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Abstract. Thecrossing number, cr(G), of a graphG is the least number of crossing points
in any drawing ofG in the plane. Denote byκ(n,e) the minimum of cr(G) taken over all
graphs withn vertices and at leaste edges. We prove a conjecture of Erd˝os and Guy by
showing thatκ(n,e)n2/e3 tends to a positive constant asn→∞ andn¿ e¿ n2. Similar
results hold for graph drawings on any other surface of fixed genus.

We prove better bounds for graphs satisfying some monotone properties. In particular,
we show that ifG is a graph withn vertices ande ≥ 4n edges, which does not contain a
cycle of lengthfour (resp.six), then its crossing number is at leastce4/n3 (resp.ce5/n4),
wherec > 0 is a suitable constant. These results cannot be improved, apart from the value
of the constant. This settles a question of Simonovits.

1. Introduction

Let G be a simple undirected graph withn(G) nodes (vertices) ande(G) edges. A
drawing of G in the plane is a mappingf that assigns to each vertex ofG a distinct
point in the plane and to each edgeuv a continuous arc connectingf (u) and f (v), not
passing through the image of any other vertex. For simplicity, the arc assigned touv is
also called anedge, and if this leads to no confusion, it is also denoted byuv. We assume
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that no three edges have an interior point in common. Thecrossing number, cr(G), of G
is the minimum number of crossing points in any drawing ofG.

The determination of cr(G) is an NP-complete problem [GJ]. It was discovered by
Leighton [L2] that the crossing number can be used to estimate the chip area required
for the VLSI circuit layout of a graph. He proved the following general lower bound
for cr(G), which was discovered independently by Ajtai et al. [ACNS]. The best known
constant, 1/33.75, in the theorem is due to Pach and T´oth.

Theorem A [ACNS], [L2], [PT]. Let G be a graph with n(G) = n nodes and e(G) = e
edges, e≥ 7.5n. Then we have

cr(G) ≥ 1

33.75

e3

n2
.

Theorem A can be used to deduce the best known upper bounds for the number of
unit distances determined byn points in the plane [S3], for the number of different ways
how a line can split a set ofn points into two equal parts [D], and it has some other
interesting corollaries [PS].

It is easy to see that the bound in Theorem A is tight, apart from the value of the
constant. However, as was suggested by Simonovits [S1], it may be possible to strengthen
the theorem for some special classes of graphs, e.g., for graphs not containing some fixed,
so-calledforbiddensubgraph. In Sections 2 and 3 of this paper we verify this conjecture.

A graph propertyP is said to bemonotoneif

• whenever a graphG satisfiesP, then every subgraph ofG also satisfiesP;
• wheneverG1 andG2 satisfyP, then their disjoint union also satisfiesP.

For any monotone propertyP, let ex(n,P) denote the maximum number of edges that
a graph ofn vertices can have if it satisfiesP. In the special case whenP is the property
that the graph does not contain a subgraph isomorphic to a fixed forbidden subgraphH ,
we write ex(n, H) for ex(n,P).

Theorem 1. LetP be a monotone graph property withex(n,P) = O(n1+α) for some
α > 0. Then there exist two constants c, c′ > 0 such that the crossing number of any
graph G with propertyP, which has n vertices and e≥ cn log2 n edges, satisfies

cr(G) ≥ c′
e2+1/α

n1+1/α
.

If ex(n,P) = 2(n1+α), then this bound is asymptotically tight, up to a constant factor.

In some interesting special cases when we know the precise order of magnitude of
the function ex(n,P), we obtain some slightly stronger results. Thegirth of a graph is
the length of its shortest cycle.

Theorem 2. Let G be a graph with n vertices and e≥ 4n edges, whose girth is larger
than2r , for some r> 0 integer. Then the crossing number of G satisfies

cr(G) ≥ cr
er+2

nr+1
,
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where cr > 0 is a suitable constant. For r = 2,3, and5, these bounds are asymptotically
tight, up to a constant factor.

What happens if the girth ofG is larger than 2r +1? Since one can destroy every odd
cycle of a graph by deleting at most half of its edges, even in this case we cannot expect
an asymptotically better lower bound for the crossing number ofG than the bound given
in Theorem 2.

Theorem 3. Let G be a graph with n vertices and e≥ 4n edges,which does not contain
a complete bipartite subgraph Kr,s with r and s vertices in its classes, s ≥ r . Then the
crossing number of G satisfies

cr(G) ≥ cr,s
e3+1/(r−1)

n2+1/(r−1)
,

where cr,s > 0 is a suitable constant. These bounds are tight up to a constant factor if
r = 2,3, or if r is arbitrary and s> (r − 1)!.

Thebisection width, b(G), of a graphG is defined as the minimum number of edges
whose removal splits the graph into two roughly equal subgraphs. More precisely,b(G)
is the minimum number of edges running betweenV1 andV2, over all partitions of the
vertex set ofG into two partsV1 ∪ V2 such that|V1|, |V2| ≥ n(G)/3.

Leighton [L1] observed that there is an intimate relationship between the bisection
width and the crossing number of a graph, which is based on the Lipton–Tarjan separator
theorem for planar graphs [LT]. The proofs of Theorems 1–3 are based on repeated
application of the following version of this relationship.

Theorem B [PSS]. Let G be a graph of n vertices, whose degrees are d1,d2, . . . ,dn.
Then

b(G) ≤ 10
√

cr(G)+ 2

√√√√ n∑
i=1

d2
i .

Let κ(n,e) denote the minimum crossing number of a graphG with n vertices and
at leaste edges. That is,

κ(n,e) = min
n(G) = n
e(G) ≥ e

cr(G).

It follows from Theorem A that, fore ≥ 4n, κ(n,e)n2/e3 is bounded from below
and from above by two positive constants. Erd˝os and Guy [EG] conjectured that if
eÀ n, then limκ(n,e)n2/e3 exists. (We use the notationf (n) À g(n) to express that
limn→∞ f (n)/g(n) = ∞.) In Section 4, we settle this problem.
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Theorem 4. If n ¿ e¿ n2, then

lim
n→∞ κ(n,e)

n2

e3
= C > 0

exists.

