New Bounds for Gauss Sums Derived From k-th Powers, and for Heilbronn's Exponential Sum

D.R. Heath-Brown
Magdalen College, Oxford

S. Konyagin
Moscow State University

1 Introduction

This paper is concerned with the Gauss sums

$$
G(a)=G_{p}(a, k)=\sum_{n=1}^{p} e_{p}\left(a n^{k}\right),
$$

and with Heilbronn's sum

$$
H(a)=H_{p}(a)=\sum_{n=1}^{p} e\left(\frac{a n^{p}}{p^{2}}\right),
$$

where p is prime, $e(x)=\exp (2 \pi i x)$, and $e_{p}(x)=e(x / p)$. In each case we shall assume that $p \nmid a$ unless the contrary is explicitly stated.

Gauss sums arise in investigations into Waring's problem, and other additive problems involving k-th powers. Although they are amongst the simplest complete exponential sums, the question as to their true order of magnitude is far from being resolved. We remark at the outset that if $(k, p-1)=k_{0}$, then

$$
G_{p}(a, k)=G_{p}\left(a, k_{0}\right)
$$

Thus it suffices to suppose, as indeed we shall, that $k \mid p-1$.
When $p \nmid a$ the trivial bound for $G(a)$ states that $|G(a)| \leq p$. The next simplest estimate takes the form

$$
\begin{equation*}
|G(a)| \leq(k-1) \sqrt{p} \tag{1}
\end{equation*}
$$

This may be obtained by writing $G(a)$ in terms of the character Gauss sum as

$$
\begin{equation*}
G(a)=\sum_{\substack{\chi^{k}=\chi_{0} \\ \chi \neq \chi_{0}}} \bar{\chi}(a) \tau(\chi) . \tag{2}
\end{equation*}
$$

There are $k-1$ terms here, each of modulus \sqrt{p}. One can also think of the estimate (1) as deriving from Weil's Riemann Hypothesis for curves over finite fields. The formula (2) then gives explicitly the decomposition of $G(a)$ as a linear combination of roots of the corresponding L-function. We should remark that Montgomery, Vaughan and Wooley [5] have given a small improvement on (1), by showing that if $2 k \nmid(p-1)$ then

$$
|G(a)| \leq 2^{-1 / 2}\left(k^{2}-2 k+2\right)^{1 / 2} p^{1 / 2}
$$

for $p>2$. Moreover they present both numerical and heuristic evidence in support of the conjecture that

$$
|G(a)| \leq \min \left\{(k-1) p^{1 / 2},(1+\eta)(2 k p \log k p)^{1 / 2}\right\}
$$

where $\eta \rightarrow 0$ as k and p / k tend to infinity. Indeed one expects that this hypothetical upper bound would be best possible.

The estimate (1) is fairly sharp if k is small in comparison with p, but as soon as $k \gg \sqrt{p}$ it becomes worse than the trivial bound. This is a universal problem when one applies Weil's method, (or indeed Deligne's, in the case of multiple exponential sums): For large degree the bound obtained is trivial.

For values of k of intermediate size remarkable progress was made by Shparlinski [6], who established the bound

$$
\begin{equation*}
G(a) \ll k^{7 / 12} p^{2 / 3} \tag{3}
\end{equation*}
$$

thereby improving the previous results for $p^{2 / 5} \leq k \leq p^{4 / 7}$. Moreover Konyagin and Shparlinski later showed, in unpublished work, that

$$
\begin{equation*}
G(a) \ll k^{1 / 3} p^{19 / 24} \tag{4}
\end{equation*}
$$

which improves the three earlier bounds for $p^{1 / 2} \leq k \leq p^{5 / 8}$. Both the results (3) and (4) were subsequently found independently by Heath-Brown (unpublished).

Shparlinski reduces the problem of estimating $G(a)$ to that of bounding the number of solutions to a congruence

$$
\begin{equation*}
x^{k}+y^{k} \equiv n(\bmod p) \tag{5}
\end{equation*}
$$

This problem is tackled via a theorem of Garcia and Voloch [1]. Heath-Brown's approach is very similar, but the method of Stepanov [7] is used to handle (5). The proof of Garcia and Voloch's estimate has in fact strong parallels with Stepanov's method.

It should also be mentioned that large values of k have been treated by Konyagin [3], who shows that for any $\varepsilon>0$ there is a positive constant c_{ε} for which

$$
|G(a)| \leq p\left(1-\frac{c_{\varepsilon}}{(\log k)^{1+\varepsilon}}\right)
$$

for $k \geq 2$ and

$$
p \geq \frac{k \log k}{(\log \log k)^{1-\varepsilon}}
$$

Here we have corrected an unfortunate misprint in the English translation of Konyagin's paper, which led to its being quoted incorrectly in both Zentralblatt, ($820: 11048$) and Math. Reviews, (96e:11122). Although the improvement over the trivial bound is extremely small, there are important consequences for Waring's problem modulo p, as Konyagin describes.

