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1 Introduction

This paper is concerned with the Gauss sums

G(a) = Gp(a, k) =
p∑

n=1

ep(ank),

and with Heilbronn’s sum

H(a) = Hp(a) =
p∑

n=1

e(
anp

p2
),

where p is prime, e(x) = exp(2πix), and ep(x) = e(x/p). In each case we shall
assume that p |/ a unless the contrary is explicitly stated.

Gauss sums arise in investigations into Waring’s problem, and other addi-
tive problems involving k-th powers. Although they are amongst the simplest
complete exponential sums, the question as to their true order of magnitude is
far from being resolved. We remark at the outset that if (k, p− 1) = k0, then

Gp(a, k) = Gp(a, k0).

Thus it suffices to suppose, as indeed we shall, that k|p− 1.
When p |/ a the trivial bound for G(a) states that |G(a)| ≤ p. The next

simplest estimate takes the form

|G(a)| ≤ (k − 1)
√

p. (1)

This may be obtained by writing G(a) in terms of the character Gauss sum as

G(a) =
∑

χk=χ0

χ 6=χ0

χ(a)τ(χ). (2)
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There are k − 1 terms here, each of modulus
√

p. One can also think of the
estimate (1) as deriving from Weil’s Riemann Hypothesis for curves over finite
fields. The formula (2) then gives explicitly the decomposition of G(a) as a
linear combination of roots of the corresponding L-function. We should remark
that Montgomery, Vaughan and Wooley [5] have given a small improvement on
(1), by showing that if 2k |/ (p− 1) then

|G(a)| ≤ 2−1/2(k2 − 2k + 2)1/2p1/2,

for p > 2. Moreover they present both numerical and heuristic evidence in
support of the conjecture that

|G(a)| ≤ min{(k − 1)p1/2 , (1 + η)(2kp log kp)1/2},

where η → 0 as k and p/k tend to infinity. Indeed one expects that this
hypothetical upper bound would be best possible.

The estimate (1) is fairly sharp if k is small in comparison with p, but as
soon as k À √

p it becomes worse than the trivial bound. This is a universal
problem when one applies Weil’s method, (or indeed Deligne’s, in the case of
multiple exponential sums): For large degree the bound obtained is trivial.

For values of k of intermediate size remarkable progress was made by Shpar-
linski [6], who established the bound

G(a) ¿ k7/12p2/3, (3)

thereby improving the previous results for p2/5 ≤ k ≤ p4/7. Moreover Konyagin
and Shparlinski later showed, in unpublished work, that

G(a) ¿ k1/3p19/24, (4)

which improves the three earlier bounds for p1/2 ≤ k ≤ p5/8. Both the results (3)
and (4) were subsequently found independently by Heath-Brown (unpublished).

Shparlinski reduces the problem of estimating G(a) to that of bounding the
number of solutions to a congruence

xk + yk ≡ n (mod p). (5)

This problem is tackled via a theorem of Garcia and Voloch [1]. Heath-Brown’s
approach is very similar, but the method of Stepanov [7] is used to handle (5).
The proof of Garcia and Voloch’s estimate has in fact strong parallels with
Stepanov’s method.

It should also be mentioned that large values of k have been treated by
Konyagin [3], who shows that for any ε > 0 there is a positive constant cε for
which

|G(a)| ≤ p(1− cε

(log k)1+ε
)
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for k ≥ 2 and

p ≥ k log k

(log log k)1−ε
.

Here we have corrected an unfortunate misprint in the English translation of
Konyagin’s paper, which led to its being quoted incorrectly in both Zentral-
blatt, (820:11048) and Math. Reviews, (96e:11122). Although the improvement
over the trivial bound is extremely small, there are important consequences for
Waring’s problem modulo p, as Konyagin describes.

In the present paper we improve the application of Stepanov’s method to
bound the number of solutions of (5) for several different values of n simultane-
ously. This enables us to establish the following improvement of (3).