We call the constantC > 0 in Theorem 4 themidrange crossing constant. It is
necessary to limit the range ofe from below and from above. (See Remark 4.4 at the end
of Section 4.)

All of the above problems can be reformulated for graph drawings on other surfaces.
Let Sg denote a torus withg holes, i.e., a compact oriented surface ofgenus gwith no
boundary. Define crg(G), the crossing number ofG on Sg, as the minimum number of
crossing points in any drawing ofG on Sg. Let

κg(n,e) = min
n(G) = n
e(G) ≥ e

crg(G).

With this notation, cr0(G) is the planar crossing number andκ0(n,e) = κ(n,e).
In Section 5 we prove that there is a midrange crossing constant for graph drawings

on any surfaceSg of fixed genusg ≥ 0.

Theorem 5. For every g≥ 0, if n ¿ e¿ n2, then the limit

lim
n→∞ κg(n,e)

n2

e3

exists and is equal to the constant C> 0 in Theorem4.

To prove this result, we have to generalize Theorem B.

Theorem 6. Let G be a graph with n vertices, whose degrees are d1,d2, . . . ,dn. Then

b(G) ≤ 300(1+ g3/4)

√√√√crg(G)+
n∑

i=1

d2
i .

For more problems and results on crossing numbers, see [RT] and [WB].

2. Crossing Numbers and Monotone Properties—Proof of Theorem 1

Let P be a monotone graph property with ex(n,P) ≤ An1+α, for someA, α > 0. Let
G be a graph with vertex setV(G) and edge setE(G), where|V(G)| = n(G) = n and
|E(G)| = e(G) = e. Suppose thatG satisfies propertyP ande ≥ cn log2 n. To prove
Theorem 1, we assume that

cr(G) < c′
e2+1/α

n1+1/α
,

and, ifc andc′ are suitable constant, we will obtain a contradiction.
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We breakG into smaller components, according to the following procedure.

DECOMPOSITIONALGORITHM

Step0. Let G0 = G,G0
1 = G,M0 = 1,m0 = 1.

Suppose that we have already executed Stepi , and that the resulting graph,Gi , consists
of Mi components,Gi

1,G
i
2, . . . ,G

i
Mi

, each of at most(2/3)i n vertices. Assume, without
loss of generality, that the firstmi components ofGi have at least(2/3)i+1n vertices and
the remainingMi −mi have fewer. Then

(2/3)i+1n(G) ≤ n(Gi
j ) ≤ (2/3)i n(G) ( j = 1,2, . . . ,mi ).

Thus, we have thatmi ≤ (3/2)i+1.

Step i+ 1. If

(
2

3

)i

<
1

(2A)1/α
· e1/α

n1+1/α
, (1)

then STOP. Inequality (1) is called thestopping rule.
Else, for j = 1,2, . . . ,mi , deleteb(Gi

j ) edges fromGi
j such thatGi

j falls into two
components, each of at most(2/3)n(Gi

j ) vertices. LetGi+1 denote the resulting graph
on the original set ofn vertices. Clearly, each component ofGi+1 has at most(2/3)i+1n
vertices.

Suppose that the DECOMPOSITIONALGORITHM terminates in Stepk + 1. If k > 0,
then

(
2

3

)k

<
1

(2A)1/α
· e1/α

n1+1/α
≤
(

2

3

)k−1

.

First, we give an upper bound on the total number of edges deleted fromG.
Using that, for any nonnegative realsa1,a2, . . . ,am,

m∑
j=1

√
aj ≤

√√√√m
m∑

j=1

aj , (2)

we obtain that, for any 0≤ i < k,

mi∑
j=1

√
cr(Gi

j ) ≤
√√√√mi

mi∑
j=1

cr(Gi
j ) ≤

√(
3

2

)i+1√
cr(G) <

√(
3

2

)i+1
√

c′e2+1/α

n1+1/α
.
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Denoting byd(v,Gi
j ) the degree of vertexv in Gi

j , we have

mi∑
j=1

√ ∑
v∈V(Gi

j )

d2(v,Gi
j ) ≤

√(
3

2

)i+1√ ∑
v∈V(Gi )

d2(v,Gi )

≤
√(

3

2

)i+1√
max
v∈V(Gi )

d(v,Gi )
∑

v∈V(Gi )

d(v,Gi )

≤
√(

3

2

)i+1
√(

2

3

)i

n(2e) =
√

3en.

In view of Theorem B in the Introduction, the total number of edges deleted during the
procedure is

k−1∑
i=0

mi∑
j=1

b(Gi
j ) ≤ 10

k−1∑
i=0

mi∑
j=1

√
cr(Gi

j )+ 2
k−1∑
i=0

mi∑
j=1

√ ∑
v∈V(Gi

j )

d2(v,Gi
j )

< 10
√

c′
√

e2+1/α

n1+1/α

k−1∑
i=0

√(
3

2

)i

+ 2k
√

3en

≤ 250
√

c′
√

e2+1/α

n1+1/α

√
(2A)1/α

n1+1/α

e1/α
+ 2k
√

3en≤ e

2
,

provided thatc′ is sufficiently small andc is sufficiently large.
Therefore, the number of edges of the graphGk obtained in the final Step of the

algorithm satisfies

e(Gk) ≥ e

2
.

(Note that this inequality trivially holds if the algorithm terminates in the very first Step,
i.e., whenk = 0.)

Next we give a lower bound one(Gk). The number of vertices of each connected
component ofGk satisfies

n(Gk
j ) ≤

(
2

3

)k

n <
1

(2A)1/α
· e1/α

n1+1/α
n =

( e

2An

)1/α
( j = 1,2, . . . ,Mk).

