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Abstract. We consider the problem of bounding the complexity of the lower 
envelope of n surface patches in 3-space, all algebraic of constant maximum degree, 
and bounded by algebraic arcs of constant maximum degree, with the additional 
property that the interiors of any triple of these surfaces intersect in at most two 
points. We show that the number of vertices on the lower envelope of n such surface 
patches is O(n z" 2c ],/ig~), for some constant c depending on the shape and degree of 
the surface patches. We apply this result to obtain an upper bound on the combinator- 
ial complexity of the "lower envelope" of the space of all rays in 3-space that lie 
above a given polyhedral terrain K with n edges. This envelope consists of all rays 
that touch the terrain (but otherwise lie above it). We show that the combinatorial 

3 c logn complexity of this ray-envelope is O(n �9 2 ],/i~) for some constant c; in particular, 
there are at most that many rays that pass above the terrain and touch it in four 
edges. This bound, combined with the analysis of de Berg et al. [4-1, gives an upper 
bound (which is almost tight in the worst case) on the number of topologically 
different orthographic views of such a terrain. 
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1. Introduction 

Let E = {al . . . . .  a,} be a given collection of n surface patches in 3-space. This 
paper addresses the problem of bounding the combinatorial complexity of the 
lower envelope (pointwise minimum) of the surface patches in E. Assume for 
simplicity that each a~ is the graph of a partially defined function z =f~(x, y), 
and that these functions, as well as the curves delimiting the patches, are all 
algebraic of constant maximum degree, and that the given surfaces are in general 
position (see Section 2 for precise definitions). The lower envelope, when 
projected onto the xy-plane, generates a planar map ~ ' ,  called the minimization 
diagram of E [15], with the property that over each face of ~r the envelope 
is attained by a single patch (or by no patch at all), over each edge the envelope 
is attained by two patches simultaneously or by the boundary of a single 
patch, and over each vertex of Jr' the envelope is attained by three patches 
simultaneously, or by the intersection of the boundary of one patch with another 
patch, or by a point on the boundary of one patch which lies directly below 
the boundary of another patch, or below an intersection curve of two other 
patches (so that this higher point is vertically visible from the point on the lower 
boundary), or by a vertex of a patch boundary (a point where two arcs forming 
this boundary meet). The combinatorial complexity of the envelope is defined 
simply as the overall number of faces, edges, and vertices of ~ ' ,  and is denoted 
by ~k(E). 

Under the assumptions made above, it is easy to show that if(E) = O(n 3) (with 
a constant of proportionality that depends on the algebraic degree of the patches 
and of their boundaries). However, it has been conjectured over the past 8 years 
that the maximum possible complexity of such an envelope is only about quadratic 
in n. 

The conjecture is motivated by the fact that in two dimensions, in the case of 
the.lower envelope of n partially defined univariate functions, sharp bounds are 
known for the complexity of the envelope, measured simply in terms of the number 
of breakpoints along the envelope. If each pair of the functions intersect in at most 
s points, then the complexity of their envelope is at most 2~+2(n), which is the 
maximum length of Davenport-Schinzel sequences of order s + 2 composed of n 
symbols (see [2] and [11] for more details), and is only slightly superlinear in n 
for any fixed s. The conjecture in three dimensions attempts to extend this bound, 
and asserts that the complexity of the envelope is O(n2q(n)), for some constant q 
depending on the degree and shape of the given patches. The conjecture appears 
to be extremely difficult, and has  been proven i'or ~amilies of only a few types of 
surface patches, such as triangles, and a few other types (see [13] and [15]). Better 
bounds are known for the special cases of planes and balls. The problem in general 
has been wide open; in fact, no general bounds better than O(n 3) were known 
so far. 