Theorem 1 For p |/ a we have

G(a) ¿





kp1/2, 1 ≤ k ≤ p1/3,

k5/8p5/8, p1/3 < k ≤ p1/2,

k3/8p3/4, p1/2 < k ≤ p2/3,

p, p2/3 < k < p.

The trivial bound and the estimate (1) are therefore both superseded for p1/3 ¿
k ¿ p2/3.

For many years it was an open problem to show that Heilbronn’s sum satisfies
Hp(a) = o(p) as p → ∞. Recently Heath-Brown [2] was able to establish the
bound

Hp(a) ¿ p11/12.

The proof used Stepanov’s method to bound the number of solutions of the
congruence

f(x) ≡ u (mod p),

where

f(X) = X +
X2

2
+

X3

3
+ . . . +

Xp−1

p− 1
,

thereby re-discovering a result of Mit’kin [4]. Our new variant of Stepanov’s
method can be applied here too, yielding the following improved estimate.

Theorem 2 We have
p∑

r=1

|Hp(a + rp)|4 ¿ p7/2

and hence
Hp(a) ¿ p7/8

for p |/ a.
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As a corollary, we have a new bound for incomplete Heilbronn sums.

Corollary If p is a prime and p |/ a then

∑

M<n≤M+N

p |/ n

e(
anp

p2
) ¿ p5/8N1/4,

uniformly in a, for all M and for all N ≤ p.

This may be compared with the corresponding result of Heath-Brown [2], in
which the bound was O(p11/12). The new result is non-trivial for N À p5/6.

The proofs of our theorems begin with some straightforward manipulation,
leading to the following results.

Lemma 1 Let h = (p− 1)/k and set

µh = {x ∈ ZZp : xh = 1},

A(h) = {(x1, x2, x3, x4) ∈ µ4
h : x1 + x2 = x3 + x4}.

Then
G(a) ¿ k5/4(#A(h))1/4, (6)

and
G(a) ¿ p1/8k(#A(h))1/4. (7)

Lemma 2 Let

f(X) = X +
X2

2
+

X3

3
+ . . . +

Xp−1

p− 1
∈ ZZp,

and let
B = {(x1, x2) ∈ ZZ2

p : f(x1) = f(x2)}.
Then

p∑
r

|Hp(a + rp)|4 ¿ p3 + p2#B.

By applying our new variant of Stepanov’s method we shall establish the
following bounds for #A(h) and #B, from which Theorems 1 and 2 immediately
follow.

Lemma 3 For any h < p2/3 we have #A(h) ¿ h5/2 .

Lemma 4 We have #B ¿ p3/2.
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The nature of our improvement in the application of Stepanov’s method is
clearest when one compares Lemma 4 of Heath-Brown [2], with our Lemma 7.
If we define

F(u) = {x ∈ ZZp : f(x) = u}
then, in the notation of the current paper, the former result states that

#F(u) ¿ p2/3

for any u ∈ ZZp, while our Lemma 7 shows that
∑

u∈U

#F(u) ¿ p2/3(#U)2/3

for any U ⊆ ZZp.

2 Proof of Lemmas 1 and 2

In this section we shall prove Lemmas 1 and 2. We begin by writing

G0(a) =
p−1∑
n=1

ep(ank),

so that G(a) = 1 + G0(a). Then

G0(a) = G0(amk) for p |/m.

It follows that

(p− 1)|G0(a)|4 =
p−1∑
m=1

|G0(amk)|4 ≤ k

p∑
n=1

|G0(n)|4,

since each value of n arises either k times or not at all. We therefore see that

h|G0(a)|4 ≤
p−1∑

m1,...,m4=1

p∑
n=1

ep((mk
1 + mk

2 −mk
3 −mk

4)n)

= p#{(m1, . . . , m4) : mk
1 + mk

2 ≡ mk
3 + mk

4 (mod p)}
= pk4#A(h),

and (6) follows.
To derive (7) we note that

(p− 1)|G0(a)|2 =
p−1∑
m=1

|G0(amk)|2
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=
p−1∑

n1,n2=1

p−1∑
m=1

ep(a(nk
1 − nk

2)mk)

=
p∑

b=1

N(b)G0(ab),

where

N(b) = #{(n1, n2) : 1 ≤ n1, n2 ≤ p− 1, nk
1 − nk

2 ≡ b (mod p)}.