Since eachGk
j has propertyP, it follows that

e(Gk
j ) ≤ An1+α(Gk

j ) < An(Gk
j ) ·

e

2An
.
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Therefore, for the total number of edges ofGk, we have

e(Gk) =
Mk∑
j=1

e(Gk
j ) < A

e

2An

Mk∑
j=1

n(Gk
j ) =

e

2
,

the desired contradiction. This proves the bound of Theorem 1.
It remains to show that the bound is tight up to a constant factor. Suppose that

ex(n,P) ≥ A′n1+α. For everye (cn < e ≤ An1+α), we construct a graphG of at
mostn vertices and at leaste edges, which has propertyP and crossing number

cr(G) ≤ c′′
e2+1/α

n1+1/α
,

for a suitable constantc′′ = c′′(A′, α).
Let

k =
⌈

2e

A′n

⌉1/α

,

and letGk denote a graph ofk vertices and at leastA′k1+α edges, which has propertyP.
Clearly,

cr(Gk) ≤ e2(Gk) ≤ (Ak1+α)2 = A2k2+2α.

Let G be the union ofbn/kc disjoint copies ofGk. Thenn(G) = bn/kck ≤ n,

e(G) =
⌊n

k

⌋
e(Gk) ≥ n

2k
A′kkα ≥ e,

cr(G) =
⌊n

k

⌋
cr(Gk) ≤ n

k
A2k2+2α ≤ A2n

(
2

(
2e

A′n

)1/α
)1+2α

= 23+2α+1/αA2

(A′)2+1/α
·e

2+1/α

n1+1/α
,

as required.

3. Forbidden Subgraphs—Proofs of Theorems 2 and 3

In Section 1 we established Theorem 1 under the assumptione≥ cn log2 n, wherec is
a suitable constant depending on propertyP. It seems very likely that the same result
is true for everye≥ cn. The appearance of the log2 n factor was due to the fact that to
estimate the total number of edges deleted during the DECOMPOSITIONALGORITHM, we
applied Theorem B. We used a poor upper bound on the term

∑
d2

i , because some of the
degreesdi may be very large. However, in some interesting special cases, this difficulty
can be avoided by a simple trick. We can split each vertex of high degree into vertices
of “average degree,” unless the new graph ceases to have propertyP.

We illustrate this technique by proving the following result, which is ther = s = 2
special case of Theorem 3 and a slight modification of Theorem 2 forr = 2.
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Theorem 3.1. Let G be a K2,2-free (C4-free) graph with n(G) = n vertices and
e(G) = e edges, e≥ 1000n. Then

cr(G) ≥ 1

108

e4

n3
.

This bound is tight up to a constant factor.

Proof. Let G be a graph withn vertices ande≥ 1000n edges, which does not contain
K2,2 as a subgraph. Suppose, in order to obtain a contradiction, that

cr(G) <
1

108

e4

n3
,

andG is drawn in the plane with cr(G) crossings.
First, we split every vertex ofG whose degree exceedsd := 2e/n into vertices of

degree at mostd, as follows. Letv be a vertex ofG with degreed(v,G) = d(v) = d > d,
and letvw1, vw2, . . . , vwd be the edges incident tov, listed in clockwise order. Replace
v by dd/de new vertices,v1, v2, . . . , vdd/de, placed in clockwise order on a very small
circle aroundv. Without introducing any new crossings, connectwj to vi if and only if
d(i −1) < j ≤ di (1≤ j ≤ d,1≤ i ≤ dd/de). Repeat this procedure for every vertex
whose degree exceedsd, and denote the resulting graph byG′.

Obviously,G′ is alsoK2,2-free,e(G′) = e(G) = e, and

cr(G′) ≤ cr(G) <
1

108

e4(G)

n3(G)
.

Since all but at mostn vertices ofG′ have degreed, we haven(G′) < 2n(G) = 2n.
Apply the DECOMPOSITIONALGORITHM described in the previous section to the graph

G′ with the difference that, instead of (1), use the following stopping rule:STOPin Step
i + 1 if (

2

3

)i

<
e2(G′)

16n3(G′)
.

Suppose that the algorithm terminates in Stepk+ 1. If k > 0, then(
2

3

)k

<
e2(G′)

16n3(G′)
≤
(

2

3

)k−1

.

Just like in the proof of Theorem 1, for everyi < k, we have that

mi∑
j=1

√
cr(Gi

j ) ≤
√(

3

2

)i+1√
cr(G) <

1

104

√(
3

2

)i+1 e2

n3/2

and, using the fact that the maximum degree inG′ is at mostd,

mi∑
j=1

√ ∑
v∈V(Gi

j )

d2(v,Gi
j ) ≤

√(
3

2

)i+1√ ∑
v∈V(G′)

d2(v,G′)

≤
√(

3

2

)i+1√
d2e(G′) ≤ 2

√(
3

2

)i+1 e√
n
.
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Hence, by Theorem B, the total number of edges deleted during the algorithm is

k−1∑
i=0

mi∑
j=1

b(Gi
j ) ≤ 10

k−1∑
i=0

mi∑
j=1

√
cr(Gi

j )+ 2
k−1∑
i=0

mi∑
j=1

√ ∑
v∈V(Gi

j )

d2(v,Gi
j )

<
1

1000

e2

n3/2

k−1∑
i=0

√(
3

2

)i+1

+ 4
e√
n

k−1∑
i=0

√(
3

2

)i+1

=
√

3

2

√
(3/2)k − 1√

3/2− 1

(
e2

1000n3/2
+ 4e√

n

)
< 100

n3/2

e

(
e2

1000n3/2
+ 4e√

n

)
<

e

10
+ 400n <

e

2
.

Therefore, for the resulting graph,

e(Gk) ≥ e

2
.

On the other hand, each component ofGk has relatively few vertices:

n(Gk
j ) <

(
2

3

)k

n(G′) <
e2

16n2(G′)
= e2

16n2(Gk)
( j = 1,2, . . . ,Mk).