In this paper we obtain a subcubic bound for the complexity ~k(E), provided 
the given surface patches are such that the interiors of any three of them intersect 
in at most two points. In fact, our bound is close to quadratic, so we almost 
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establish the conjecture in this special case. This property holds in several 
applications. As a matter of fact, if the given surfaces had this property and were 
full surfaces without boundary, then the results of [15] would imply (with a few 
additional mild assumptions) that the complexity of their envelope is O(n2). 
However, the fact that they are surface patches makes the analysis more difficult, 
and this bound is not known in that case. 

Our main result is that, under the above assumptions, the complexity of the 
lower envelope of these surfaces is O(n 2 �9 2 c ~ ) ,  for some constant c that depends 
on the degree and shape of the given surfaces. The proof is not difficult, and relies 
on the randomized technique of [7] and [16-] for obtaining generalized " (<  k)-set" 
bounds in arrangements. This result still leaves a small gap from the conjectured 
complexity, but is nevertheless a significant and rather decisive step toward the 
establishment of the conjecture. 

In a companion paper [17] the technique presented in this paper is extended 
to obtain similar, almost-tight bounds in more general setups, both when the 
maximum number of points of intersection between a triple of surfaces can be 
larger than two (but still remains a constant), and when the dimension is larger 
than three. 

Our result was motivated by, and has an interesting application to, the problem 
mentioned in the abstract, namely, the problem of bounding the combinatorial 
complexity of the "lower envelope" of the space of all rays in 3-space that lie 
above a given polyhedral terrain K with n edges. This envelope consists of all rays 
that touch the terrain (but otherwise lie above it). We show that the combinatorial 
complexity of the envelope is O ( r t  3 �9 2 c lx/~) for some constant c; in particular, there 
are at most that many rays that pass above the terrain and touch it in four edges. 
This bound is derived by applying the three-dimensional envelope result n times, 
each time fixing an edge e of K and considering the three-dimensional space of 
all lines (or rays) that touch e but otherwise pass above K. It is fairly easy to show 
(and indeed is shown in Section 3) that the conditions required by our analysis hold 
in this application. Our bound for the complexity of the space of lines passing 
above a terrain was recently, and independently, obtained by Pellegrini [14], but 
it is not clear whether his result can be extended to the space of rays passing above 
a terrain. 

This bound on the complexity of the envelope of the space of rays over a terrain 
has an interesting application to the problem of bounding the number of topologi- 
cally different orthographic views of such a terrain. A recent study by de Berg et 
al. I-4] gives a bound of O(n s" 2 ~"1) for this number, but unfortunately their 
argument turned out to be erroneous. A careful (and correct) restatement of the 
result of de Berg et al. is that the bound on the number of topologically different 
orthographic views of a terrain is O(n24(n)p(n)), where p(n) is the maximum 
complexity of the ray-envelope of a terrain with n edges. Plugging in our bound 

c logn for/~(n), we get the bound O(n 5 " 2 ~ )  for the number of views, for some absolute 
constant c. Except for a remaining small factor, this result almost matches the 
upper bound originally asserted in [4], and, as shown in [4], is almost tight in 
the worst case. 
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2. Lower Envelopes in 3-Space 

Let Y~ = {tr 1 . . . . .  a,} be a given collection of n surface patches in 3-space that 
satisfy the following conditions: 

(i) Each o~ is monotone in the xy-direction (that is, every vertical line intersects 
~ in at most one point). Moreover, each cr~ is a portion of an algebraic 
surface of constant maximum degree b. 

(ii) The vertical projection of tr i onto the xy-plane is a planar region bounded 
by a constant number of algebraic arcs of constant maximum degree (say, 
b too). 

(iii) The relative interiors of any triple of the given surfaces intersect in at most 
two points. 

(iv) The surface patches in E are in general position. This excludes degenerate 
configurations where four surfaces meet at a point, the boundaries of two 
surfaces meet, the boundary of one surface meets an intersection curve of 
two other surfaces, a pair of surfaces are tangent to each other, a singular 
point on one surface lies on the boundary of another surface or on an 
intersection curve between two other surfaces, etc. 