We may now apply Hölder’s inequality, whence

(p− 1)4|G0(a)|8 ≤ {
p∑

b=1

N(b)2}{
p∑

b=1

N(b)}2{
p∑

b=1

|G0(ab)|4}.

As above, the final sum on the right is pk4#A(h). We may therefore conclude
that

(p− 1)4|G0(a)|8 ¿ pk4(#A(h)){
p∑

b=1

N(b)2}{
p∑

b=1

N(b)}2. (8)

In order to estimate the terms involving the function N(b), we recall that
h = (p−1)/k, and observe that the congruence nk ≡ s (mod p) has no solutions
unless sh ≡ 1 (mod p), in which case there are exactly k solutions. It therefore
follows that N(b) = k2M(b), where

M(b) = #{(x1, x2) ∈ µ2
h : x1 − x2 = b}.

We trivially have
p∑

b=1

M(b)2 = A(h),

whence
p∑

b=1

N(b)2 = k4A(h).

Moreover it is clear that
p∑

b=1

N(b) = (p− 1)2.

If we now insert these formulae into (8) we see that the estimate (7) follows
immediately.

The proof of Lemma 2 is similar to that of (6). We write

H0(a) =
p−1∑
n=1

e(
anp

p2
),

6



so that H(a) = 1 + H0(a). Then

H0(a) = H0(amp) for p |/m.

It follows that

(p− 1)
p∑

r=1

|H0(a + rp)|4 =
p∑

r=1

p−1∑
m=1

|H0((a + rp)mp)|4 ≤
p2∑

n=1

|H0(n)|4,

since each value of n arises at most once. (Indeed each value with p |/ n arises
exactly once.) We therefore see that

(p− 1)
p∑

r=1

|H0(a + rp)|4 ≤
p−1∑

m1,...,m4=1

p2∑
n=1

ep2((mp
1 + mp

2 −mp
3 −mp

4)n)

= p2#{1 ≤ m1, . . . ,m4 ≤ p− 1 : mp
1 + mp

2 ≡ mp
3 + mp

4 (mod p2)}.
Here we must have m1 + m2 ≡ m3 + m4 (mod p). Thus, if we write

m1 −m3 ≡ b (mod p)

we also have m4 − m2 ≡ b (mod p). The case p|b now contributes (p − 1)2

solutions of the congruence. When p |/ b we write m1 ≡ v1b (mod p), so that
m3 ≡ (v1 − 1)b (mod p). Thus

mp
1 −mp

3 ≡ (vp
1 − (v1 − 1)p)bp (mod p2).

In the same way we find that

mp
4 −mp

2 ≡ (vp
2 − (v2 − 1)p)bp (mod p2),

where m4 ≡ v2b (mod p).
The congruence mp

1 + mp
2 ≡ mp

3 + mp
4 (mod p2) now becomes

(vp
1 − (v1 − 1)p)bp ≡ (vp

2 − (v2 − 1)p)bp (mod p2).

There are p− 1 choices for b, and for each such value we will have

vp
1 − (v1 − 1)p ≡ vp

2 − (v2 − 1)p (mod p2).

Since

vp − (v − 1)p =
p∑

l=1

(−1)l−1vp−l( p
l

) ≡ 1− pf(v) (mod p2),

it now follows that

#{1 ≤ m1, . . . , m4 ≤ p− 1 : mp
1 + mp

2 ≡ mp
3 + mp

4 (mod p2)}
≤ (p− 1)2 + (p− 1)#{1 ≤ v1, v2 ≤ p− 1 : f(v1) ≡ f(v2) (mod p)},

whence

(p− 1)
p∑

r=1

|H0(a + rp)|4 ≤ p2{(p− 1)2 + (p− 1)#B}

which suffices for Lemma 2.