Claim C [R]. Let ex(n, K2,2) denote the maximum number of edges that a K2,2-free
graph with n vertices can have. Then

ex(n, K2,2) ≤
n
(
1+√4n− 3

)
4

≤ n3/2.

Applying the claim to eachG j
k, we obtain

e(Gk
j ) ≤ n3/2(Gk

j ) < n(Gk
j ) ·

√
e2

16n2(Gk)
,

therefore,

e(Gk) =
Mk∑
j=1

e(Gk
j ) <

e

4n(Gk)

Mk∑
j=1

n(Gk
j ) =

e

4
,

the desired contradiction. The tightness of Theorem 3.1 immediately follows from the
fact that Theorem 1 was tight.

Theorems 2 and 3 can be proved similarly. It is enough to notice that splitting a vertex
of high degree does not decrease the girth of a graphG and does not create a subgraph
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isomorphic toKr,s. Instead of Claim C, now we need

Claim C′ [BS], [B2], [B1], [S2], [W]. For a fixed positive integer r, letG2r denote the
property that the girth of a graph is larger than2r . Then the maximum number of edges
of a graph with n vertices, which has propertyG2r , satisfies

ex(n,G2r ) = O(n1+1/r ).

For r = 2,3, and5, this bound is tight.

Claim C′′ [KST], [F], [ER], [B2], [ARS]. For any integers s≥ r ≥ 2, the maximum
number of edges of a Kr,s-free graph of n vertices, satisfies

ex(n, Kr,s) = O(n2−1/r ).

This bound is tight for s> (r − 1)!.

In caser = 3, we obtain the following slight generalization of Theorem 2.

Theorem 3.2. Let G be a graph of n vertices and e≥ 4n edges, which contains no
cycle C6 of length6.

Then, for a suitable constant c′6 > 0, we have

cr(G) ≥ c′6
e5

n4
.

To establish Theorem 3.2, it is enough to modify the proof of Theorem 2 at one
point. Before splitting the high-degree vertices ofG and running the DECOMPOSITION

ALGORITHM, we have to turnG into a bipartite graph, by deleting at most half of its
edges. After that, splitting a vertex cannot create aC6, and the rest of the above argument
shows that the crossing number of the remaining graph still exceedsc′6e5/n4.

We do not see, however, how to obtain the analogous generalization of Theorem 2
for r > 3.

4. Midrange Crossing Constant in the Plane—Proof of Theorem 4

Lemma 4.1.

(i) For any a> 0, the limit

γ [a] = lim
n→∞

κ(n,na)

n

exists and is finite.
(ii) γ [a] is a convex continuous function.

(iii) For any a≥ 4, 1> δ > 0,

γ [a] − γ [a(1− δ)] ≤ γ [a(1+ δ)] − γ [a] ≤ 103δγ [a].
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Proof. Clearly, any two graphs,G1 andG2, can be drawn in the plane so that the edges
of G1 do not intersect the edges ofG2. Therefore,

κ(n1+ n2,e1+ e2) 5 κ(n1,e1)+ κ(n2,e2). (3)

In particular, the functionfa(n) = κ(n,na) is subadditive and hence the limit

γ [a] = lim
n→∞

κ(n,na)

n

exists and is finite for every fixeda > 0. It also follows from (3) that, for anya,b > 0
and 1> α > 0, if n andαn are both integers,

κ(n, (αa+ (1− α)b)n) 5 κ(αn, αan)+ κ((1− α)n, (1− α)bn),

so, for any 1> α > 0 rational,

γ [αa+ (1− α)b] ≤ αγ [a] + (1− α)γ [b].

However, since the functionγ [a] is monotone increasing, it follows that, forany1 >
α > 0,

γ [αa+ (1− α)b] ≤ αγ [a] + (1− α)γ [b]. (4)

That is, the functionγ [a] is convex. In particular, for every 1> δ > 0, we have

γ [a] − γ [a(1− δ)] ≤ γ [a(1+ δ)] − γ [a].

It is known that, for anya ≥ 4,

a3n

100
≤ κ(n,an) ≤ a3n ⇒ a3

100
≤ γ [a] ≤ a3 (5)

(see, e.g., [PT]). Leta ≥ 4, 1> δ > 0. By (4),

γ [a(1+ δ)] ≤ (1− δ)γ [a] + δγ [2a].

Therefore, using (5),

γ [a(1+ δ)] − γ [a] ≤ δγ [2a] ≤ δ8a3 < 103δγ [a].

Set

C := lim sup
a→∞

γ [a]

a3
.

By (5), we have thatC < 1.

Lemma 4.2. For any 0 < ε < 1, there exists N= N(ε) such thatκ(n,e) >
C(e3/n2)(1− ε), whenevermin{n,e/n,n2/e} > N.
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Proof. Let A > 109/ε3 be a rational number satisfying

γ [ A]

A3
> C

(
1− ε

10

)
. (6)

Let N = N(ε) ≥ A such that, ifn > N, e= n A′, and|A− A′| ≤ Aε, then

κ(n,e) > γ [ A′]
(
1− ε

10

)
n. (7)

Let n ande be fixed, min{n,e/n,n2/e} > N and letG = (V, E) be a graph with
|V | = n vertices and|E| = e edges, drawn in the plane withκ(n,e) crossings. Set
p = An/e. LetU be a randomly chosen subset ofV with Pr[v ∈ U ] = p, independently
for all v ∈ V . Let ν = |U |, and letη (resp.ξ ) be the number of edges (resp. crossings)
in the (drawing of the) subgraph ofG induced by the elements ofU .
ν has meanpn and variancep(1− p)n 5 pn, so, by the Chebyshev Inequality,

Pr
[
|ν − pn| > ε

104
pn
]
<

ε

10
.