Conditions (i)-(iii) are essential for the analysis, while condition (iv) is made 
to simplify the forthcoming arguments. It involves no real loss of generality, 
because, as can be shown (see the companion paper [17] for details), the 
maximum complexity of the envelope is achieved, up to a constant factor, 
when the given surfaces are in general position. We also note that the first 
part  of condition (i) is not essential, because we can always cut a surface 
tr along the constant number of arcs which are the loci of points on a having 
vertical tangency, to obtain a constant number of xy-monotone surfaces whose 
union is o. 

The lower envelope of E is the graph of the (partial) function z = E~(x, y) 
that maps each point (x, y) to the height of the lowest point of intersection 
between the vertical line through (x, y) and the surfaces in Y. (if that line 
meets no surface, the function is undefined at (x, y)). If we project E onto 
the xy-plane we obtain a planar map, denoted by ~ = .//~, having the properties 
stated in the Introduction. 

Theorem 2.1. The combinatorial complexity ~b(E) of the lower envelope of a 
collection E of n surface patches that satisfy conditions (i)-(iv) is 

O(n 2. 2c l ,  f i ~ ) ,  

for some constant c that depends on the degree b and the shape of the given 
surfaces. 

Proof. Let us denote by ~(n) the maximum value of O(E), taken over all 
collections Z of n surface patches that satisfy conditions (i)-(iv) (for a fixed 
degree b). 
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We distinguish between inner vertices of the envelope, namely, vertices of the 
envelope that are intersection points of the relative interiors of three surface 
patches in E, and the remaining outer vertices. Consider first the outer vertices. 

Lemma 2.2. The maximum number of outer vertices is O(n24+2(n)), for some 
constant q depending on the degree and shape of the given surfaces. 

Proof Let us assume general position. There are O(n) original vertices of 
the given patches, and O(n z) points of intersection between the boundary of one 
surface patch and the relative interior of another patch. Any other outer vertex is 
formed either when the boundary of one surface patch passes above the boundary 
of another patch, or when an intersection curve of two patches passes above the 
boundary of a third patch. The number of outer vertices of the first kind is clearly 
O(n2). As to outer vertices of the second kind, fix a surface patch 0" ~ Y,. We claim 
that the total number of such vertices that lie on the boundary of the fixed 0" is 
O(2q + 2(n)), for some constant q depending on the degree and shape of the surfaces. 
This is shown as in [5] and [6]: Let e be one of the (constant number of) algebraic 
arcs that form the boundary of 0", and let H be the vertical surface formed by 
the union of all vertical rays whose bottom endpoints lie on ~. For each 
surface 0"1eE- {0"}, let 6i = ai n H. The properties that the surfaces satisfy 
imply that each 6~ is the union of a constant number of connected arcs, and that 
each pair of such arcs intersect in at most some constant number, q, of points. It 
is easily checked that each of the vertices under consideration must arise as a 
breakpoint in the lower envelope of the arcs 6~, over one of the boundary pieces ct 
of a. Hence the total number of such endpoints is O(2q+2(n)) [11], as asserted. 
Summing over all 0" ~ E, the total number of outer vertices of the second kind is 
O(n,~,q + 2(n)), [ ]  

Hence the number of outer vertices of all kinds is nearly quadratic and 
smaller than the bound asserted in the theorem. The number of edges of 
Jr that do not contain any vertex at all is easily seen to be O(n2). Thus, 
if we establish the bound in the theorem for the number of inner vertices, 
and apply Euler's formula for planar maps, we easily conclude that the same bound 
also holds for the total complexity of ~'~. 

