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Abstract. Thecrossing numbercr(G), of a graphG is the least number of crossing points
in any drawing ofG in the plane. Denote by(n, e) the minimum of c(G) taken over all
graphs withn vertices and at least edges. We prove a conjecture of Bsddnd Guy by
showing thak (n, e)n?/e® tends to a positive constantas— oo andn « e « n?. Similar
results hold for graph drawings on any other surface of fixed genus.

We prove better bounds for graphs satisfying some monotone properties. In particular,
we show that ifG is a graph witm vertices ande > 4n edges, which does not contain a
cycle of lengthfour (resp.six), then its crossing number is at least/n® (resp.ce’/n?),
wherec > 0 is a suitable constant. These results cannot be improved, apart from the value
of the constant. This settles a question of Simonovits.

1. Introduction

Let G be a simple undirected graph witi(G) nodes (vertices) and(G) edges. A
drawing of G in the planeis a mappingf that assigns to each vertex Gf a distinct
point in the plane and to each edgea continuous arc connectingiu) and f (v), not
passing through the image of any other vertex. For simplicity, the arc assignedso
also called aedge and if this leads to no confusion, itis also denotedibyWe assume
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that no three edges have an interior point in common.cFbssing numbercr(G), of G
is the minimum number of crossing points in any drawingsof

The determination of ¢6) is an NP-complete problem [GJ]. It was discovered by
Leighton [L2] that the crossing number can be used to estimate the chip area required
for the VLSI circuit layout of a graph. He proved the following general lower bound
for cr(G), which was discovered independently by Ajtai et al. [ACNS]. The best known
constant, 13375, in the theorem is due to Pach anati.”

Theorem A[ACNS], [L2], [PT]. LetG beagraphwith(G) = nnodesand@) = e
edgese > 7.5n. Then we have

cr(G) > 1 &
~ 3375n2

Theorem A can be used to deduce the best known upper bounds for the number of
unit distances determined Ioypoints in the plane [S3], for the number of different ways
how a line can split a set of points into two equal parts [D], and it has some other
interesting corollaries [PS].

It is easy to see that the bound in Theorem A is tight, apart from the value of the
constant. However, as was suggested by Simonovits [S1], it may be possible to strengthen
the theorem for some special classes of graphs, e.g., for graphs not containing some fixed,
so-calledorbiddensubgraph. In Sections 2 and 3 of this paper we verify this conjecture.

A graph propertyP is said to beanonotonef

e whenever a grapld satisfiesP, then every subgraph @ also satisfie®;
e wheneveiG; andG; satisfyP, then their disjoint union also satisfies

For any monotone properfy, let exn, P) denote the maximum number of edges that
a graph oh vertices can have if it satisfig3. In the special case whénis the property
that the graph does not contain a subgraph isomorphic to a fixed forbidden subfgraph
we write exn, H) for ex(n, P).

Theorem 1. LetP be a monotone graph property wigx(n, ) = O(n**%) for some
a > 0. Then there exist two constantsct > 0 such that the crossing number of any
graph G with propertyP, which has n vertices ande cnlog? n edgessatisfies
+1/a
cr(G) > C/nl+—1/oz'

If ex(n, P) = ©(n**%), then this bound is asymptotically tighip to a constant factor

In some interesting special cases when we know the precise order of magnitude of
the function exn, P), we obtain some slightly stronger results. Tieh of a graph is
the length of its shortest cycle.

Theorem 2. Let G be a graph with n vertices andce4n edgeswhose girth is larger
than2r, for some r> 0 integer Then the crossing number of G satisfies

+2
crG) = ¢

nl’Jrl’
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where ¢ > 0is a suitable constanForr = 2, 3, and5, these bounds are asymptotically
tight, up to a constant factor

What happens if the girth @ is larger than 2+ 1? Since one can destroy every odd
cycle of a graph by deleting at most half of its edges, even in this case we cannot expect
an asymptotically better lower bound for the crossing numbé& thfan the bound given
in Theorem 2.

Theorem 3. Let G be a graph with n vertices ande4n edgeswhich does not contain
a complete bipartite subgraph;K with r and s vertices in its classes > r. Then the
crossing number of G satisfies

e3H+1/0-1)

cr(G) > Cr,sm,

where ¢s > 0 is a suitable constanThese bounds are tight up to a constant factor if
r =2,3, orifrisarbitraryand s> (r — 1)

Thebisection widthb(G), of a graphG is defined as the minimum number of edges
whose removal splits the graph into two roughly equal subgraphs. More prebigaly,
is the minimum number of edges running betw&grandV,, over all partitions of the
vertex set ofG into two partsVy U V, such thatV,|, |V2| > n(G)/3.

Leighton [L1] observed that there is an intimate relationship between the bisection
width and the crossing number of a graph, which is based on the Lipton—Tarjan separator
theorem for planar graphs [LT]. The proofs of Theorems 1-3 are based on repeated
application of the following version of this relationship.