In the present paper we improve the application of Stepanov's method to bound the number of solutions of (5) for several different values of n simultaneously. This enables us to establish the following improvement of (3).

Theorem 1 For $p \nmid$ a we have

$$
G(a) \ll\left\{\begin{array}{cc}
k p^{1 / 2}, & 1 \leq k \leq p^{1 / 3}, \\
k^{5 / 8} p^{5 / 8}, & p^{1 / 3}<k \leq p^{1 / 2}, \\
k^{3 / 8} p^{3 / 4}, & p^{1 / 2}<k \leq p^{2 / 3}, \\
p, & p^{2 / 3}<k<p .
\end{array}\right.
$$

The trivial bound and the estimate (1) are therefore both superseded for $p^{1 / 3} \ll$ $k \ll p^{2 / 3}$.

For many years it was an open problem to show that Heilbronn's sum satisfies $H_{p}(a)=o(p)$ as $p \rightarrow \infty$. Recently Heath-Brown [2] was able to establish the bound

$$
H_{p}(a) \ll p^{11 / 12} .
$$

The proof used Stepanov's method to bound the number of solutions of the congruence

$$
f(x) \equiv u(\bmod p)
$$

where

$$
f(X)=X+\frac{X^{2}}{2}+\frac{X^{3}}{3}+\ldots+\frac{X^{p-1}}{p-1}
$$

thereby re-discovering a result of Mit'kin [4]. Our new variant of Stepanov's method can be applied here too, yielding the following improved estimate.

Theorem 2 We have

$$
\sum_{r=1}^{p}\left|H_{p}(a+r p)\right|^{4} \ll p^{7 / 2}
$$

and hence

$$
H_{p}(a) \ll p^{7 / 8}
$$

for $p \nmid a$.

As a corollary, we have a new bound for incomplete Heilbronn sums.
Corollary If p is a prime and $p \nmid$ a then

$$
\sum_{\substack{M<n \leq M+N \\ p \nmid n}} e\left(\frac{a n^{p}}{p^{2}}\right) \ll p^{5 / 8} N^{1 / 4},
$$

uniformly in a, for all M and for all $N \leq p$.
This may be compared with the corresponding result of Heath-Brown [2], in which the bound was $O\left(p^{11 / 12}\right)$. The new result is non-trivial for $N \gg p^{5 / 6}$.

The proofs of our theorems begin with some straightforward manipulation, leading to the following results.

Lemma 1 Let $h=(p-1) / k$ and set

$$
\begin{gathered}
\mu_{h}=\left\{x \in \mathbb{Z}_{p}: x^{h}=1\right\} \\
\mathcal{A}(h)=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mu_{h}^{4}: x_{1}+x_{2}=x_{3}+x_{4}\right\} .
\end{gathered}
$$

Then

$$
\begin{equation*}
G(a) \ll k^{5 / 4}(\# \mathcal{A}(h))^{1 / 4} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
G(a) \ll p^{1 / 8} k(\# \mathcal{A}(h))^{1 / 4} . \tag{7}
\end{equation*}
$$

Lemma 2 Let

$$
f(X)=X+\frac{X^{2}}{2}+\frac{X^{3}}{3}+\ldots+\frac{X^{p-1}}{p-1} \in Z_{p}
$$

and let

$$
\mathcal{B}=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{Z}_{p}^{2}: f\left(x_{1}\right)=f\left(x_{2}\right)\right\} .
$$

Then

$$
\sum_{r}^{p}\left|H_{p}(a+r p)\right|^{4} \ll p^{3}+p^{2} \# \mathcal{B}
$$

By applying our new variant of Stepanov's method we shall establish the following bounds for $\# \mathcal{A}(h)$ and $\# \mathcal{B}$, from which Theorems 1 and 2 immediately follow.

Lemma 3 For any $h<p^{2 / 3}$ we have $\# \mathcal{A}(h) \ll h^{5 / 2}$.
Lemma 4 We have $\# \mathcal{B} \ll p^{3 / 2}$.

The nature of our improvement in the application of Stepanov's method is clearest when one compares Lemma 4 of Heath-Brown [2], with our Lemma 7. If we define

$$
\mathcal{F}(u)=\left\{x \in \mathbb{Z}_{p}: f(x)=u\right\}
$$

then, in the notation of the current paper, the former result states that

$$
\# \mathcal{F}(u) \ll p^{2 / 3}
$$

for any $u \in \mathbb{Z}_{p}$, while our Lemma 7 shows that

$$
\sum_{u \in U} \# \mathcal{F}(u) \ll p^{2 / 3}(\# U)^{2 / 3}
$$

for any $U \subseteq \mathbb{Z}_{p}$.