7



3 Stepanov’s Method

We shall begin by considering #A(h). For each u ∈ ZZp we write

C(u) = {x ∈ µh : x− u ∈ µh},

so that #C(0) = h and

#A(h) =
∑

u∈ZZp

(#C(u))2

= h2 +
∑

u 6=0

(#C(u))2

= h2 + h
∑

u

∗(#C(u))2 (9)

where Σ∗ indicates that u runs over distinct coset representatives of µh in ZZ×p .
In the same way we have

{#µh}2 =
∑

u∈ZZp

#C(u)

= h +
∑

u 6=0

#C(u)

= h + h
∑

u

∗#C(u),

whence ∑
u

∗#C(u) = h− 1. (10)

We now take an arbitrary set U of elements u from distinct cosets of ZZ×p ,
and write

D(u) = u−1C(u) = #{y ∈ ZZp : uy ∈ µh, uy − u ∈ µh},

and
E =

⋃

u∈U

D(u).

Thus #D(u) = #C(u), and since the sets D(u) are disjoint we deduce that

#E =
∑

u∈U

#C(u).

Our aim is to prove the following bound for #E .
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Lemma 5 Let #U = T ≥ 1. Then

#E ¿ (hT )2/3

providing that h4T < p3.

We begin our application of Stepanov’s method by taking a polynomial
Φ(X,Y, Z) ∈ ZZp[X,Y, Z], for which

degX Φ < A, degY Φ < B, degZ Φ < B,

and arranging that the polynomial

Ψ(X) = Φ(X, Xh, (X − 1)h)

has a zero of order at least D, say, at each point x ∈ E . We will therefore
be able to conclude that D#E ≤ deg Ψ(X), providing that Ψ does not vanish
identically. We note that

deg Ψ ≤ (degX Φ) + h(degY Φ) + h(degZ Φ) < A + 2hB,

whence
D#E ¿ A + hB, (11)

providing that Ψ does not vanish.
In order for Ψ to have a zero of multiplicity at least D at a point x we need

(
d

dX
)nΨ(X)

∣∣∣∣
X=x

= 0 for n < D.

Since x 6= 0, 1 for x ∈ E , this will be equivalent to

{X(X − 1)}n (
d

dX
)nΨ(X)

∣∣∣∣
X=x

= 0. (12)

We now observe that

Xm(
d

dX
)mXa =

a!
(a−m)!

Xa,

Xm dm

dXm
Xhb =

(hb)!
(hb−m)!

Xhb,

and

(X − 1)m(
d

dX
)m(X − 1)hc =

(hc)!
(hc−m)!

(X − 1)hc.

It follows that

{X(X − 1)}n(
d

dX
)nXaXhb(X − 1)hc = Pn,a,b,c(X)Xhb(X − 1)hc
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where Pn,a,b,c(X) either vanishes or is a polynomial of degree n+a. We therefore
deduce that

{X(X − 1)}n (
d

dX
)nXaXhb(X − 1)hc

∣∣∣∣
X=x

= u−hb−hcPn,a,b,c(x)

for any x ∈ D(u). Here we use the fact that xh = (x− 1)h = u−h for such x.
We now write

Φ(X, Y, Z) =
∑

a,b,c

λa,b,cX
aY bZc

and
Pn,u(X) =

∑

a,b,c

λa,b,cu
−hb−hcPn,a,b,c(X),

so that deg Pn,u(X) < A + n and

{X(X − 1)}n (
d

dX
)nΦ(X, Xh, (X − 1)h)

∣∣∣∣
X=x

= Pn,u(x)

for any x in D(u). We shall arrange, by appropriate choice of the coefficients
λa,b,c, that Pn,u(X) vanishes identically for n < D, for all u ∈ U . This will
ensure that (12) holds for x ∈ E . Each of the polynomials Pn,u(X) has at most
A + n ≤ A + D coefficients, which are linear forms in the original λa,b,c. Thus if

D(A + D)T < AB2, (13)

there will be a set of coefficents λa,b,c, not all zero, for which the polynomials
Pn,u(X) vanish for all n < D and all u ∈ U .