Theorem B[PSS]. Let G be a graph of n verticeshose degrees ara dd,, .. ., d,.
Then

b(G) < 10,/cr(G) + 2 Zdiz.
i=1

Let «(n, e) denote the minimum crossing number of a grapkvith n vertices and
at leaste edges. That is,

k(n,e)= min cr(G).
nG)=n
eG) >e

It follows from Theorem A that, foe > 4n, «(n, e)n?/e® is bounded from below
and from above by two positive constants. &dind Guy [EG] conjectured that if
e > n, then limk (n, e)n?/e? exists. (We use the notatioh(n) > g(n) to express that
limnh_ o f(N)/g(n) = o00.) In Section 4, we settle this problem.
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Theorem 4. Ifn « e « n2, then

. n?
nILmOO;c(n, e)g =C=>0

exists

We call the constan€ > 0 in Theorem 4 thenidrange crossing constanit is
necessary to limit the range efrom below and from above. (See Remark 4.4 at the end
of Section 4.)

All of the above problems can be reformulated for graph drawings on other surfaces.
Let S, denote a torus witly holes, i.e., a compact oriented surfacegehus gwith no
boundary. Define g(G), the crossing number @& on §;, as the minimum number of
crossing points in any drawing @& on §;. Let

kg(n,® = min  crg(G).
nG)=n
eG) >e

With this notation, ¢§(G) is the planar crossing number aggin, €) = «(n, ).
In Section 5 we prove that there is a midrange crossing constant for graph drawings
on any surface; of fixed genugy > 0.

Theorem 5. For every g> 0, if n « e « n?, then the limit
. n?
nILmoo Kkg(N, e)g

exists and is equal to the constant-C0 in Theoreny.

To prove this result, we have to generalize Theorem B.

Theorem 6. Let G be a graph with n verticewhose degrees arg d,, . . ., d,. Then

n

crg(G) + Z d2.

i=1

b(G) < 3001 + g¥%)

For more problems and results on crossing numbers, see [RT] and [WB].

2. Crossing Numbers and Monotone Properties—Proof of Theorem 1

Let P be a monotone graph property with(ex?) < An'**, for someA, « > 0. Let
G be a graph with vertex s&t(G) and edge seE(G), where|V (G)| = n(G) = n and
|E(G)| = e(G) = e. Suppose thab satisfies propertf ande > cnlog?n. To prove
Theorem 1, we assume that

e?tl/a

Cr(G) <C w,

and, ifc andc’ are suitable constant, we will obtain a contradiction.
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We breakG into smaller components, according to the following procedure.

DECOMPOSITIONALGORITHM

Step0.Let G° =G, G =G, Mg=1,mp = 1. .
Suppose thatwe have already executed Stqd that the resulting grap@; , consists
of Mj componentsi), G, ..., G',\,Ii , each of at most2/3)' n vertices. Assume, without

loss of generality, that the firat; components o6' have at least2/3)' +n vertices and
the remainingV; — m; have fewer. Then

2/3"NnG) =nG) = 2/3'N(G)  (j=12....m).

Thus, we have that; < (3/2)'*1.
Step i+ 1.If

2\' 1 et/
(é) < oA e @

then sTor Inequality (1) is called thetopping rule . _

Else for j =1,2,...,m;, deleteb(G}) edges frorrG} such thatG} falls into two
components, each of at mc(§/3)n(G}) vertices. LetG'*! denote the resulting graph
on the original set ofi vertices. Clearly, each component®f+! has at most2/3)' +1n
vertices.

Suppose that the EZOMPOSITIONALGORITHM terminates in Steg + 1. If k > 0,

then
2\* 1 el/e 2\
() < )

First, we give an upper bound on the total number of edges deleteddrom
Using that, for any nonnegative reas ay, .. ., an,

Va < [m) a, 2

m
=1

m
j=1

J

we obtain that, for any & i < Kk,

L i S i 3\ 3\ [cetie
j:Zl,/cr(Gj < J m; j;lcr(Gj) < \/<§> Jer(G) < <§) e
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Denoting byd(v, G)) the degree of vertexin G|, we have

m; - 3 i+1
YooY dw.G) < (-) > d2, G)
i=1\ vev(@) 2 veV(G)
|+l
/ \/Q?GX d(v, G')Ue\% d(v, G
3 i+1 2
< \/(E) \/(5) n(2e) = +/3en.

In view of Theorem B in the Introduction, the total number of edges deleted during the
procedure is

k=1 m; ) k=1 m _ k=1 m _
bG)) < 10) " JerGh+2) )" | > d*v.G))
i=0 j=1 i=0 j=1 i=0 j=1 veV(G))
e2t+1/a k-1 3\'
< 10Vc n1+1/az <2> + 2k+/3en
_e
= 250\/—\/ 1+1/a\/( A)l/"‘ +2k«/3e =5

provided that’ is sufficiently small and is sufficiently large.
Therefore, the number of edges of the graphobtained in the final Step of the
algorithm satisfies

e(G*) >

NI @

(Note that this inequality trivially holds if the algorithm terminates in the very first Step,
i.e., whenk = 0.)