2 Proof of Lemmas 1 and 2

In this section we shall prove Lemmas 1 and 2 . We begin by writing

$$
G_{0}(a)=\sum_{n=1}^{p-1} e_{p}\left(a n^{k}\right)
$$

so that $G(a)=1+G_{0}(a)$. Then

$$
G_{0}(a)=G_{0}\left(a m^{k}\right) \text { for } p \nmid m .
$$

It follows that

$$
(p-1)\left|G_{0}(a)\right|^{4}=\sum_{m=1}^{p-1}\left|G_{0}\left(a m^{k}\right)\right|^{4} \leq k \sum_{n=1}^{p}\left|G_{0}(n)\right|^{4}
$$

since each value of n arises either k times or not at all. We therefore see that

$$
\begin{aligned}
h\left|G_{0}(a)\right|^{4} & \leq \sum_{m_{1}, \ldots, m_{4}=1}^{p-1} \sum_{n=1}^{p} e_{p}\left(\left(m_{1}^{k}+m_{2}^{k}-m_{3}^{k}-m_{4}^{k}\right) n\right) \\
& =p \#\left\{\left(m_{1}, \ldots, m_{4}\right): m_{1}^{k}+m_{2}^{k} \equiv m_{3}^{k}+m_{4}^{k}(\bmod p)\right\} \\
& =p k^{4} \# \mathcal{A}(h)
\end{aligned}
$$

and (6) follows.
To derive (7) we note that

$$
(p-1)\left|G_{0}(a)\right|^{2}=\sum_{m=1}^{p-1}\left|G_{0}\left(a m^{k}\right)\right|^{2}
$$

$$
\begin{aligned}
& =\sum_{n_{1}, n_{2}=1}^{p-1} \sum_{m=1}^{p-1} e_{p}\left(a\left(n_{1}^{k}-n_{2}^{k}\right) m^{k}\right) \\
& =\sum_{b=1}^{p} N(b) G_{0}(a b),
\end{aligned}
$$

where

$$
N(b)=\#\left\{\left(n_{1}, n_{2}\right): 1 \leq n_{1}, n_{2} \leq p-1, n_{1}^{k}-n_{2}^{k} \equiv b(\bmod p)\right\}
$$

We may now apply Hölder's inequality, whence

$$
(p-1)^{4}\left|G_{0}(a)\right|^{8} \leq\left\{\sum_{b=1}^{p} N(b)^{2}\right\}\left\{\sum_{b=1}^{p} N(b)\right\}^{2}\left\{\sum_{b=1}^{p}\left|G_{0}(a b)\right|^{4}\right\}
$$

As above, the final sum on the right is $p k^{4} \# \mathcal{A}(h)$. We may therefore conclude that

$$
\begin{equation*}
(p-1)^{4}\left|G_{0}(a)\right|^{8} \ll p k^{4}(\# \mathcal{A}(h))\left\{\sum_{b=1}^{p} N(b)^{2}\right\}\left\{\sum_{b=1}^{p} N(b)\right\}^{2} . \tag{8}
\end{equation*}
$$

In order to estimate the terms involving the function $N(b)$, we recall that $h=(p-1) / k$, and observe that the congruence $n^{k} \equiv s(\bmod p)$ has no solutions unless $s^{h} \equiv 1(\bmod p)$, in which case there are exactly k solutions. It therefore follows that $N(b)=k^{2} M(b)$, where

$$
M(b)=\#\left\{\left(x_{1}, x_{2}\right) \in \mu_{h}^{2}: x_{1}-x_{2}=b\right\}
$$

We trivially have

$$
\sum_{b=1}^{p} M(b)^{2}=\mathcal{A}(h)
$$

whence

$$
\sum_{b=1}^{p} N(b)^{2}=k^{4} \mathcal{A}(h)
$$

Moreover it is clear that

$$
\sum_{b=1}^{p} N(b)=(p-1)^{2} .
$$

If we now insert these formulae into (8) we see that the estimate (7) follows immediately.