Let p be an inner vertex of the lower envelope, formed by the intersection 
of (the relative interiors of) three surface patches a~, 0"2, 0 3. By condition 
(iiii, these patches intersect in at most one more point, so, with no loss of 
generality, we can assume that there is no such intersection in the half-space 
x > x(p), where x(p) is the x-coordinate of p. By the general position assumption, 
we may assume that p is not a singular point of any of these patches, and that 
they meet each other transversally at p. Then, locally near p, the lower envelope 
is approximated by the lower envelope of the three tangent planes to 0.~, 0.2, 0.3 
at p. In particular, each of the intersection curves ~12 = 0.~ ~ 0.2, 7~3 = a~ n 0"3, 
723 = 0"2 n 0"3 contains a maximal connected x-monotone arc that emanates from 
p and is hidden from below by the third surface. Let fl12, fl~3, fl23 denote these 
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respective arcs, and let z12 , z13 , z23 denote the other endpoints of these arcs. It 
also follows that the positive span of the xy-projections of the three outgoing 
tangent directions of fl12, 813,823 is the entire xy-plane: indeed, the three vectors 
oppositely oriented to these directions lie along the edges emerging from p of the 
lower envelope of the three tangent planes to the surfaces at p, and the xy- 
projections of these vectors cannot lie in a single half-plane, as is easily checked. 
Hence, at least one of these arcs, say 812, emanates from p in the positive 
x-direction. 

Two cases can arise: 

(a) 

(b) 

(i) 

z12 is an endpoint of(some connected x-monotone portion of) 712. In this 
case we charge p to z12. Our assumptions imply that each Y12 has only 
a constant number of such endpoints, so the total number of such 
charges will be proportional to the total number of intersection curves, 
namely, O(n2). 

Z12 is a point alon9 712 that lies directly above the boundary of tz 3 (see Fig. 
1). The difficulty is that z12 need not be vertically visible from &ra--there 
may be many other surfaces lying below z12 and above the boundary (the 
boundary itself need not be on the lower envelope at this point, but this 
does not concern us in the analysis given below). Suppose there are t such 
surfaces. We fix some threshold parameter  k > 0, to be determined shortly, 
and consider the following two subcases: 

t > k. Extend each surface r ~ E to a surface cr* by erecting an upward- 
directed vertical ray from each point on the boundary of a. Let E* denote 
the collection of these extended surfaces, and let J ( E * )  denote their 
arrangement. Our  assumption implies that 812 contains at least t vertices 
of d(E*),  and we charge p to the block of the first k of these vertices in 

~ ~/ '12 / '  " ) ' 23  

I 

�9 . .  ,. ~ ),% 

Fig. 1. Case (b) of the proof: zl2 lies above the boundary of a3. The envelope is shown from below; 
solid edges are visible whereas dashed edges are hidden from the envelope. 
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their order from p to z12 along ill2. (Indeed, for any extended surface a* 
that hides z12 from ~3a3, we trace fl12 from p toward z12; since a* does not 
lie below p but lies below z12, there has to be a point along fl~2 where this 
curve intersects a*, yielding a vertex of ~r along fix2.) Each vertex of 
d (E*)  can be charged in this manner only a constant number of times: By 
the general position assumption, each inner vertex v is the intersection point 
of exactly three surfaces, and hence it is the meeting point of three 
intersection curves (of pairs of the three surfaces). Evidently, for each of 
these three curves, there are at most two vertices p lying on the curve and 
on the lower envelope for which the vertex v will be charged in this manner. 

Define the level of a point x of 3-space in sO(E*) to be the number of 
surfaces of Z* that lie strictly below x (which is the same as the number of 
original surfaces in E that lie below x). It is easily checked that each of the 
charged vertices along fl12 is at level at most k (indeed, as we trace fl~2 from 
p to z~2, the level can change (by + 1) only when we cross one of these 
vertices). 