Write η = ∑
Iuv, where the sum is taken over all edgesuv = vu ∈ E, and Iuv

denotes the indicator for the eventu, v ∈ U . Obviously,E[η] =∑uv∈E E[ Iuv] = ep2.
We decompose

Var[η] =
∑
uv∈E

Var[ Iuv] +
∑

uv,uw∈E

Cov[ Iuv, Iuw] ,

as Cov[Iuv, Iwz] = 0 when all four indices are distinct. As always with indicators, we
have ∑

uv∈E

Var[ Iuv] 5
∑
uv∈E

E [ Iuv] = E [η] = ep2.

Using the bound Cov[Iuv, Iuw] 5 E[ Iuv Iuw] = p3, we obtain

Var [η] 5 p2e+ p3
∑
v∈V

(
d(v)

2

)
,

whered(v) is the degree of vertexv in G. However,
∑

v∈V d(v) = 2e and alld(v) < n,
so ∑

v∈V

(
d(v)

2

)
5 1

2

∑
v∈V

d2(v) 5 en.

Thus, we have

Var[η] 5 p2e+ p3en5 2p3en,

as pn= An2/e≥ 1. Again, by the Chebyshev Inequality,

Pr
[
|η − p2e| > ε

104
p2e

]
<

ε

10
.
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With probability at least 1− ε/5,

pn
(
1− ε

104

)
< ν < pn

(
1+ ε

104

)
and p2e

(
1− ε

104

)
< η < p2e

(
1+ ε

104

)
,

so with probability at least 1− ε/5,

A

(
1− 3ε

104

)
<
η

ν
= A′ < A

(
1+ 3ε

104

)
.

Therefore, in view of (7), with probability at least 1− ε/5, the subgraph ofG induced
by U has at leastpn(1− ε/10)γ [ A′](1− ε/10) crossings. However, then we have

E [ξ ] ≥
(
1− ε

5

)
pn
(
1− ε

10

)
γ [ A′]

(
1− ε

10

)
≥
(
1− ε

5

)
pn
(
1− ε

10

)
γ [ A]

(
1− 3ε

10

)(
1− ε

10

)
≥
(
1− ε

5

)
pn
(
1− ε

10

)
C A3

(
1− ε

10

)(
1− 3ε

10

)(
1− ε

10

)
≥ (1− ε)C A3 pn,

where the second and third inequalities follow from Lemma 4.1(iii) and from the choice
of A, respectively.

On the other hand,

E [ξ ] = p4κ(n,e),

as every crossing lies inU with probability p4. Thus

κ(n,e) ≥ (1− ε) pnC A3

p4
= C

e3

n2
(1− ε)

as desired.

To complete the proof of Theorem 4, we have to establish the “counterpart” of
Lemma 4.2.

Lemma 4.3. For any 1 > ε > 0, there exists M= M(ε) such thatκ(n,e) <
C(e3/n2)(1+ ε), whenevermin{n,e/n,n2/e} > M .

Proof. Let A > 104/ε2 be a rational number satisfying

C
(
1− ε

10

)
<
γ [ A]

A3
< C

(
1+ ε

10

)
.

Let M1 = M1(ε) ≥ A such that, ifn > M1 ande= n A, then

C A3n
(
1− ε

5

)
< κ(n,e) < C A3n

(
1+ ε

5

)
.
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Let G1 = G1(n1,e1) be a graph withn1 > M1 vertices,e1 = An1 edges, and
suppose thatG1 is drawn in the plane withκ(n1,e1) crossings, whereC A3n1(1−ε/5) <
κ(n1,e1) < C A3n1(1+ ε/5). For each vertexv of G1 with degreed(v) > A3/2, we
do the following. Letd(v) = r A3/2 + s, where 0≤ s < A3/2. Substitutev with r + 1
vertices, each of degreeA3/2, except one which has degrees, each drawn very close
to the original position ofv. Clearly, this can be done without creating any additional
crossing. We obtain a graphG2(n2,e2) such that

n1 ≤ n2 ≤ n1

(
1+ 2√

A

)
≤ n1

(
1+ ε

10

)
,

e2 = e1, andG2 is drawn in the plane withκ(n1,e1) crossings.
Suppose thatn ande are fixed, min{n,e/n,n2/e} > M(ε) = 10M1/ε. Let

L = e/n

e2/n2
and K = n2/e

n2
2/e2

,

so that

n = K Ln2 and e= K L2e2.

Let

L̃ =
⌊

L
(
1+ ε

10

)⌋
and K̃ =

⌊
K
(
1− ε

10

)⌋
and let

ñ = K̃ L̃n2 and ẽ= K̃ L̃2e2.

Thenn(1− ε/5) < ñ < n ande2 < ẽ≤ e2(1+ ε/4), so we haveκ(n,e) < κ(ñ, ẽ).
Substitute each vertex ofG2 with L̃ very close vertices, and substitute each edge of

G2 with the corresponding̃L2 edges, all running very close to the original edge. MakeK̃
copies of this drawing, each separated from the others. This way we got a graphG̃(ñ, ẽ)
drawn in the plane. We estimate the number of crossingsX in this drawing.

A crossing in the original drawing ofG2 corresponds tõK L̃4 crossings in the present
drawing ofG̃. For any two edges ofG2 with common endpoint,uv anduw, the edges
arise from them have at most̃K L̃4 crossings with each other. So

X ≤ K̃ L̃4

(
κ(n1,e1)+

∑
v∈V(G2)

(
d(v)

2

))
.

However,
∑

v∈V(G2)
d(v) = 2e2 andd(v) ≤ A3/2, so∑

v∈V(G2)

(
d(v)

2

)
< 3A5/2n2.