The proof of Lemma 2 is similar to that of (6). We write

$$
H_{0}(a)=\sum_{n=1}^{p-1} e\left(\frac{a n^{p}}{p^{2}}\right)
$$

so that $H(a)=1+H_{0}(a)$. Then

$$
H_{0}(a)=H_{0}\left(a m^{p}\right) \text { for } p \nmid m
$$

It follows that

$$
(p-1) \sum_{r=1}^{p}\left|H_{0}(a+r p)\right|^{4}=\sum_{r=1}^{p} \sum_{m=1}^{p-1}\left|H_{0}\left((a+r p) m^{p}\right)\right|^{4} \leq \sum_{n=1}^{p^{2}}\left|H_{0}(n)\right|^{4}
$$

since each value of n arises at most once. (Indeed each value with $p \nmid n$ arises exactly once.) We therefore see that

$$
\begin{aligned}
& (p-1) \sum_{r=1}^{p}\left|H_{0}(a+r p)\right|^{4} \leq \sum_{m_{1}, \ldots, m_{4}=1}^{p-1} \sum_{n=1}^{p^{2}} e_{p^{2}}\left(\left(m_{1}^{p}+m_{2}^{p}-m_{3}^{p}-m_{4}^{p}\right) n\right) \\
& =p^{2} \#\left\{1 \leq m_{1}, \ldots, m_{4} \leq p-1: m_{1}^{p}+m_{2}^{p} \equiv m_{3}^{p}+m_{4}^{p}\left(\bmod p^{2}\right)\right\}
\end{aligned}
$$

Here we must have $m_{1}+m_{2} \equiv m_{3}+m_{4}(\bmod p)$. Thus, if we write

$$
m_{1}-m_{3} \equiv b(\bmod p)
$$

we also have $m_{4}-m_{2} \equiv b(\bmod p)$. The case $p \mid b$ now contributes $(p-1)^{2}$ solutions of the congruence. When $p \nmid b$ we write $m_{1} \equiv v_{1} b(\bmod p)$, so that $m_{3} \equiv\left(v_{1}-1\right) b(\bmod p)$. Thus

$$
m_{1}^{p}-m_{3}^{p} \equiv\left(v_{1}^{p}-\left(v_{1}-1\right)^{p}\right) b^{p}\left(\bmod p^{2}\right)
$$

In the same way we find that

$$
m_{4}^{p}-m_{2}^{p} \equiv\left(v_{2}^{p}-\left(v_{2}-1\right)^{p}\right) b^{p}\left(\bmod p^{2}\right)
$$

where $m_{4} \equiv v_{2} b(\bmod p)$.
The congruence $m_{1}^{p}+m_{2}^{p} \equiv m_{3}^{p}+m_{4}^{p}\left(\bmod p^{2}\right)$ now becomes

$$
\left(v_{1}^{p}-\left(v_{1}-1\right)^{p}\right) b^{p} \equiv\left(v_{2}^{p}-\left(v_{2}-1\right)^{p}\right) b^{p}\left(\bmod p^{2}\right) .
$$

There are $p-1$ choices for b, and for each such value we will have

$$
v_{1}^{p}-\left(v_{1}-1\right)^{p} \equiv v_{2}^{p}-\left(v_{2}-1\right)^{p}\left(\bmod p^{2}\right) .
$$

Since

$$
v^{p}-(v-1)^{p}=\sum_{l=1}^{p}(-1)^{l-1} v^{p-l}\binom{p}{l} \equiv 1-p f(v)\left(\bmod p^{2}\right),
$$

it now follows that

$$
\begin{aligned}
& \#\left\{1 \leq m_{1}, \ldots, m_{4} \leq p-1: m_{1}^{p}+m_{2}^{p} \equiv m_{3}^{p}+m_{4}^{p}\left(\bmod p^{2}\right)\right\} \\
& \quad \leq(p-1)^{2}+(p-1) \#\left\{1 \leq v_{1}, v_{2} \leq p-1: f\left(v_{1}\right) \equiv f\left(v_{2}\right)(\bmod p)\right\}
\end{aligned}
$$

whence

$$
(p-1) \sum_{r=1}^{p}\left|H_{0}(a+r p)\right|^{4} \leq p^{2}\left\{(p-1)^{2}+(p-1) \# \mathcal{B}\right\}
$$

which suffices for Lemma 2.