Our  goal is thus to obtain an upper bound for the number of vertices 
of ~r that lie at level _<k. For this we apply the analysis technique of 
[7] and [16]. That is, we choose a random sample ~ of r = [_n/k_j surfaces 
of E*, and construct their arrangement d ( ~ ) .  Let v be a vertex of ~r 
at level ~ < k. The probability that v shows up as a vertex of the lower 

envelope E~ of the surfaces in ~ is r 3 : out of the total 

number ( ~ )  of possible samples, those that make v appear as such a vertex 

are precisely those that contain the three surfaces defining v and do not 
contain any of the r surfaces lying below v. Hence, we have 

k 

E 
~=0 

n - ~ - 3)  

r -- 3 Fr _< O(.~) < O(r), 

(:) 
where Fr is the number of vertices v of d(Y.*) at level ~. This can be rewritten 
as 

f i r -  1 ) ( r -  2) (n - r)(n-- r -  1 ) . . ' ( n -  r -  ~ + 1) 

r  

which implies 

( )( n - r - k +  l k. ~ Fr < 
2 - 2 3  r 
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As in [7] and [16], it can be easily verified that for r = n/k we have 

F~ = O k 3 
~=0 

(ii) 

in other  words, the number  of vertices of ~r at level < k is O(k3~k(n/k)), 
which in turn implies that the number  of inner vertices p of E~ in this 
subcase is O(k2~k(n/k)). 

t < k. Let ct be the algebraic arc on the boundary  of o" 3 which lies below 
z12, and let H be the vertical surface formed by the union of all vertical 
rays whose bo t tom endpoints lie on ct. For  each surface tr i # tr 3, let 
6i = tr i c~ H. As above, the properties that the surfaces satisfy imply that 
each 6 i is the union of a constant number  of connected arcs, and that  each 
pair of  such arcs intersect in at most  q points. Clearly, the point z12 must 
be a vertex of the two-dimensional arrangement  d ,  of the arcs 6~ within 
H. The level of z12 in d ,  is defined, in complete analogy to the definition 
in the preceding subcase, to be the number  of arcs that intersect the 
downward-directed ray emanat ing from z12 (or, rather, the downward-  
directed segment from z~2 to ~). Clearly, the level of zlz in sO, is at most 
k. We can thus apply Theorem 1.3 of  [16], which is proved using a 
random-sampling argument  similar to the one in the preceding subcase, 
and which asserts that the maximum number  of  vertices at level at most  k 
in such an arrangement  is O(k22q + 2(n/k)). Hence the number  of vertices z12, 
over all choices of al  and a2 but with a fixed a3, is O(k22q + z(n/k)). We charge 
p to za2; since each such z12 can be charged in this manner  at most  once, 
it follows that the overall number  of  inner vertices in the present subcase is 

Thus, if we add all the bounds obtained so far, including those for the 
number  of outer vertices, we obtain the following recurrence for qJ: 

~k(n) <_ Ak2$(k) + Ank2q+ 2(n), (1) 

for some absolute positive constant  A. We claim that the solution to this 
recurrence is 

r < n 2. 2 c @  (2) 

for a sufficiently large constant  c. The p roof  is by induct ion on n. First, by 
choosing c sufficiently large, we can assume that  (2) holds for all n < n o, 
where n o is chosen so that  2 4 + 2(n) < (n/2A). 2 l'/ig~ for all n > no (this is 
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always possible by the results of [2]). For n > n 0, choose k = 2 (c- ~) Jo, f i ~ .  
The inequality (1) and the induction hypothesis imply that 

~b(n)<_ Ak2(n)2"2 c~/'~ + Ank2q + 2(n), 

so it suffices to show that 

~. ,c,/~o-~-~., 2 < ~  A "  2 c~/l~ 1)x/l~ -~- ~ x.. 

or that 

c ~ l o g  n -- (c - l) lx/iog n < cx//logg n -- (1 + log A), 

which is easily seen to hold provided we choose c > 1 + ,,/2(1 + log A). 
This completes the proof of the theorem. [] 