Next we give a lower bound oe(G¥). The number of vertices of each connected
component ofK satisfies

2\ X 1 gl/e e \ Ve
k - —_— = — i =
nep = <3> < 2AaT nie" (2An) (4=12.... M.

Since eaclG has propertyP, it follows that

&Gl < Ant*(G)) < An(G) - SAn
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Therefore, for the total number of edges®f, we have

Mk e Mk

eG"Y =Y eG < A— > nG" =
; ] 2An; J

e
>’

the desired contradiction. This proves the bound of Theorem 1.

It remains to show that the bound is tight up to a constant factor. Suppose that
ex(n, P) > A'n'*® For everye (cn < e < An*®), we construct a grapf® of at
mostn vertices and at leastedges, which has properfy and crossing number

+1/a

/!
cr(G) <c nitia’

for a suitable constamt’ = ¢’ (A, «).

Let
1/a
K= ( 2e "‘ ’
A'n

and letGy denote a graph df vertices and at lea®t'k** edges, which has properB.
Clearly,

cr(Gy) < €2(Gy) < (AkHH)2 = AZK%+2
Let G be the union otn/k] disjoint copies olGy. Thenn(G) = n/kJk < n,

eG) = LEJ e(Gy) > %A’kk" > e

1420
2 Ye B+2a+1/a A2 @2+1/a
cr(G) = LEJ cr(Gy) < EA2k2+2a < A’n <2< e) ) _

An (A)2+Ve plilja’

as required. O

3. Forbidden Subgraphs—Proofs of Theorems 2 and 3

In Section 1 we established Theorem 1 under the assumgtiosnlog? n, wherec is
a suitable constant depending on propértyit seems very likely that the same result
is true for everye > cn. The appearance of the fog factor was due to the fact that to
estimate the total number of edges deleted during #r@dMPOSITIONALGORITHM, we
applied Theorem B. We used a poor upper bound on thezejldﬁ, because some of the
degrees may be very large. However, in some interesting special cases, this difficulty
can be avoided by a simple trick. We can split each vertex of high degree into vertices
of “average degree,” unless the new graph ceases to have pr@perty

We illustrate this technique by proving the following result, which isrthe s = 2
special case of Theorem 3 and a slight modification of Theorem2 fop.
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Theorem 3.1. Let G be a Kk -free (C4s-free) graph with NG) = n vertices and
e(G) = e edgese > 100M. Then

1 ¢
cr(G) > G

This bound is tight up to a constant factor

Proof. LetG be a graph witn vertices ane > 100th edges, which does not contain
K22 as a subgraph. Suppose, in order to obtain a contradiction, that
1 ¢
108 n3’
andG is drawn in the plane with ¢6) crossings.

First, we split every vertex o whose degree exceeds:= 2e/n into vertices of
degree atmost, as follows. Lew be a vertex o6 with degrea (v, G) = d(v) =d > d,
and letvwy, vwo, ..., vwg be the edges incident ig listed in clockwise order. Replace
v by [d/d] new verticespy, vy, .. ., Vg placed in clockwise order on a very small
circle aroundv. Without introducing any new crossings, connegtto v; if and only if
di—1)<j<di (1<j<d 1<i<][d/d]).Repeatthisprocedure for every vertex
whose degree exceedsand denote the resulting graph Gy.

Obviously,G’ is alsoK, ,-free,e(G') = e(G) = e, and

1 4G)
18 n3(G)’
Since all but at most vertices ofG’ have degred, we haven(G') < 2n(G) = 2n.

Apply the DECOMPOSITIONALGORITHM described in the previous section to the graph
G’ with the difference that, instead of (1), use the following stopping ®iterin Step

i+ 1if
<2>i (G
3) T 13

Suppose that the algorithm terminates in Step1. If k > 0, then

gk ez(G) - g k—1
() <5 =(s) -

Just like in the proof of Theorem 1, for every k, we have that

i+1 e2
Z,/cr(G <‘/ \/cr(G <ﬁ () 7

and, using the fact that the maximum degre&iris at most,

m; - 3 i+1
> [¥ e < |/(3) [X cwe
j=1 veV(G)) 2 veV(G)
i+1 i+1
< ,/(%’) ,/62e(G’)§2‘/<g) %

cr(G) <

cr(G) < cr(G) <
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Hence, by Theorem B, the total number of edges deleted during the algorithm is

-1 m -1 m k=1 m
Y>> bG) <10 cr(G)) + 2 > d20,G))
i=0 j=1 i=0 j=1 UEV(G'

i=1

X

=~
=

I
o

L )

B J32—1 \100032 " /n
n3/2 e? de e e

On the other hand, each componenGifhas relatively few vertices

k 2 X / e2 _ e,2 L
n(Gj) < <§) nG’) < 162G = 16n2(GY) (j=1,2,..., My).