Therefore,

κ(n,e) < κ(ñ, ẽ) ≤ c < K̃ L̃4κ(n1,e1)+ K̃ L̃43A5/2n2 < K̃ L̃4κ(n1,e1)
(
1+ ε

10

)
< K̃ L̃4C A3n1

(
1+ ε

5

) (
1+ ε

10

)
= K̃ L̃4C

e3
1

n2
1

(
1+ ε

5

) (
1+ ε

10

)
< K L4C

e3
2

n2
2

(
1+ ε

10

)6 (
1+ ε

5

) (
1+ ε

10

)
< C(1+ ε)e3

n2
.
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Remark 4.4. It was shown in [PT] that 0.06≥ C ≥ 0.029.

We cannot decide whether Theorem 4 remains true under the weaker condition that
C1n ≤ e ≤ C2n2 for suitable positive constantsC1 andC2. If the answer were in the
affirmative, then, clearly,C1 > 3. We would also have thatC2 <

1
2, because, by [G], for

e= (n2), cr(Kn) > ( 1
10 − ε)(e3/n2) for anyε > 0 if n is large enough.

5. Midrange Crossing Constants on Other Surfaces—Proof of Theorem 5

Lemma 5.1. For any integer g≥ 0 and for any1 > ε > 0, there exists N= N(g, ε)
such thatκg(n,e) > C(e3/n2)(1− ε), whenevermin{n,e/n,n3/2/e} > N.

Proof. For g = 0, the assertion follows from Lemma 4.2. Suppose thatg > 0 is
fixed and we have already proved the lemma forg − 1. For anyε > 0, let N(g, ε) =
(105/ε2)gN(g − 1, ε/10). Suppose, in order to get a contradiction, that min{n,e/n,
n3/2/e} > N, and letG(n,e) be a graph drawn onSg with crg(G) = κg(n,e) <
C(e3/n2)(1− ε) crossings.

As long as there is an edge with at least 4C(e2/n2) crossings, delete it. Let the
resulting graph beG1(n1,e1). Suppose that we deletede′ edges. ThenG1 hasn1 = n
vertices,e1 = e− e′ edges, and the number of crossings in the resulting drawing of
G1 is at most crg(G) − 4C(e2/n2)e′. Therefore,e′ < e/4, soe ≥ e1 ≥ 3e/4. It is not
hard to check that crg(G1) < C(e3

1/n2
1)(1− ε) andG1 contains no edge with more than

4C(e2/n2) < 8C(e2
1/n2

1) crossings.
Consider all cycles ofG1, as they are drawn onSg. If each cycle istrivial , i.e., each

cycle is contractible to a point ofSg, then every connected component ofG is contractible
to a point. That is, in this case, our drawing ofG on Sg is equivalent to a drawing ofG1

on the plane. Consequently, crg−1(G1) ≤ cr0(G1) < C(e3/n2)(1− ε) contradicting the
induction hypothesis.

Suppose that there is a nontrivial (i.e., noncontractible) cycleC of G1 with at most
(ε/80C), (n2

1/e1) edges. Clearly,C contains a nontrivial closed curve,C ′, which does
not intersect itself. The total number of crossings alongC ′ is at most

ε

80C

n2
1

e1
8C

e2
1

n2
1

= ε

10
e1.

Delete all edges that crossC ′. Cut Sg alongC ′. Replace every vertex (resp. edge)C ′
by two vertices, one on each side of the cut. Every edge ofG arriving at a vertexv of
C ′ from a given side of the cut will be connected to the copy ofv lying on the same
side. Thus, we obtain a graphG2(n2,e2), drawn with fewer than crg(G1) crossings.
Attaching a half-sphere to each side of the cut, we obtain either a surface of genusg− 1
or two surfaces whose genuses are smaller thang. We discuss only the former case (the
calculation in the latter one is very similar). Since we doubled at most

ε

80C

n2
1

e1
= εn1

n1

e1

1

80C
< εn1

1

N
< n1

ε

10
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vertices and deleted at most(ε/10)e edges, we haven2 ≤ n1(1 + ε/10) and e2 ≥
e1(1− ε/0). In the resulting drawing there are fewer than crg(G1) crossings, therefore

crg−1(G2) < crg(G1) < C
e3

1

n2
1

(1− ε) ≤ C
e3

2

n2
2

(1− ε)
(
1− ε

10

)−3 (
1+ ε

10

)2

≤ C
e3

2

n2
2

(
1− ε

10

)
,

contradicting the induction hypothesis.
Thus, we can assume that every nontrivial cycle ofG1 contains at least(ε/80C)(n2

1/e1)

edges. For each vertexv of G1 with degreed(v) > 10e1/εn1, we do the following. Let
d(v) = r (10e/εn1)+ s, where 0≤ s < 10e1/εn1. Without creating any new crossing,
replacev by r + 1 nearby vertices, each of degree 10e1/εn, except one, whose degree
is s. We obtain a graphG3(n3,e3) drawn onSg with n1 ≤ n3 ≤ n1(1+ ε/5), e3 = e1,
and with the same number of crossings asG1. Hence,

crg(G3) ≤ crg(G1) ≤ C
e3

1

n2
1

(1− ε) ≤ C
e3

3

n2
3

(1− ε)
(
1+ ε

5

)2
≤ C

e3
3

n2
3

(
1− ε

2

)
.

The maximum degreeD in G3 cannot exceed 10e1/εn1 < 18e3/εn3, and the length of
each nontrivial cycle is at least

ε

80C

n2
1

e1
≥ ε

100C

n2
3

e3
.

Apply to G3 the DECOMPOSITIONALGORITHM described in Section 2 with the difference
that, instead of (1), use the following stopping rule:STOPin Stepi + 1 if(

2

3

)i

<
ε

100C

n3

e3
.

Suppose that the algorithm terminates in Stepk+ 1. Then(
2

3

)k

<
ε

100C

n3

e3
≤
(

2

3

)k−1

.