3 Stepanov's Method

We shall begin by considering $\# \mathcal{A}(h)$. For each $u \in \mathbb{Z}_{p}$ we write

$$
\mathcal{C}(u)=\left\{x \in \mu_{h}: x-u \in \mu_{h}\right\}
$$

so that $\# \mathcal{C}(0)=h$ and

$$
\begin{align*}
\# \mathcal{A}(h) & =\sum_{u \in \mathbb{Z}_{p}}(\# \mathcal{C}(u))^{2} \\
& =h^{2}+\sum_{u \neq 0}(\# \mathcal{C}(u))^{2} \\
& =h^{2}+h \sum_{u} *(\# \mathcal{C}(u))^{2} \tag{9}
\end{align*}
$$

where Σ^{*} indicates that u runs over distinct coset representatives of μ_{h} in \mathbb{Z}_{p}^{\times}.
In the same way we have

$$
\begin{aligned}
\left\{\# \mu_{h}\right\}^{2} & =\sum_{u \in \mathbb{Z}_{p}} \# \mathcal{C}(u) \\
& =h+\sum_{u \neq 0} \# \mathcal{C}(u) \\
& =h+h \sum_{u}{ }^{*} \# \mathcal{C}(u),
\end{aligned}
$$

whence

$$
\begin{equation*}
\sum_{u}^{*} \# \mathcal{C}(u)=h-1 \tag{10}
\end{equation*}
$$

We now take an arbitrary set U of elements u from distinct cosets of \mathbb{Z}_{p}^{\times}, and write

$$
\mathcal{D}(u)=u^{-1} \mathcal{C}(u)=\#\left\{y \in \mathbb{Z}_{p}: u y \in \mu_{h}, u y-u \in \mu_{h}\right\},
$$

and

$$
\mathcal{E}=\bigcup_{u \in U} \mathcal{D}(u)
$$

Thus $\# \mathcal{D}(u)=\# \mathcal{C}(u)$, and since the sets $\mathcal{D}(u)$ are disjoint we deduce that

$$
\# \mathcal{E}=\sum_{u \in U} \# \mathcal{C}(u) .
$$

Our aim is to prove the following bound for $\# \mathcal{E}$.

Lemma 5 Let $\# U=T \geq 1$. Then

$$
\# \mathcal{E} \ll(h T)^{2 / 3}
$$

providing that $h^{4} T<p^{3}$.
We begin our application of Stepanov's method by taking a polynomial $\Phi(X, Y, Z) \in \mathbb{Z}_{p}[X, Y, Z]$, for which

$$
\operatorname{deg}_{X} \Phi<A, \operatorname{deg}_{Y} \Phi<B, \operatorname{deg}_{Z} \Phi<B
$$

and arranging that the polynomial

$$
\Psi(X)=\Phi\left(X, X^{h},(X-1)^{h}\right)
$$

has a zero of order at least D, say, at each point $x \in \mathcal{E}$. We will therefore be able to conclude that $D \# \mathcal{E} \leq \operatorname{deg} \Psi(X)$, providing that Ψ does not vanish identically. We note that

$$
\operatorname{deg} \Psi \leq\left(\operatorname{deg}_{X} \Phi\right)+h\left(\operatorname{deg}_{Y} \Phi\right)+h\left(\operatorname{deg}_{Z} \Phi\right)<A+2 h B
$$

whence

$$
\begin{equation*}
D \# \mathcal{E} \ll A+h B \tag{11}
\end{equation*}
$$

providing that Ψ does not vanish.
In order for Ψ to have a zero of multiplicity at least D at a point x we need

$$
\left.\left(\frac{d}{d X}\right)^{n} \Psi(X)\right|_{X=x}=0 \quad \text { for } n<D
$$

Since $x \neq 0,1$ for $x \in \mathcal{E}$, this will be equivalent to

$$
\begin{equation*}
\left.\{X(X-1)\}^{n}\left(\frac{d}{d X}\right)^{n} \Psi(X)\right|_{X=x}=0 \tag{12}
\end{equation*}
$$

We now observe that

$$
\begin{aligned}
X^{m}\left(\frac{d}{d X}\right)^{m} X^{a} & =\frac{a!}{(a-m)!} X^{a} \\
X^{m} \frac{d^{m}}{d X^{m}} X^{h b} & =\frac{(h b)!}{(h b-m)!} X^{h b}
\end{aligned}
$$

and

$$
(X-1)^{m}\left(\frac{d}{d X}\right)^{m}(X-1)^{h c}=\frac{(h c)!}{(h c-m)!}(X-1)^{h c}
$$

It follows that

$$
\{X(X-1)\}^{n}\left(\frac{d}{d X}\right)^{n} X^{a} X^{h b}(X-1)^{h c}=P_{n, a, b, c}(X) X^{h b}(X-1)^{h c}
$$

where $P_{n, a, b, c}(X)$ either vanishes or is a polynomial of degree $n+a$. We therefore deduce that

$$
\left.\{X(X-1)\}^{n}\left(\frac{d}{d X}\right)^{n} X^{a} X^{h b}(X-1)^{h c}\right|_{X=x}=u^{-h b-h c} P_{n, a, b, c}(x)
$$

for any $x \in \mathcal{D}(u)$. Here we use the fact that $x^{h}=(x-1)^{h}=u^{-h}$ for such x.
We now write