Claim C [R]. Letex(n, K, 2) denote the maximum number of edges that,a-Kee
graph with n vertices can havéhen

n(1++/4n—-3) -2

ex(n, Kop) < 7

Applying the claim to eacls!, we obtain

€2
&G < n¥3(GH <n(@GY - | T6m2(GF)’

Mg
ky _ —
e(GY) = ]Ze(G )< o (Gk)Z (G =
the desired contradiction. The tightness of Theorem 3.1 immediately follows from the
O

therefore,

fact that Theorem 1 was tight.

Theorems 2 and 3 can be proved similarly. Itis enough to notice that splitting a vertex
of high degree does not decrease the girth of a gf@agimd does not create a subgraph
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isomorphic toK; s. Instead of Claim C, now we need

Claim C’ [BS], [B2], [B1], [S2], [W]. For afixed positive integer,iet G, denote the
property that the girth of a graph is larger than. Then the maximum number of edges
of a graph with n verticesvhich has property,,, satisfies

ex(n, Gar) = O(n*/"),

Forr = 2, 3,and5, this bound is tight

Claim C” [KST], [F], [ER], [B2], [ARS]. For any integers s> r > 2, the maximum
number of edges of a K-free graph of n verticesatisfies

ex(n, K;s) = O(n*" V"),

This bound is tight for s> (r — 1)!.
In caser = 3, we obtain the following slight generalization of Theorem 2.

Theorem 3.2. Let G be a graph of n vertices and> 4n edgeswhich contains no
cycle G of length6.
Then for a suitable constant,c> 0, we have

e
cr(G) > cgﬁ.

To establish Theorem 3.2, it is enough to modify the proof of Theorem 2 at one
point. Before splitting the high-degree vertices®fand running the BCOMPOSITION
ALGORITHM, we have to turrG into a bipartite graph, by deleting at most half of its
edges. After that, splitting a vertex cannot creaf® sand the rest of the above argument
shows that the crossing number of the remaining graph still exagetim®.

We do not see, however, how to obtain the analogous generalization of Theorem 2
forr > 3.

4. Midrange Crossing Constant in the Plane—Proof of Theorem 4

Lemma4.1.

(i) Foranya> 0,the limit

Jla] = fim k(n, na)

n—oo n

exists and is finite
(ii) y[a] is a convex continuous function
(i) Foranya>4,1> 4§ >0,

ylal — y[al — 8)] < y[a(l+ 8)] — y[a] < 10°y[al].
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Proof. Clearly, any two graph$5; andG,, can be drawn in the plane so that the edges
of G1 do not intersect the edges Gk. Therefore,

k(N1 + N2, €+ &) = «(Ng, €1) + k (N2, €2). 3
In particular, the functiorf,(n) = «(n, na) is subadditive and hence the limit

k (N, na)
n

y[a] = lim
n—oo

exists and is finite for every fixea > 0. It also follows from (3) that, for ang, b > 0
and 1> « > 0, if n andan are both integers,

k(n, (@a+ (1 —a)b)n) < k(an, ean) + «((1 — a)n, (1 — a)bn),
so, for any 1> « > O rational,
ylea+ (1 —a)b] < ay[a] + (1 —a)y[b].

However, since the functiop[a] is monotone increasing, it follows that, fany 1 >
o >0,

ylea+ (1 —a)b] < ayla] + (1 - a)y[b]. 4
That is, the functiory[a] is convex In particular, for every & § > 0, we have
v[al — y[ad - 8] < y[al +&)] — y[a].
It is known that, for anya > 4,
an 3 as 3
TopSkMmam =an = —o<yla=<a 5)
(see, e.g., [PT]). Led > 4,1> § > 0. By (4),
yla@+8)] < (1 -d)y[a] + sy[2a].

Therefore, using (5),

vla@l + 8)] — y[a] < 8y[2a] < 88a° < 10°y[a]. O
Set
C:=lim sup@
o asoco a3 .

By (5), we have tha€ < 1.

Lemma4.2. Forany0 < ¢ < 1, there exists N= N(g) such thatk(n,e) >
C(e’/n?)(1 — &), whenevemin{n, e/n, n?/e} > N.
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Proof. Let A > 10°/¢® be a rational number satisfying

y[Al C(

A% t- _) ©

10
LetN = N(¢) > Asuchthat,ih > N,e=nA, and|A — A'| < Ag, then

k.0 > y[A] (1 5)n. @

Let n ande be fixed, mifn, e/n, n?/e} > N and letG = (V, E) be a graph with
V| = n vertices andE| = e edges, drawn in the plane witlh(n, e) crossings. Set
p = An/e. LetU be arandomly chosen subsehoWith Prfv € U] = p, independently
forallv € V. Letv = |U], and lety (resp.£) be the number of edges (resp. crossings)
in the (drawing of the) subgraph & induced by the elements bf.

