). Then G is a partial geometry with parameters 
t = qd - q + d - 1, s = q - 1, ~ = d - 1 and is denoted by T*(K). The PG T*(K) 
using an arc of degree 2 m in PG(2, 2 h) has parameters s = 2 h-l, t = (2 h + 1)(2 m - 1), 

= 2 m - 1. This is a G Q  iffm --- 1; i.e., K is a complete oval. 
The set of lines which meet in a same point of K clearly define a spread of the PG. 

Remark. In the previous codes it is precisely in the nonsplitting case (for ~ = 1) 
that the smallest probability for the impersonation is reached. In the next example 
constructed from designs the splitting has no influence on the value for the imper- 
sonation probability. 

4.2. Codes Derived from Designs 

Consider an affine resolvable BIB design. This is a 2-(v, k, 2) design D = (P, B, I) (see 
[1], [11], and [16]) which has a partition ~ = B1 u B2 t.)-., u B, of the block set B 
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such that  any point  occurs exactly once in the blocks of each set Bi, 1 < i < r (i.e., 
each B~ is a parallel class of D), and any two blocks of  distinct classes intersect exactly 
in/~, # > 0, points. It holds that  IBI = r 'n ,  Iel = k .n ,  n > 2, and 2 = r . ( k -  1)/ 
( n . k -  1), k = # .n .  

We define the set of  source states S to be one of  the part i t ion classes, say B1, of  
D. Hence ISI = n. The messages are the points of D, so IMI = k. n. For  each block 
L r B 1, we define for Ni ~ B1, 1 < i < n, 

X L ( N , )  = {x, ,1 . . . . .  x,,.}. 
with x~,~ . . . .  , x~,~ the c o m m o n  points of  N~ and L. 

F r o m  each set XL = {XL(N~): 1 <_ i <_ n} we define n encoding rules in the follow- 
ing way: 

e(XL, j )  = (Xk, 1 . . . .  , Xk,~: 1 <_ k < n), 0 <_ j <_ n - 1, 

with Xk, 1 = X~+j(moa~n.~ . . . . .  Xk., = Xi+jtmoa),,~. In  this way we defined (r .n  - n ) 'n  = 
(r - 1). n 2 encoding rules. 

T h e o r e m  4.3. An affine resolvable B I B  design defines an AC(n, k" n, ( r -  1). n 2) 
which has perfect 1-fold secrecy and O-fold security against spoofing. 

Proof. We use the uniform encoding and splitting strategy. Consider  a message m. 
Then m occurs in exactly one block of each of  the classes B 2, B3, . . . ,  B r and hence 
in (r - 1). n encoding rules. We obtain, for payoff(m), 

(r - 1)" n 1 
payoff(m) - (r - 1). n 2 = n '  

while on the other hand  we have 

re(e) n" # 1 
min - -  = -- . 
e~E V k ' n  n 

Hence the code has 0-fold security against spoofing. It  is obvious from the definition 
of the encoding rules that  this code has perfect 1-fold secrecy. [ ]  

Remarks.  (i) Considering two distinct messages m, m', we can also calculate 
payoff(m, m'). We may  assume that  m, m' belong to ). c o m m o n  blocks, none of  which 
is contained in B1 (since otherwise m, m' would define the same source state). For  
each such block, say L, and for each source state j, there is exactly one encoding 
rule e(X  L, i) where m, m' ~ M ( e ( X  L, i)) and fe(Xr,o(m) = j. This results in 

2 r ' ( k -  1) r ' ( k -  1) 
payoff(m, m') - - -  

( r -  1) (n-k - 1 ) ( r -  1) v . ( r -  1) 

while 

x ( e )  - m a x  l e ( s ) l  # . n  - # # ' n  - be 1 
m i n  ~ s  _ _ _ 
~ e  v - m i n  l e ( s ) l  v - -  / , t  # - n  2 - -  # n + 1" 

s~S 
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It follows that the preceding code never has 1-fold security against spoofing. Indeed, 
for 1-fold security r.  k + n" k - r- n - 1 = 0 must hold. Since for affine resolvable 
BIB designs b = v + r - 1 (see [16]), this results in r(k - 2) + 1 = 0, which is dearly 
never satisfied. 

(ii) Note that Gilbert, MacWilliams, and Sloane were the first to use designs, more 
specifically BIBD, to construct authentication codes. More recently Simmons also 
used affine designs to construct equitable authentication codes [21]. 
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