3. The Envelope of Lines or Rays Over a Terrain 

Let K be apolyhedral terrain in 3-space; that is, K is a continuous piecewise-linear 
surface intersecting each vertical line in exactly one point. Suppose K has n edges. 
A line l is said to lie over K if every point on l lies on or above K. Let ~ r  denote 
the space of all lines that lie over K. The lower envelope of ~K consists of those 
lines that touch at least one edge of K. Assuming general position of the edges of 
K, a line in ~-a K (or any line for that matter) can touch at most four edges of K. 
Our goal is to analyze the combinatorial complexity of the lower envelope. To 
get a feeling of what this lower envelope is, consider the four-dimensional space 
~,r of parametric representation of lines in 3-space, where each point represents 
one nondirected nonvertical line in 3-space. For each edge e of the terrain, the 
points of ~r that represent lines in contact with e lie on a three-dimensional surface 
patch a e. The collection of all these surface patches defines a partitioning 
of the space U into cells of various dimensions. It is evident that the points 
of ~ corresponding to lines in LP K occupy a single connected component C 
of ~,, whose boundary is determined by portions of the surfaces a e. We define the 
complexity of the lower envelope of lines in ~'K to be the overall number of 
lower-dimensional cells on the boundary of C. To simplify matters (and with no 
loss of generality) we only count the number of its vertices, namely, those 
corresponding to lines that touch four distinct edges of K (and we refer to them 
as "vertices" of L~K). We show: 

Theorem 3.1. The number of vertices of -~'r, as defined above, is O(n 3" 2c lCi~) for 
some absolute positive constant c. 
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Proof We fix an edge e o of K, and bound the number of lines of ~'t K that 
touch e o and three other edges of K, with the additional proviso that these 
three other contact points all lie on one fixed side of the vertical plane passing 
through e 0. We then multiply this bound by the number n of edges to obtain a 
bound on the overall number of vertices of Za K. We want to rephrase this problem 
in terms of the lower envelope of a certain collection of surface patches in 3-space, 
one patch for each other edge of K, to which we apply the results of the previous 
section. 

The space ~eo of oriented lines that touch e o is three-dimensional: each 
such line l can be specified by a triple (t, k, (), where t is the point of contact 
with eo (or, more precisely, the distance of that point from one designated 
endpoint of eo), and k = tan 0, ~ = - c o t  ~o, where (0, ~0) are the spherical co- 
ordinates of the direction of l, that is, 0 is the orientation of the xy-projection of 
l, and q~ is the angle between l and the positive z-axis. 

For each edge e # eo of K let tre be the surface patch in L~a~0 consisting 
of all points (t, k, ~) representing lines that touch e and are oriented from 
eo to e. Note that if (t, k, 0 ~ ae, then ~ ' >  ~ iff the line (t, k, (') passes below 
e. It thus follows that a line l in ~e0 is a vertex of the lower envelope of &er 
if and only if l is a vertex of the lower envelope of the surfaces tr, in the 
tk(-space, where the height of a point is its ~-coordinate. Hence, it remains 
to show that these surfaces satisfy conditions (i)-(iv) of the previous section, 
and then the theorem will easily follow from Theorem 2.1. 

Condition (i) requires each ae to be monotone in the tk-direction, which 
is immediate by definition; the algebraicity and the constant degree of these 
surfaces is also easy to verify. The vertical projection of o" e onto the tk-plane 
is easily seen to be the intersection of two double wedges--it  is the set dual 
to the set of all lines in the xy-plane that intersect the xy-projections of e o 
and e, under an appropriate (and standard) duality. Hence condition (ii) is 
also satisfied. (Since this projection may be disconnected, we may want to 
replace each tre by a constant number of subpatches, so that the tk-projection 
of each subpatch is a convex polygon of at most four sides.) Condition (iii), 
which is the crucial one, follows from the observation that a point of intersection 
of the relative interiors of three surfaces ae,, O'e2 , O'e3 , corresponds to a line that 
passes through the four edges e 0, el ,  e2, and e3, and it it well known that there 
can be at most two such lines, assuming that these four edges are in general 
position (see, e.g., [12]). Condition (iv) can be enforced by assuming the terrain K 
to be in general position. We argue, as in [17], that the maximum complexity of 
the envelope is achieved, up to a constant factor, when the terrain, and hence the 
surfaces defining the lower envelope of ~K, are in general position. 