v has meampn and variancep(1 — p)n < pn, so, by the Chebyshev Inequality,

Pr[|v— pn| > 104pn] 0

Write n = Y ly,, Where the sum is taken over all edges = vu € E, andly,
denotes the indicator for the evantv € U. Obviously,E[5] = Y, E[lw] = ep”.
We decompose

Var[y] = Y Var[lu]+ Y Covllu. luw].

uvekE uv,uwek

as Covly,, l,z] = 0 when all four indices are distinct. As always with indicators, we
have

Y Var[lu] £ ) Eflw]l = E[n] =ep.

uveE uveE

Using the bound CoV[,, luyw] < E[luwluw] = p°, we obtain

Var[y] < pPe+p®) (d(v)>

veV

whered(v) is the degree of vertexin G. However,} " _,, d(v) = 2eand alld(v) < n,

S0
Z <d(2v)> < %Zdz(v) <en

veV veV

Thus, we have
Var[n] £ p’e+ p’en< 2p’en,
aspn = Ar?/e > 1. Again, by the Chebyshev Inequality,

Pr['” - pel> 104ID e] 10



New Bounds on Crossing Numbers 635

With probability at least 1 ¢/5,

_ & £ 26(1- 5 2 £
pn(l 1O4><v<pn(1+104) and pe(l 104)<n<pe(1+104),
so with probability at least & ¢/5,

3e n , 35

Therefore, in view of (7), with probability at least-1¢/5, the subgraph o& induced
by U has at leaspn(1 — ¢/10)y[ A'](1 — ¢/10) crossings. However, then we have

ct0 = (1-2) e s (o= 5y
- Dm a(5) 6 )
> (1——)pn(1—18—0)CA3<1 10)(1—%)(1—1%)

where the second and third inequalities follow from Lemma 4.1(iii) and from the choice
of A, respectively.
On the other hand,

E[£] = p'(n,e),
as every crossing lies id with probability p*. Thus

pnCA” e
p*

k(n,e) > (1—¢) ?(1—8)

as desired. O

To complete the proof of Theorem 4, we have to establish the “counterpart” of
Lemma 4.2.

Lemma4.3. Foranyl > ¢ > 0, there exists M= M¢(¢) such thatk(n,e) <
C(e’/n?)(1 + ¢), whenevemin{n, e/n, n?/e} > M.

Proof Let A > 10%/¢? be a rational number satisfying

8>< v[A]

C(l_l_o A3 C<1+1o>'

Let M1 = My(¢) > Asuch that, ifh > M; ande = nA, then

CAn (1— %) <«(n, e < CAN (1+ %)
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Let G; = Gi(hy, e1) be a graph witm; > M; vertices,e; = An; edges, and
suppose thas, is drawn in the plane with (n1, e;) crossings, wher€ A*n;(1—¢/5) <
k(ny, e) < CAN.(1+ ¢/5). For each vertex of G; with degreed(v) > A¥?, we
do the following. Letd(v) = r A%? 4+ s, where 0< s < A%?2. Substitutev with r + 1
vertices, each of degre&®?, except one which has degregeach drawn very close
to the original position ob. Clearly, this can be done without creating any additional
crossing. We obtain a gragb,(n,, &) such that

n<n;<n 1—|—2 <n(1+8)
1> l2 =11 \/K_l 10,

& = €1, andG; is drawn in the plane witk (ny, €;) crossings.
Suppose that ande are fixed, mitin, e/n, n?/e} > M(g) = 10M;/¢. Let

L e/n 0 _ n?/e
Ce/m Coni/e’
so that
n=KLn, and e=KL?%.
Let . .
L:LL(1+E)J and K=LK<1—E)J
and let

Ai=KLn, and &= KL2%.

Thenn(1—¢/5) < A < nande, < & < e(1+ ¢/4), sowe have(n, e) < «(A, &).

Substitute each vertex &, with L very close vertices, and substitute each edge of
G, with the corresponding? edges, all running very close to the original edge. Mke
copies of this drawing, each separated from the others. This way we got a@(fpé)
drawn in the plane. We estimate the number of crosskgsthis drawing.

A crossing in the original drawing @, corresponds t& L* crossings in the present
drawing of G. For any two edges dB, with common endpointiv anduw, the edges
arise from them have at moktL* crossings with each other. So

5 - d(v)
4
X <KL (K(nl,e1)+ > ( ) ))
UGV(Gz)
However,)" ., d(v) = 2e; andd(v) < A%2, so

d
Z < (ZU)) < 3A5/2n2.

veV (Gz)
Therefore,

k(n,e) < k(1,8 <c < KL%(ny, ) + KL*3AY?n, < KL% (ny, ey) (1+ 1%)

< RECA (14 5) (14 ) = RE'e S (145) (1+ &)
1
- KL“C% (1+ %)6(1+%> (1+ %) < C(l—i—e)ﬁ—z. O
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Remark 4.4. It was shown in [PT] that @6 > C > 0.029.