$$
\Phi(X, Y, Z)=\sum_{a, b, c} \lambda_{a, b, c} X^{a} Y^{b} Z^{c}
$$

and

$$
P_{n, u}(X)=\sum_{a, b, c} \lambda_{a, b, c} u^{-h b-h c} P_{n, a, b, c}(X),
$$

so that $\operatorname{deg} P_{n, u}(X)<A+n$ and

$$
\left.\{X(X-1)\}^{n}\left(\frac{d}{d X}\right)^{n} \Phi\left(X, X^{h},(X-1)^{h}\right)\right|_{X=x}=P_{n, u}(x)
$$

for any x in $\mathcal{D}(u)$. We shall arrange, by appropriate choice of the coefficients $\lambda_{a, b, c}$, that $P_{n, u}(X)$ vanishes identically for $n<D$, for all $u \in U$. This will ensure that (12) holds for $x \in \mathcal{E}$. Each of the polynomials $P_{n, u}(X)$ has at most $A+n \leq A+D$ coefficients, which are linear forms in the original $\lambda_{a, b, c}$. Thus if

$$
\begin{equation*}
D(A+D) T<A B^{2} \tag{13}
\end{equation*}
$$

there will be a set of coefficents $\lambda_{a, b, c}$, not all zero, for which the polynomials $P_{n, u}(X)$ vanish for all $n<D$ and all $u \in U$.

We must now consider whether $\Phi\left(X, X^{h},(X-1)^{h}\right)$ can vanish if $\Phi(X, Y, Z)$ does not. We shall write

$$
\Phi(X, Y, Z)=\sum_{c} \Phi_{c}(X, Y) Z^{c}
$$

and take c_{0} to be the smallest value of c for which $\Phi_{c}(X, Y)$ is not identically zero. It follows that

$$
\Phi\left(X, X^{h},(X-1)^{h}\right)=(X-1)^{h c_{0}} \sum_{c_{0} \leq c<B} \Phi_{c}\left(X, X^{h}\right)(X-1)^{h\left(c-c_{0}\right)}
$$

so that if $\Phi\left(X, X^{h},(X-1)^{h}\right)$ is identically zero we must have

$$
\begin{equation*}
\Phi_{c_{0}}\left(X, X^{h}\right) \equiv 0\left(\bmod (X-1)^{h}\right) . \tag{14}
\end{equation*}
$$

At the end of this section we shall establish the following result.
Lemma 6 Let $P(X) \in \mathbb{Z}_{p}[X]$ be a sum of $N \geq 1$ distinct monomials. Suppose further that $\operatorname{deg}(P)<p$. Then $(X-1)^{N}$ cannot divide $P(X)$.

Lemma 6 shows that (14) is impossible, providing that

$$
\begin{equation*}
A B \leq h \quad \text { and } \quad A+h B<p \tag{15}
\end{equation*}
$$

We now choose our parameters A and B by taking

$$
A=\left[\frac{1}{2} h^{2 / 3} T^{-1 / 3}\right] \quad \text { and } \quad B=\left[\frac{1}{2} h^{1 / 3} T^{1 / 3}\right]
$$

These will produce positive integers satisfying (15), providing that $h^{2} \geq 8 T$ and $h^{4} T<p^{3}$. Moreover there will then be an integer T for which (13) holds, in the range $h^{2 / 3} T^{-1 / 3} \ll D \ll h^{2 / 3} T^{-1 / 3}$. The estimate (11) therefore produces

$$
\# \mathcal{E} \ll h B / D \ll(h T)^{2 / 3}
$$

as required. Of course, if $T \gg h^{2}$, then the bound (10) yields

$$
\# \mathcal{E} \ll h \ll(h T)^{2 / 3}
$$

and Lemma 5 is trivial.
We turn now to the argument required for Lemma 4. This will be an adaption of that given by Heath-Brown [2], along the lines used above. Thus we write

$$
\mathcal{F}(u)=\left\{x \in \mathbb{Z}_{p}: f(x)=u\right\}
$$

so that

$$
\begin{equation*}
\# \mathcal{B}=\sum_{u \in \mathbb{Z}_{p}}(\# \mathcal{F}(u))^{2} \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{u \in \mathbb{Z}_{p}} \# \mathcal{F}(u)=p \tag{17}
\end{equation*}
$$

Moreover we set

$$
\mathcal{G}=\bigcup_{u \in U} \mathcal{F}(u),
$$

where U is an arbitrary set of T elements $u \in Z_{p}$. In analogy to Lemma 5 we aim to prove the following bound.