Hence, putting everything together and applying Theorem 2.1, we readily 
obtain the bound asserted in the theorem. []  

Remarks. (1) The bound of Theorem 3.1 has been independently obtained 
by Pellegrini [14J, using a different proof technique. 

(2) Recently, de Berg [3] has shown a lower-bound construction of complexity 
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Fig. 2. An fl(n ~) construction for the lower envelope of . ~  [3]. 
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f~(n 3) for the envelope of ~K, implying that our upper bound is almost tight 
in the worst case. The construction consists of an almost fiat (horizontal) "hill" 
with n/3 edges, and two sets of n/3 steep pyramids ("spikes") each, in front of the 
hill; see Fig. 2 for an illustration. Clearly, this terrain has O(n) edges. If the 
dimensions of the hill and spikes are assigned appropriately (in particular, the 
edges of the hill are long enough, and the spikes are sufficiently high), then a line 
lying over the terrain can touch an edge of the hill and (an edge of) one spike of 
each row simultaneously, and this triple contact still leaves one degree of freedom 
for motion of the line along a small segment of each of the edges involved. This 
holds for every triple of an edge of the hill, and one spike from either row. Thus 
we have ~(n  3) distinct one-dimensional edges on the lower envelope of LP K. 
This construction induces [~(n 3) vertices on the lower envelope of ~ which 
are obtained when a line touches two horizontal edges of the hill bounding 
the same face, and two spikes, one from each row. 

We can extend the result of Theorem 3.1 as follows. Let K be a terrain 
as above. Let ~ r  denote the space of all rays in 3-space with the property 
that each point on such a ray lies on or above K. We define the lower 
envelope of ~ x  and its vertices in complete analogy to the case of Z~'K. By 
inspecting the proof of Theorem 3.1, it can be easily verified that it applies 
equally well to rays instead of lines. This is because, after fixing an edge e o, 
each "ray-vertex" of ~ r  under consideration, when extended into a full line, 
becomes a "line-vertex" of ~x,,  where K* is the portion of K cut off by a 
half-space bounded by the vertical plane through e 0. Hence we obtain: 

Corollary 3.2. The number of vertices of ~ r, as defined above, is also O(n 3" 2 c ~ ) .  

This corollary is needed in the following subsection. 
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3.1. The Number o f  Orthooraphic Views of  a Polyhedral Terrain 

We next apply Theorem 3.1 to obtain a bound on the number of topologic- 
ally different orthographic views (i.e., views from infinity) of a polyhedral terrain 
K with n edges. This problem has been studied by de Berg et al. 1,4,1. However, 
there is a certain technial error in their analysis (which we explain below). As 
mentioned above, a correct form of the bound is O(n24(n)p(n)), where #(n) is the 
complexity of the ray-envelope of a terrain with n edges. In this subsection we 
explain the connection between/~(n) and the bound on the number of views, and 
using the result of the previous subsection, we conclude that this bound is 
O(n 5 �9 2r ~,/i~), for a constant c' slightly larger than the constant c in the bound 
of Corollary 3.2. 

Following the analysis of I-4,1, each orthographic view of K can be represented 
as a point on the sphere at infinity S~ 2. For  each triple (e 1, e2, e3) of edges of K 
we consider the locus ~ .... 5.e~ of views for which these three edges appear to be 
concurrent (that is, a line parallel to the viewing direction which touches these 
three edges exists); each such locus is a curve along 6e2. 

We next replace each curve 7 = Yt .... 2.e~ as above by its maximal visible 
portions; a point on y is said to be visible if the corresponding line that 
touches the three edges el~ e2, e3 either lies over K or else penetrates below 
K only at points that lie further away from its contacts with the edges e~, 
e2, e3; in other words, we require the existence of a ray in the viewing direction 
that touches et, e2, and e 3 but otherwise lies fully above K, As is easily verified, 
each visible portion of 7 is delimited either at an original endpoint of 7 or at a 
point whose corresponding ray is a vertex of ~x .  Hence, by Corollary 3.2, the total 
number of the visible portions of the loci ? is O(n 3 �9 2c 1 ~ ) .  We refer to these 
visible portions as arcs of  visible triple-contact views. 