We cannot decide whether Theorem 4 remains true under the weaker condition that
Cin < e < C,n? for suitable positive constan@; andC,. If the answer were in the
affirmative, then, clearly¢; > 3. We would also have th&t, < % because, by [G], for
e= (5), cr(Kn) > (55 — &)(e%/n?) for anye > 0 if n is large enough.

5. Midrange Crossing Constants on Other Surfaces—Proof of Theorem 5

Lemmab.1. For any integer g> 0 and for anyl > ¢ > 0, there exists N= N(g, ¢)
such thatcg(n, €) > C(e3/n?)(1 — ¢), whenevemin{n, e/n, n¥?/e} > N.

Proof. Forg = 0, the assertion follows from Lemma 4.2. Suppose that O is
fixed and we have already proved the lemmador 1. For anye > 0, letN(g, &) =
(10°/£)gN(g — 1, £/10). Suppose, in order to get a contradiction, that fmjr/n,
n¥2/e} > N, and letG(n, e) be a graph drawn oi&, with crg(G) = xq(n, €) <
C(e3/n?)(1 — ¢) crossings.

As long as there is an edge with at lea§t(¢?/n?) crossings, delete it. Let the
resulting graph b&;(ny, €;). Suppose that we deletefiedges. Thers; hasn; = n
vertices,e; = e — € edges, and the number of crossings in the resulting drawing of
Gy is at most ¢§(G) — 4C(€?/n?)€. Thereforeg < e/4, soe > e > 3e/4. Itis not
hard to check that gfG1) < C(ef/n"{)(l — ¢) andG; contains no edge with more than
4C(€?/n?) < 8C(€%/n?) crossings.

Consider all cycles o631, as they are drawn of,. If each cycle idrivial, i.e., each
cycle is contractible to a point &, then every connected componen@oi contractible
to a point. That is, in this case, our drawing@fon S, is equivalent to a drawing db;
on the plane. Consequently,ci(G1) < crp(Gy) < C(e’/n?)(1 — &) contradicting the
induction hypothesis.

Suppose that there is a nontrivial (i.e., noncontractible) cgabé G; with at most
(¢/80C), (nf/el) edges. Clearly¢ contains a nontrivial closed curv€,, which does
not intersect itself. The total number of crossings al6hg at most

& M8 _ £
80Ce n2 10

Delete all edges that crogs. Cut §; alongC’. Replace every vertex (resp. edge)
by two vertices, one on each side of the cut. Every edg8 afriving at a vertex of
C’ from a given side of the cut will be connected to the copyw dying on the same
side. Thus, we obtain a grapgh(ny, €;), drawn with fewer than g(G,) crossings.
Attaching a half-sphere to each side of the cut, we obtain either a surface ofgyerius

or two surfaces whose genuses are smaller thake discuss only the former case (the
calculation in the latter one is very similar). Since we doubled at most

£ n% nnl 1 N 1 N £
—— =M — == <&MN1— < N1 —
80C e, Ye 80C 'N T 1o
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vertices and deleted at mogt/10)e edges, we have, < ni;(1+ ¢/10) ande, >

e1(1— ¢/0). In the resulting drawing there are fewer thag(@1) crossings, therefore

cE-o(1-5) (14 L)

e3
Cry_1(G cry(G C2X(l-¢) <C2 —
9-1(G2) < crg(Gy) < nf( &) < 2 10 10
e P
c2(1- =
- n%( 10)’

contradicting the induction hypothesis.

Thus, we canassume that every nontrivial cyclé p€ontains atleast /80C) (ni/el)
edges. For each vertexof G; with degreed(v) > 10e;/¢n;, we do the following. Let
d(v) =r(10e/eny) + s, where 0< s < 10e;1/en;. Without creating any new crossing,
replacev by r + 1 nearby vertices, each of degreeeil@n, except one, whose degree
is s. We obtain a grapkss(ns, €3) drawn on§, with ny < nz < ni(1+4¢/5), &3 = €y,
and with the same number of crossinggss Hence,

el e £\2 e e
o15(Ga) = Gy < C3 (1 —#) < C5 (=) (1+ g) =C (1- 5).