Lemma 7 Let $\# U=T \geq 1$. Then

$$
\# \mathcal{G} \ll(p T)^{2 / 3}
$$

We begin by choosing $\Phi(X, Y, Z) \in \mathbb{Z}_{p}[X, Y, Z]$, with

$$
\operatorname{deg}_{X} \Phi<A, \operatorname{deg}_{Y} \Phi<B, \operatorname{deg}_{Z} \Phi<C
$$

We shall arrange that the polynomial

$$
\Psi(X)=\Phi\left(X, f(X), X^{p}\right)
$$

has a zero of order at least D, say, at each point $x \in \mathcal{G}$. We will then be able to deduce that $D \# \mathcal{G} \leq \operatorname{deg} \Psi(X)$, providing that Ψ does not vanish identically. We note that

$$
\operatorname{deg} \Psi \leq\left(\operatorname{deg}_{X} \Phi\right)+(p-1)\left(\operatorname{deg}_{Y} \Phi\right)+p\left(\operatorname{deg}_{Z} \Phi\right)<A+p(B+C)
$$

whence

$$
\begin{equation*}
D \# \mathcal{G} \ll A+p(B+C) \tag{18}
\end{equation*}
$$

providing that Ψ does not vanish.
Following the argument of $[2 ; \S \S 3 \& 4]$ this can be achieved by making certain polynomials $P_{n, u}(X)$ of degree less than $A+2 D+C$ vanish identically, for all $n<D$ and each $u \in U$. The coefficients of these polynomials are linear forms in the coefficents of the original function Φ, so that it suffices to have

$$
D(A+2 D+C) T<A B C
$$

Moreover Lemma 3 of [2] shows that Ψ will not vanish identically, providing that

$$
A B \leq p
$$

We therefore choose

$$
A=\left[p^{2 / 3} T^{-1 / 3}\right], \quad B=C=\left[p^{1 / 3} T^{1 / 3}\right]
$$

which are clearly admissable, since $T=\# U \leq p$. Moreover we may take

$$
D=\left[p^{2 / 3} T^{-1 / 3} / 16\right]
$$

which is also satisfactory, if p is large enough. It then follows from (18) that

$$
\# \mathcal{G} \ll p^{2 / 3} T^{2 / 3}
$$

as required.
It remains to establish Lemma 6. This will be achieved by induction on N. The case $N=1$ is trivial. Now suppose that $N>1$, and let

$$
P(X)=\sum_{l} c_{l} X^{l}
$$

where l runs over N distinct values. Then

$$
X P^{\prime}(X)-l_{0} P(X)=\sum_{l} c_{l}\left(l-l_{0}\right) X^{l} .
$$

Now, on choosing l_{0} to be, say, the degree of the highest order term in $P(X)$, we produce a polynomial containing exactly $N-1$ terms. We then see that $(X-1)^{N}$ cannot divide $P(X)$, for otherwise $(X-1)^{N-1}$ would divide $X P^{\prime}(X)-l_{0} P(X)$, contrary to our induction hypothesis. This completes the proof of Lemma 6.

4 Deduction of Lemmas 3 and 4

We shall now use Lemma 5 , in conjunction with (9) and (10), to bound $\# \mathcal{A}(h)$. Since we are assuming that $h \leq p^{2 / 3}$ it is automatic that

$$
h^{4} T \leq h^{4} k=h^{3}(p-1)<p^{3} .
$$

We number the coset representatives u as $u_{i}, 1 \leq i \leq k$, in such a way that

$$
\# \mathcal{C}\left(u_{1}\right) \geq \# \mathcal{C}\left(u_{2}\right) \geq \ldots
$$

If we now take U to be the set of u_{i} for $i \leq T$ then Lemma 5 shows that

$$
T \# \mathcal{C}\left(u_{T}\right) \leq \# \mathcal{E} \ll(h T)^{2 / 3}
$$

for any T. Hence

$$
\sum_{N / 2<T \leq N}\left(\# \mathcal{C}\left(u_{T}\right)\right)^{2} \ll N\left(h^{2 / 3} N^{-1 / 3}\right)^{2}=h^{4 / 3} N^{1 / 3}
$$

Alternatively we may use (10), which yields

$$
\sum_{N / 2<T \leq N}\left(\# \mathcal{C}\left(u_{T)}\right)^{2} \ll h^{2 / 3} N^{-1 / 3}(h-1) \ll h^{5 / 3} N^{-1 / 3}\right.
$$

If we now sum over $N=1,2,4,8, \ldots$, using the first bound for $N \leq h^{1 / 2}$ and the second estimate otherwise, we find that

$$
\sum_{u}^{*}(\# \mathcal{C}(u))^{2} \ll h^{3 / 2}
$$

so that Lemma 3 follows from (9).
The deduction of Lemma 4 from (16), (17) and Lemma 7 is, of course, completely analogous.