We now continue along the lines of the analysis of [4,1. That is, we consider 
the arrangement of the arcs of visible triple-contact views, and observe that the 
number of views that we seek to bound is proportional to the complexity of the 
arrangement of these arcs within 6 ~2. We next apply a result of Cole and Sharir 
1,8-1, which, rephrased in the context under discussion, states that each meridian of 
A e2 crosses at most k = O(nA4(n)) arcs. As shown in 1'4,1, this implies that the 
complexity of the arrangement of these arcs is O(Nk), where N is the number of 
arcs. Hence we obtain 

Corollary 3.3. 7he number of topologically different orthographic views of a 
polyhedral terrain with n edges is 

O(n4,~,4(n) �9 2el,/i~) = O(n 5. 2c'Jlos,---), 

for c' slightly larger than c. 

Remarks. (1) The technical error in 1,4] is that they considered the arrangement 
of the entire loci Yte,.e2.e~j, whereas, for the result of 1,8,1 to apply, one has to 
consider, as done above, only their visible portions. 
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(2) de Berg et al. [4] also give a lower bound of f2(nSct(n)) for the number 
of topologically different orthographic views of a polyhedral terrain with n 
edges. Thus the above bound is almost tight in the worst case. 

(3) The manuscript [4] also analyzes the number of topologically different 
perspective views of a polyhedral terrain. Again they make the technical error 
noted above, except that now they have to consider an arrangement of surface 
patches in 3-space rather than an arrangement of curves on the sphere at infinity. 
As it turns out, what is needed here is a bound on the number of vertices of the 
lower envelope of the space g r  of all line segments that lie over K, defined in 
analogy with the spaces L~r and ~ r -  Unfortunately, we do not know how to 
extend our analysis to obtain nontrivial bounds for the case of d r .  Nevertheless, 
Agarwal and Sharir have recently obtained an almost tight bound on the number 
of topologically different perspective views of a polyhedral terrain using a different 
approach [1]. 

4. Conclusion 

The new bounds obtained in Section 2 for the complexity of the lower envelope 
of surface patches in 3-space push the frontier of research on these problems a 
step further. In some intuitive sense the case studied in this paper is the next 
simplest case for which subcubic bounds on the envelope complexity were not 
known. So far we do not have other applications of our result, beyond the 
application to terrain visibility given in Section 3, but we anticipate that such 
applications will be forthcoming. 

There are several open problems that our study raises. The most obvious 
one is to close the remaining small gap between our upper bound and the 
known near-quadratic lower bounds for the complexity of the envelope; we 
continue to conjecture that the correct bound is O(n2s(n)), for some constant 
s depending on the degree and shape of the surfaces. 

Another open problem is to obtain nontrivial bounds on the complexity 
of the space gK, as defined above. 

We remark that the ideas used in the proof of Theorem 2.1 can be applied to 
the problem of bounding the complexity of a single cell in the free configuration 
space of the motion-planning problem for an arbitrary polygonal object moving 
(translating and rotating) in a two-dimensional polygonal environment, leading 
to near-quadratic bounds on that complexity. The dissertation 1-9] has studied 
several special cases of this motion-planning problem, and obtained better, often 
near-quadratic bounds in these cases, but no subcubic bounds were known for 
the general problem, as just stated. This extension of our results requires con- 
siderably more involved analysis than the one given in this paper, and it is 
presented in a companion paper [10]. 

Finally, the new technique developed in this paper is extended in the companion 
paper [17] to obtain similar almost tight bounds for the complexity of the envelope 
in cases where the maximum number of intersection points between any triple of 
surface patches is a constant greater than two, as well as in higher dimensions. 
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See also the forthcoming book [18], where all these new results, as well as many 
other related results and applications, are presented. 
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