First, we give an upper bound on the total number of edges deleted fromG3. Let
G0 = G0

1 = G3 andm0 = 1. Using (2), we obtain that, for every 0≤ i < k,

mi∑
j=1

√
crg(Gi

j ) ≤
√√√√mi

mi∑
j=1

crg(Gi
j )

≤
√(

3

2

)i+1√
crg(G3) ≤

√(
3

2

)i+1
√

C
e3

3

n2
3

(
1− ε

2

)
.
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Denoting byd(v,Gi
j ) the degree of vertexv in Gi

j , we have

mi∑
j=1

√ ∑
v∈V(Gi

j )

d2(v,Gi
j ) ≤

√(
3

2

)i+1√ ∑
v∈V(Gi )

d2(v,Gi )

≤
√(

3

2

)i+1√
max
v∈V(Gi )

d(v,Gi )
∑

v∈V(Gi )

d(v,Gi )

≤
√(

3

2

)i+1
√

18e3
3

εn2
3

(2e3) = 12

√(
3

2

)i+1 e3√
εn3

.

By Theorem 6 (proved in the next section), the total number of edges deleted during the
algorithm is

k−1∑
i=0

mi∑
j=1

b(Gi
j ) ≤ 300(1+ g3/4)

k−1∑
i=0

mi∑
j=1

√
crg(Gi

j )+
∑

v∈V(Gi
j )

d2(v,Gi
j )

≤ 300(1+ g3/4)

k−1∑
i=0

mi∑
j=1

√
crg(Gi

j )

+ 300(1+ g3/4)

k−1∑
i=0

mi∑
j=1

√ ∑
v∈V(Gi

j )

d2(v,Gi
j )

≤ 300(1+ g3/4)

k−1∑
i=0

√(
3

2

)i+1
(√

C
e3

3

n2
3

(
1− ε

2

)
+ 6

e3√
εn3

)

≤ 300(1+ g3/4)

√
3

2

√
(3/2)k − 1√

3/2− 1

(√
C

e3
3

n2
3

(
1− ε

2

)
+ 6

e3√
εn3

)

≤ 2000(1+ g3/4)

√
C

ε

√
e

n

(√
C

e3
3

n2
3

(
1− ε

2

)
+ 6

e3√
εn3

)
≤ e3

ε

10
.

Therefore, the number of edgese(Gk) of the graphGk obtained in the final Step
of the algorithm satisfiese(Gk) ≥ e3(1− ε/10). Consider the drawing ofGk on Sg

inherited from the drawing ofG3. Each connected component ofGk has fewer than
(ε/100C)(n2

3/e3) vertices, therefore, each cycle ofGk, as drawn onSg, is contractible
to a point. Consequently, this drawing is equivalent to a planar drawing ofGk. Hence,

crg−1(G
k) ≤ cr0(G

k) ≤ crg(G3) ≤ C
e3

3

n2
3

(
1− ε

2

)
≤ C

e3(Gk)

n2(Gk)

(
1− ε

2

) (
1− ε

10

)−3

< C
e3(Gk)

n2(Gk)

(
1− ε

10

)
,

a contradiction. This concludes the proof of Lemma 5.1.
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Lemma 5.2. For any integer g≥ 0 and for anyε > 0, there exists N′ = N ′(g, ε) such
thatκg(n,e) > C(e3/n2)(1− ε), whenevermin{n,e/n,n2/e} > N ′.

Proof. The proof is analogous to that of Lemma 4.2.

Lemma 5.3. For any integer g≥ 0 and for anyε > 0, there exists M= M(g, ε) such
thatκg(n,e) < C(e3/n2)(1+ ε), whenevermin{n,e/n,n2/e} > M .

Proof. Clearly, for any graphG and for anyg ≥ 0, we have cr0(G) ≥ crg(G). There-
fore, Lemma 5.3 is a direct consequence of Lemma 4.3.

Theorem 5 now readily follows from Lemmas 5.2 and 5.3.

6. A Separator Theorem—Proof of Theorem 6

For the proof of Theorem 6, we need a slight variation of the notion of bisection width.
The weak bisection width, b(G), of a graphG is defined as the minimum number of
edges whose removal splits the graph into two components, each of size at least|V(G)|/5.
That is,

b(G) = min
|VA|,|VB|≥n/5

|E(VA,VB)|,

whereE(VA,VB) denotes the number of edges betweenVA andVB, and the minimum
is taken over all partitionsV(G) = VA ∪ VB with |VA|, |VB| ≥ |V(G)|/5.

Lemma 6.1. For any graph G, we have

b(G) ≤ b(G) ≤ 2 max
H⊂G

b(H).

Proof. The first inequality is obviously true. To prove the second one, let|V(G)| = n
and consider a partitionV(G) = VA ∪ VB such thatn/5 ≤ |VA|, |VB| ≤ 4n/5 and
|E(VA,VB)| = b(G). Suppose that|VA| ≤ |VB|. If n/3 ≤ |VA|, thenb(G) = b(G) and
we are done. So we can assume thatn/5≤ |VA| ≤ n/3 and 2n/3≤ |VB| ≤ 4n/5.

Let H be the subgraph ofG induced byVB. By definition, there is a partitionVB =
V ′B ∪ V ′′B such that|VB|/5 ≤ |V ′B|, |V ′′B | ≤ 4|VB|/5, and|E(V ′B,V ′′B)| = b(H). We can
assume that|V ′B| ≤ |V ′′B |. Then

n

3
≤ |VB|

2
≤ |V ′′B | ≤

4|VB|
5
≤ 16n

25
<

2n

3
.

LettingV1 = VA∪V ′B andV2 = V ′′B , we haveV(G) = V1∪V2, n/3≤ |V1|, |V2| ≤ 2n/3,

|E(V1,V2)| ≤ |E(VA,VB)| + |E(V ′B,V ′′B)| ≤ b(G)+ b(H),

and the result follows.
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Fig. 1. The definition ofH .

Theorem 6 is an immediate consequence of Lemma 6.1 and the following statement.

Theorem 6.2. Let G be a graph with n vertices of degrees d1,d2, . . . ,dn. Then

b(G) ≤ 150(1+ g3/4)

√√√√crg(G)+
n∑

i=1

d2
i .