The maximum degreB in Gz cannot exceed H)/en; < 18e;3/ens, and the length of
each nontrivial cycle is at least

e ni_ & N
80C e; — 100C e3°

Apply to Gz the DECOMPOSITIONALGORITHM described in Section 2 with the difference
that, instead of (1), use the following stopping ruidgoprin Stepi + 1 if

2 i g N3
=] < —.
3 100C e
Suppose that the algorithm terminates in Step 1. Then
2\ & ong 2\
-] < — <= .
3 100C e3 — \3

First, we give an upper bound on the total number of edges deletedGrorhet
G = G? = Gz andmg = 1. Using (2), we obtain that, for every9i < k,

m; m;
Z Jer@Gh < [m Z crg(G})
=1 =1



New Bounds on Crossing Numbers 639

Denoting byd(v, G)) the degree of vertexin G|, we have

m; - 3 i+1
YooY dw.G) < <5> Y d, G)
=1\ vev(@) veV(GhH

3
< <2> \/Ug%d(ve) > dw, GH

veV(G)

|+1 8%3 - z\/i
,/ ‘/ (283) 1 Nach

By Theorem 6 (proved in the next section), the total number of edges deleted during the
algorithm is

k—

[y

m; ) k—1 m; . -
b(G}) = 3001+g¥H Y D" ferg(GH+ Y d2(v. G}

=1 i=0 j=1 veV(G))

I
o
IA

k=1 m;

3001+ g%*) Z > Vera(G)
=0 j=1

-1 m

+ 3001 + g3/4) Yo &G

i=0 j=1 veV(G')

— 3 i+1 % P s
3/4 = =3 _Z s
3001+ g )Z <2> ( Cng(l 2)+6m)

a4, |3V (3/2% — &g ¢ €s
3001+ g )[m - Cng(l 2)+6

3/4 _ & i
20001 + g )[f(/ 1 )+6m)§e310.

Therefore, the number of edge§G¥) of the graphG* obtained in the final Step
of the algorithm satisfiee(G¥) > e3(1 — ¢/10). Consider the drawing o&¥ on S,
inherited from the drawing 063. Each connected component @f has fewer than
(e/lO(IZ)(ng/eg) vertices, therefore, each cycle 6f, as drawn orfy, is contractible
to a point. Consequently, this drawing is equivalent to a planar drawi@f oflence,

IA

A

IA

IA

3

Crg_1(G¥) < crp(G¥) < crg(Gg) < C% (1-5) =c cECH (1-3) (2~ i)_s
3

2 n2(Gky 2 10
e3(GK) e
= Cn2(G'<) (1_ f)) ’

a contradiction. This concludes the proof of Lemma 5.1. |
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Lemma5.2. Forany integer g> Oand for anys > 0,there exists N= N’(g, ¢) such
thatq(n, €) > C(€*/n?)(1 — &), whenevemin{n, e/n, n?/e} > N'.

Proof. The proof is analogous to that of Lemma 4.2. O

Lemma 5.3. For any integer g> 0 and for anye > 0, there exists M= M(g, ¢) such
thatg(n, €) < C(€%/n?)(1 + &), whenevemin{n, e/n, n’/e} > M.

Proof.  Clearly, for any grapl@ and for anyg > 0, we have ¢i(G) > cry(G). There-
fore, Lemma 5.3 is a direct consequence of Lemma 4.3. O

Theorem 5 now readily follows from Lemmas 5.2 and 5.3.

6. A Separator Theorem—Proof of Theorem 6

For the proof of Theorem 6, we need a slight variation of the notion of bisection width.
The weak bisection widthb(G), of a graphG is defined as the minimum number of
edgeswhose removal splits the graph into two components, each of size |t (€231 5.
That is,

b(G)= min E(Va, VB)/,

(G) |vA|,|vB|zn/5| (Va, Vs)|

whereE(Vp, V) denotes the number of edges betwd&garand Vg, and the minimum
is taken over all partition¥ (G) = Va U Vg with [Va], |Vg| > |V (G)|/5.

Lemma 6.1. For any graph G we have

b(G) < b(G) < 2maxb(H).
HcG

Proof. The first inequality is obviously true. To prove the second ongMéB)| = n
and consider a partitiol (G) = Va U Vg such thatn/5 < |Val, |[Vs| < 4n/5 and
|E(Va, Va)| = b(G). Suppose thai/a| < |Vg|. If n/3 < |Va|, thenb(G) = b(G) and
we are done. So we can assume thy& < |Va| < n/3and 21/3 < |Vg| < 4n/5.

Let H be the subgraph db induced byVg. By definition, there is a partitions =
Vi U VY such thatVs|/5 < |Vgl, VL] < 4/Vs|/5, and|E(Vg, VE)| = b(H). We can
assume thatvg| < |Vg|. Then

n Ml Vgl <

37 2

4Vg| 16n 2n
< — < —.
5 — 25 3
LettingVy = VAUV andV, = V¢, we haveV (G) = ViUV, n/3 < V4, [V, < 2n/3,
|E(V1. V2)| < |[E(Va. VB)| + |[E(Vg. VE)| < b(G) 4 b(H),

and the result follows. O
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Fig. 1. The definition ofH.

Theorem 6 is an immediate consequence of Lemma 6.1 and the following statement.