We must now consider whether Φ(X, Xh, (X − 1)h) can vanish if Φ(X, Y, Z)
does not. We shall write

Φ(X,Y, Z) =
∑

c

Φc(X, Y )Zc,

and take c0 to be the smallest value of c for which Φc(X, Y ) is not identically
zero. It follows that

Φ(X, Xh, (X − 1)h) = (X − 1)hc0
∑

c0≤c<B

Φc(X, Xh)(X − 1)h(c−c0),

so that if Φ(X,Xh, (X − 1)h) is identically zero we must have

Φc0(X, Xh) ≡ 0 (mod (X − 1)h). (14)

At the end of this section we shall establish the following result.

Lemma 6 Let P (X) ∈ ZZp[X] be a sum of N ≥ 1 distinct monomials. Suppose
further that deg(P ) < p. Then (X − 1)N cannot divide P (X).

10



Lemma 6 shows that (14) is impossible, providing that

AB ≤ h and A + hB < p. (15)

We now choose our parameters A and B by taking

A = [
1
2
h2/3T−1/3] and B = [

1
2
h1/3T 1/3].

These will produce positive integers satisfying (15), providing that h2 ≥ 8T and
h4T < p3. Moreover there will then be an integer T for which (13) holds, in the
range h2/3T−1/3 ¿ D ¿ h2/3T−1/3. The estimate (11) therefore produces

#E ¿ hB/D ¿ (hT )2/3

as required. Of course, if T À h2, then the bound (10) yields

#E ¿ h ¿ (hT )2/3,

and Lemma 5 is trivial.
We turn now to the argument required for Lemma 4. This will be an adaption

of that given by Heath-Brown [2], along the lines used above. Thus we write

F(u) = {x ∈ ZZp : f(x) = u},
so that

#B =
∑

u∈ZZp

(#F(u))2 (16)

and ∑

u∈ZZp

#F(u) = p. (17)

Moreover we set
G =

⋃

u∈U

F(u),

where U is an arbitrary set of T elements u ∈ ZZp. In analogy to Lemma 5 we
aim to prove the following bound.

Lemma 7 Let #U = T ≥ 1. Then

#G ¿ (pT )2/3.

We begin by choosing Φ(X, Y, Z) ∈ ZZp[X,Y, Z], with

degX Φ < A, degY Φ < B, degZ Φ < C.

We shall arrange that the polynomial

Ψ(X) = Φ(X, f(X), Xp)
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has a zero of order at least D, say, at each point x ∈ G. We will then be able
to deduce that D#G ≤ deg Ψ(X), providing that Ψ does not vanish identically.
We note that

deg Ψ ≤ (degX Φ) + (p− 1)(degY Φ) + p(degZ Φ) < A + p(B + C),

whence
D#G ¿ A + p(B + C), (18)

providing that Ψ does not vanish.
Following the argument of [2;§§3& 4] this can be achieved by making certain

polynomials Pn,u(X) of degree less than A + 2D + C vanish identically, for all
n < D and each u ∈ U . The coefficients of these polynomials are linear forms
in the coefficents of the original function Φ, so that it suffices to have

D(A + 2D + C)T < ABC.

Moreover Lemma 3 of [2] shows that Ψ will not vanish identically, providing
that

AB ≤ p.

We therefore choose

A = [p2/3T−1/3], B = C = [p1/3T 1/3],

which are clearly admissable, since T = #U ≤ p. Moreover we may take

D = [p2/3T−1/3/16],

which is also satisfactory, if p is large enough. It then follows from (18) that

#G ¿ p2/3T 2/3

as required.
It remains to establish Lemma 6. This will be achieved by induction on N.