Proof. Clearly, we can assume thatG contains no isolated vertices, that is,di > 0
for all 1 ≤ i ≤ n. Consider a drawing ofG on Sg with exactly crg(G) crossings. Let
v1, v2, . . . , vn be the vertices ofG with degreesd1,d2, . . . ,dn, respectively. Introduce
a new vertex at each crossing. Denote the set of these vertices byV0. Replace each
vi ∈ V(G) (i = 1,2 . . . ,n) by a setVi of vertices forming adi × di piece of a square
grid, in which each vertex is connected to its horizontal and vertical neighbors. Let each
edge incident tovi be hooked up to distinct vertices along one side of the boundary of
Vi without creating any crossing. Thesedi vertices will be called thespecial boundary
verticesof Vi .

Thus, we obtain a graphH of
∑n

i=0 |Vi | = crg(G)+
∑n

i=1 d2
i vertices and no crossing

(see Fig. 1). For each 1≤ i ≤ n, assign weight 1/di to each special boundary vertex
of Vi . Assign weight 0 to all other vertices ofH . For any subsetν of the vertex set of
H , letw(ν) denote the total weight of the vertices belonging toν. With this notation,
w(Vi ) = 1 for each 1≤ i ≤ n. Consequently,w(V(H)) = n.

SinceH is drawn onSg without crossing,H does not containKα as a minor, where
α = b4+ 4

√
gc [RY]. Then, by a result of Alon et al. [AST1] (see also [AST2]), the

vertices ofH can be partitioned into three sets,A, B, andC, such thatw(A), w(B) ≥ n/3

and |C| ≤ 25(1 + g3/4)

√
crg(G)+

∑n
i=1 d2

i , and there is no edge fromA to B. Let
Ai = A∩ Vi , Bi = B ∩ Vi , Ci = C ∩ Vi (i = 0,1, . . . ,n).

For any 1≤ i ≤ n, we say thatVi is of type A(resp.type B) if w(Ai ) ≥ 5
6 (resp.

w(Bi ) ≥ 5
6), and it is oftype C, otherwise.

Define a partitionV(G) = VA ∪ VB of the vertex set ofG, as follows. For any
1 ≤ i ≤ n, let vi ∈ VA (resp.vi ∈ VB) if Vi is of type A (resp. typeB). The remaining
vertices,{vi | Vi is of typeC} are assigned either toVA or to VB so as to minimize
||VA| − |VB||.
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Claim 1. n/5≤ |VA|, |VB| ≤ 4n/5

To prove the claim, define another partitionV(H) = A∪ B ∪C such thatA∩ Vi =
A∩Vi andB∩Vi = B∩Vi , for i = 0 and for everyVi of typeC. If Vi is of typeA (resp.
type B), then letVi = Ai ⊂ A (resp.Vi = Bi ⊂ B), finally, letC = V(H)− A− B.

For anyVi of type A, w(Ai ) − w(Ai ) ≤ w(Ai )/5. Similarly, for anyVi of type B,
w(Bi )− w(Bi ) ≤ w(Bi )/5. Therefore,

|w(A)− w(A)| ≤ max{w(A), w(B)}
5

≤ 2n

15
.

Hence,n/5 ≤ w(A) ≤ 4n/5 and, analogously,n/5 ≤ w(B) ≤ 4n/5. In particular,
|w(A)− w(B)| ≤ 3n/5. Using the minimality of||VA| − |VB||, we obtain that||VA| −
|VB|| ≤ 3n/5, which implies Claim 1.

Claim 2. For any1≤ i ≤ n,

(i) if Vi is of type A(resp. of type B), thenw(Bi )di ≤ |Ci | (resp. w(Ai )di ≤ |Ci |);
(ii) if Vi is of type C, then di /6≤ |Ci |.

In Vi , every connected component belonging toAi is separated from every connected
component belonging toBi by vertices inCi . There arew(Ai )di (resp.w(Bi )di ) special
boundary vertices inVi , which belong toAi (resp.Bi ). It can be shown by an easy case
analysis that the number of separating points|Ci | ≥ min{w(Ai ), w(Bi )}di , and Claim 2
follows (see Fig. 2.).

In order to establish Theorem 6.2 (and hence Theorem 6), it remains to prove the
following statement.

Claim 3. The total number of edges between VA and VB satisfies

|E(VA,VB)| ≤ 150(1+ g3/4)

√√√√crg(G)+
n∑

i=1

d2
i .

To see this, denote byE0 the set of all edges ofH adjacent to at least one element of
C0. For any 1≤ i ≤ n, defineEi ⊂ E(H) as follows. IfVi is of typeA (resp. typeB),

Fig. 2. The tripartition ofVi (i ≥ 1).
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let Ei consist of all edges leavingVi and adjacent to a special boundary vertex belonging
to Bi (resp.Ai ). If Vi is of typeC, let all edges leavingVi belong toEi .

For any 1≤ i ≤ n, let E′i denote the set of edges ofG corresponding to the elements
of Ei (0 ≤ i ≤ n). Clearly, we have|E′i | ≤ |Ei |, because distinct edges ofG give rise
to distinct edges ofH . It is easy to see that every edge betweenVA andVB belongs to⋃n

i=0 E′i .
Obviously,|E′0| ≤ |E0| ≤ 4|C0|. By Claim 2, if Vi is of type A or of type B, then

|E′i | ≤ |Ei | ≤ |Ci |. If Vi is of typeC, then|E′i | ≤ |Ei | = di ≤ 6|Ci |. Therefore,

|E(VA,VB)| ≤
∣∣∣∣∣ n⋃
i=0

E′i

∣∣∣∣∣ ≤ n∑
i=0

|Ei | ≤ 6|C| ≤ 150(1+ g3/4)

√√√√crg(G)+
n∑

i=1

d2
i .

This concludes the proof of Claim 3 and hence Theorem 6.2 and Theorem 6.
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