Theorem 6.2. Let G be a graph with n vertices of degregsdb, ..., d,. Then

b(G) < 1501+ g¥*) |crg(G) + ) d2.
i=1

Proof. Clearly, we can assume th@ contains no isolated vertices, that i, > 0

forall 1 <i < n. Consider a drawing o6 on §; with exactly cg(G) crossings. Let

v1, V2, . .., Up be the vertices oG with degreegd;, d,, ..., dy, respectively. Introduce

a new vertex at each crossing. Denote the set of these vertic¥s. lBeplace each

vi € V(G) (i =1,2...,n) by a setV; of vertices forming a; x d; piece of a square
grid, in which each vertex is connected to its horizontal and vertical neighbors. Let each
edge incident ta; be hooked up to distinct vertices along one side of the boundary of
V; without creating any crossing. Thedevertices will be called thepecial boundary
verticesof V.

Thus, we obtainagrapH of Y, |Vi| = crg(G)+ Y ., d? vertices and no crossing
(see Fig. 1). For each £ i < n, assign weight Ad; to each special boundary vertex
of Vi. Assign weight O to all other vertices &f. For any subset of the vertex set of
H, let w(v) denote the total weight of the vertices belonging tdVith this notation,
w(V;) = 1foreach 1< i < n. Consequentlyw(V (H)) = n.

SinceH is drawn onS; without crossingH does not contaitk,, as a minor, where
a = |4+ 4,/g9] [RY]. Then, by a result of Alon et al. [AST1] (see also [AST2]), the
vertices ofH can be partitioned into three sefs,B, andC, such thatv(A), w(B) > n/3

and|C| < 25(1 + g3/4)\/crg(G) + 1, d?, and there is no edge from to B. Let
A =ANV;,,B=BNV,,CGi=CNV,(i=0,1,...,n).

For any 1< i < n, we say thaV, is of type A(resp.type B if w(A) > g (resp.
w(B;) > 2), and it is oftype G otherwise.

Define a partitionV (G) = Va U Vg of the vertex set ofG, as follows. For any
1<i<n,lety € Va (resp.v € V) if V; is of type A (resp. typeB). The remaining
vertices,{v; | V; is of typeC} are assigned either td5 or to Vg so as to minimize
VAl — VBl
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Claim 1. n/5 < |Val, |Vsl <4n/5

To prove the claim, define another partitioiiH) = AU B U C such thatAn V, =
ANV, andBNV, = BNV, fori = 0and for every; of typeC. If V; is of type A (resp.
type B), then letV; = A,  A(resp.V, = B; c B), finally, letC = V(H) — A— B.

For anyV; of type A, w(A) — w(A) < w(A)/5. Similarly, for anyV; of type B,
w(B;) — w(B;) < w(B;)/5. Therefore,

max(w(A). w(B)} _ 2n
5 - 15

lw(A) —w(A)| <

Hence,n/5 < w(A) < 4n/5 and, analogously)/5 < w(B) < 4n/5. In particular,
lw(A) — w(B)| < 3n/5. Using the minimality of|Va| — |Vzg||, we obtain that|Va| —
|Vs|| < 3n/5, which implies Claim 1.

Claim2. Foranyl<i <n,
(i) if V; is of type A(resp of type B, thenw(B;)d; < |Cj| (resp w(A)di < |Ci]);
(ii) if V; is of type Cthen d/6 < |Cj|.

In V;, every connected component belongingitds separated from every connected
component belonging tB; by vertices inC;. There arav (A )d; (resp.w(Bj)d;) special
boundary vertices iv;, which belong toA; (resp.B;). It can be shown by an easy case
analysis that the number of separating poj@$ > min{w(A;), w(Bj)}d;, and Claim 2
follows (see Fig. 2.).

In order to establish Theorem 6.2 (and hence Theorem 6), it remains to prove the
following statement.

Claim 3. The total number of edges betweenand \f satisfies

n
|E(Va. Ve)| < 1501+ g¥%) |crg(G) + ) d?.
i=1

To see this, denote bigy the set of all edges dfl adjacent to at least one element of
Co. Forany 1< i < n, defineg; c E(H) as follows. IfV, is of type A (resp. typeB),

A-O BO C e

Fig. 2. The tripartition ofV; (i > 1).
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let E; consist of all edges leaving and adjacent to a special boundary vertex belonging
to B; (resp.A). If V; is of typeC, let all edges leaviny; belong toE;.

Forany 1<i < n, let E{ denote the set of edges Gfcorresponding to the elements
of E; (0 <i < n). Clearly, we haveE/| < |E;|, because distinct edges Gf give rise
to distinct edges oH. It is easy to see that every edge betwdgrand Vg belongs to
Uro ;.

Obviously, |Ej| < |Eo| < 4|Cy|. By Claim 2, if V; is of type A or of type B, then
|[E/| < |Ei| <|Cil. If Vi is of typeC, then|E{| < |Ei| = d; < 6|C;|. Therefore,

n n n
IE(Va, Ve)l < || J El| < ) IEil <6IC| < 1501+ g¥*) |crg(G) + ) d?.
i=0 i=0 i=1

This concludes the proof of Claim 3 and hence Theorem 6.2 and Theorem 61
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