The case N = 1 is trivial. Now suppose that N > 1, and let

P (X) =
∑

l

clX
l,

where l runs over N distinct values. Then

XP ′(X)− l0P (X) =
∑

l

cl(l − l0)X l.

Now, on choosing l0 to be, say, the degree of the highest order term in P (X), we
produce a polynomial containing exactly N−1 terms. We then see that (X−1)N

cannot divide P (X), for otherwise (X−1)N−1 would divide XP ′(X)− l0P (X),
contrary to our induction hypothesis. This completes the proof of Lemma 6.
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4 Deduction of Lemmas 3 and 4

We shall now use Lemma 5, in conjunction with (9) and (10), to bound #A(h).
Since we are assuming that h ≤ p2/3 it is automatic that

h4T ≤ h4k = h3(p− 1) < p3.

We number the coset representatives u as ui, 1 ≤ i ≤ k, in such a way that

#C(u1) ≥ #C(u2) ≥ . . . .

If we now take U to be the set of ui for i ≤ T then Lemma 5 shows that

T#C(uT ) ≤ #E ¿ (hT )2/3

for any T . Hence
∑

N/2<T≤N

(#C(uT ))2 ¿ N(h2/3N−1/3)2 = h4/3N1/3.

Alternatively we may use (10), which yields
∑

N/2<T≤N

(#C(uT ))2 ¿ h2/3N−1/3(h− 1) ¿ h5/3N−1/3.

If we now sum over N = 1, 2, 4, 8, . . ., using the first bound for N ≤ h1/2 and
the second estimate otherwise, we find that

∑
u

∗(#C(u))2 ¿ h3/2,

so that Lemma 3 follows from (9).
The deduction of Lemma 4 from (16), (17) and Lemma 7 is, of course,

completely analogous.

5 The Corollary to Theorem 2

As in Heath-Brown [2], the standard procedure for completing an incomplete
exponential sum yields

∑

M<n≤M+N

p |/ n

e(
anp

p2
) = p−1

p∑
r=1

p∑
s=1

e(
asp

p2
)

∑

M<n≤M+N

e(
r(s− n)

p
)

¿ p−1

p∑
r=1

min{N,
1

||r/p|| } |
p∑

s=1

e(
asp

p2
)e(

rs

p
)|,

13



on using the estimates

∑

M<n≤M+N

e(
−rn

p
) ¿

{
N, any r,
1

||r/p|| , p |/ r.

However, since s ≡ sp (mod p), we have

e(
asp

p2
)e(

rs

p
) = e(

(a + rp)sp

p2
),

so that
p∑

s=1

e(
asp

p2
)e(

rs

p
) = H(a + rp),

and hence

∑

M<n≤M+N

p |/ n

e(
anp

p2
) ¿ p−1

p∑
r=1

min{N,
1

||r/p|| } |H(a + rp)|.

We may now apply Hölder’s inequality, whence

∑

M<n≤M+N

p |/ n

e(
anp

p2
)

¿ p−1

{ p∑
r=1

min{N,
1

||r/p|| }
4/3

}3/4 { p∑
r=1

|H(a + rp)|4
}1/4

¿ p−1/8

{ p∑
r=1

min{N,
1

||r/p|| }
4/3

}3/4

,

by Theorem 2. Since N ≤ p and

p∑
r=1

min{N,
1

||r/p|| }
4/3 ¿ pN1/3,

we deduce that ∑

M<n≤M+N

p |/ n

e(
anp

p2
) ¿ p5/8N1/4,

as claimed.

14



6 Acknowledgement

The second author was supported by Grants 96-01-00378 from the Russian Foun-
dation for Basic Research and 96-15-96072 from the Programme of Development
of Scientific Schools.

References

[1] A. Garcia and J. F. Voloch, Fermat Curves Over Finite Fields, J. Number
Theory, 30 (1988), 345-356.

[2] D.R. Heath-Brown, An estimate for Heilbronn’s exponential sum, Analytic
number theory: Proceedings of a conference in honor of Heini Halberstam,
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