5 The Corollary to Theorem 2

As in Heath-Brown [2], the standard procedure for completing an incomplete exponential sum yields

$$
\begin{aligned}
\sum_{\substack{M<n \leq M+N \\
p \nmid n}} e\left(\frac{a n^{p}}{p^{2}}\right) & =p^{-1} \sum_{r=1}^{p} \sum_{s=1}^{p} e\left(\frac{a s^{p}}{p^{2}}\right) \sum_{M<n \leq M+N} e\left(\frac{r(s-n)}{p}\right) \\
& \ll p^{-1} \sum_{r=1}^{p} \min \left\{N, \frac{1}{\mid r / p \|}\right\}\left|\sum_{s=1}^{p} e\left(\frac{a s^{p}}{p^{2}}\right) e\left(\frac{r s}{p}\right)\right|,
\end{aligned}
$$

on using the estimates

$$
\sum_{M<n \leq M+N} e\left(\frac{-r n}{p}\right) \ll\left\{\begin{array}{cc}
N, & \text { any } r \\
\frac{1}{\|r / p\|}, & p \nless r .
\end{array}\right.
$$

However, since $s \equiv s^{p}(\bmod p)$, we have

$$
e\left(\frac{a s^{p}}{p^{2}}\right) e\left(\frac{r s}{p}\right)=e\left(\frac{(a+r p) s^{p}}{p^{2}}\right),
$$

so that

$$
\sum_{s=1}^{p} e\left(\frac{a s^{p}}{p^{2}}\right) e\left(\frac{r s}{p}\right)=H(a+r p)
$$

and hence

$$
\sum_{\substack{M<n \leq M+N \\ p \nmid n}} e\left(\frac{a n^{p}}{p^{2}}\right) \ll p^{-1} \sum_{r=1}^{p} \min \left\{N, \frac{1}{\|r / p\|}\right\}|H(a+r p)| .
$$

We may now apply Hölder's inequality, whence

$$
\begin{aligned}
& \sum_{\substack{M<n \leq M+N \\
p \nmid n}} e\left(\frac{a n^{p}}{p^{2}}\right) \\
& \quad \ll p^{-1}\left\{\sum_{r=1}^{p} \min \left\{N, \frac{1}{\|r / p\|}\right\}^{4 / 3}\right\}^{3 / 4}\left\{\sum_{r=1}^{p}|H(a+r p)|^{4}\right\}^{1 / 4} \\
& \quad \ll p^{-1 / 8}\left\{\sum_{r=1}^{p} \min \left\{N, \frac{1}{\|r / p\|}\right\}^{4 / 3}\right\}^{3 / 4},
\end{aligned}
$$

by Theorem 2 . Since $N \leq p$ and

$$
\sum_{r=1}^{p} \min \left\{N, \frac{1}{\|r / p\|}\right\}^{4 / 3} \ll p N^{1 / 3}
$$

we deduce that

$$
\sum_{\substack{M<n \leq M+N \\ p \nmid n}} e\left(\frac{a n^{p}}{p^{2}}\right) \ll p^{5 / 8} N^{1 / 4},
$$

as claimed.

6 Acknowledgement

The second author was supported by Grants 96-01-00378 from the Russian Foundation for Basic Research and 96-15-96072 from the Programme of Development of Scientific Schools.

References

[1] A. Garcia and J. F. Voloch, Fermat Curves Over Finite Fields, J. Number Theory, 30 (1988), 345-356.
[2] D.R. Heath-Brown, An estimate for Heilbronn's exponential sum, Analytic number theory: Proceedings of a conference in honor of Heini Halberstam, (Birkhäuser, Boston, 1996), 451-463.
[3] S.V. Konyagin, On estimates of Gaussian sums and Waring's problem for a prime modulus, Proc. Steklov Inst. Math., 198 (1994), 105-117.
[4] D.A. Mit'kin, An estimate for the number of roots of some comparisons by the Stepanov method, Mat. Zametki, 51 (1992), 52-58, 157. (Translated as Math. Notes, 51 (1992), 565-570.)
[5] H.L. Montgomery, R.C. Vaughan, and T.D. Wooley, Some remarks on Gauss sums associated with k th powers, Math. Proc. Camb. Phil. Soc., 118 (1995), 21-33.
[6] I. E. Shparlinski, On Bounds of Gaussian Sums, Mat. Zametki, 50 (1991), 122-130.
[7] S.A. Stepanov, The number of points of a hyperelliptic curve over a prime field, Izv. Akad. Nauk SSSR Ser. Mat., 33 (1969), 1171-1181.

