New Bounds on Crossing Numbers*

J. Pach, ${ }^{1,2}$ J. Spencer, ${ }^{1}$ and G. Tóth ${ }^{2,3}$
${ }^{1}$ Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
pach@cims.nyu.edu
spencer@cs.nyu.edu
${ }^{2}$ Mathematical Institute, Hungarian Academy of Sciences, PF 127, H-1364 Budapest, Hungary
${ }^{3}$ Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
toth@math.mit.edu

Abstract

The crossing number, $\operatorname{cr}(G)$, of a graph G is the least number of crossing points in any drawing of G in the plane. Denote by $\kappa(n, e)$ the minimum of $\operatorname{cr}(G)$ taken over all graphs with n vertices and at least e edges. We prove a conjecture of Erdős and Guy by showing that $\kappa(n, e) n^{2} / e^{3}$ tends to a positive constant as $n \rightarrow \infty$ and $n \ll e \ll n^{2}$. Similar results hold for graph drawings on any other surface of fixed genus.

We prove better bounds for graphs satisfying some monotone properties. In particular, we show that if G is a graph with n vertices and $e \geq 4 n$ edges, which does not contain a cycle of length four (resp. six), then its crossing number is at least $c e^{4} / n^{3}$ (resp. $c e^{5} / n^{4}$), where $c>0$ is a suitable constant. These results cannot be improved, apart from the value of the constant. This settles a question of Simonovits.

1. Introduction

Let G be a simple undirected graph with $n(G)$ nodes (vertices) and $e(G)$ edges. A drawing of G in the plane is a mapping f that assigns to each vertex of G a distinct point in the plane and to each edge $u v$ a continuous arc connecting $f(u)$ and $f(v)$, not passing through the image of any other vertex. For simplicity, the arc assigned to $u v$ is also called an edge, and if this leads to no confusion, it is also denoted by $u v$. We assume

[^0]that no three edges have an interior point in common. The crossing number, $\operatorname{cr}(G)$, of G is the minimum number of crossing points in any drawing of G.

The determination of $\operatorname{cr}(G)$ is an NP-complete problem [GJ]. It was discovered by Leighton [L2] that the crossing number can be used to estimate the chip area required for the VLSI circuit layout of a graph. He proved the following general lower bound for $\operatorname{cr}(G)$, which was discovered independently by Ajtai et al. [ACNS]. The best known constant, $1 / 33.75$, in the theorem is due to Pach and Tóth.

Theorem A [ACNS], [L2], [PT]. Let G be a graph with $n(G)=n$ nodes and $e(G)=e$ edges, $e \geq 7.5 n$. Then we have

$$
\operatorname{cr}(G) \geq \frac{1}{33.75} \frac{e^{3}}{n^{2}}
$$

Theorem A can be used to deduce the best known upper bounds for the number of unit distances determined by n points in the plane [S3], for the number of different ways how a line can split a set of n points into two equal parts [D], and it has some other interesting corollaries [PS].

It is easy to see that the bound in Theorem A is tight, apart from the value of the constant. However, as was suggested by Simonovits [S1], it may be possible to strengthen the theorem for some special classes of graphs, e.g., for graphs not containing some fixed, so-called forbidden subgraph. In Sections 2 and 3 of this paper we verify this conjecture.

A graph property \mathcal{P} is said to be monotone if

- whenever a graph G satisfies \mathcal{P}, then every subgraph of G also satisfies \mathcal{P};
- whenever G_{1} and G_{2} satisfy \mathcal{P}, then their disjoint union also satisfies \mathcal{P}.

For any monotone property \mathcal{P}, let ex (n, \mathcal{P}) denote the maximum number of edges that a graph of n vertices can have if it satisfies \mathcal{P}. In the special case when \mathcal{P} is the property that the graph does not contain a subgraph isomorphic to a fixed forbidden subgraph H, we write ex (n, H) for ex (n, \mathcal{P}).

Theorem 1. Let \mathcal{P} be a monotone graph property with $\operatorname{ex}(n, \mathcal{P})=O\left(n^{1+\alpha}\right)$ for some $\alpha>0$. Then there exist two constants $c, c^{\prime}>0$ such that the crossing number of any graph G with property \mathcal{P}, which has n vertices and $e \geq c n \log ^{2} n$ edges, satisfies

$$
\operatorname{cr}(G) \geq c^{\prime} \frac{e^{2+1 / \alpha}}{n^{1+1 / \alpha}}
$$

If $\operatorname{ex}(n, \mathcal{P})=\Theta\left(n^{1+\alpha}\right)$, then this bound is asymptotically tight, up to a constant factor.
In some interesting special cases when we know the precise order of magnitude of the function ex (n, \mathcal{P}), we obtain some slightly stronger results. The girth of a graph is the length of its shortest cycle.

Theorem 2. Let G be a graph with n vertices and $e \geq 4 n$ edges, whose girth is larger than $2 r$,for some $r>0$ integer. Then the crossing number of G satisfies

$$
\operatorname{cr}(G) \geq c_{r} \frac{e^{r+2}}{n^{r+1}}
$$

where $c_{r}>0$ is a suitable constant. For $r=2,3$, and 5, these bounds are asymptotically tight, up to a constant factor.

What happens if the girth of G is larger than $2 r+1$? Since one can destroy every odd cycle of a graph by deleting at most half of its edges, even in this case we cannot expect an asymptotically better lower bound for the crossing number of G than the bound given in Theorem 2.

Theorem 3. Let G be a graph with n vertices and $e \geq 4 n$ edges, which does not contain a complete bipartite subgraph $K_{r, s}$ with r and s vertices in its classes, $s \geq r$. Then the crossing number of G satisfies

$$
\operatorname{cr}(G) \geq c_{r, s} \frac{e^{3+1 /(r-1)}}{n^{2+1 /(r-1)}}
$$

where $c_{r, s}>0$ is a suitable constant. These bounds are tight up to a constant factor if $r=2,3$, or if r is arbitrary and $s>(r-1)$!.

The bisection width, $b(G)$, of a graph G is defined as the minimum number of edges whose removal splits the graph into two roughly equal subgraphs. More precisely, $b(G)$ is the minimum number of edges running between V_{1} and V_{2}, over all partitions of the vertex set of G into two parts $V_{1} \cup V_{2}$ such that $\left|V_{1}\right|,\left|V_{2}\right| \geq n(G) / 3$.

Leighton [L1] observed that there is an intimate relationship between the bisection width and the crossing number of a graph, which is based on the Lipton-Tarjan separator theorem for planar graphs [LT]. The proofs of Theorems 1-3 are based on repeated application of the following version of this relationship.

Theorem B [PSS]. Let G be a graph of n vertices, whose degrees are $d_{1}, d_{2}, \ldots, d_{n}$. Then

$$
b(G) \leq 10 \sqrt{\operatorname{cr}(G)}+2 \sqrt{\sum_{i=1}^{n} d_{i}^{2}}
$$

Let $\kappa(n, e)$ denote the minimum crossing number of a graph G with n vertices and at least e edges. That is,

$$
\kappa(n, e)=\min _{\substack{n(G)=n \\ e(G) \geq e}} \operatorname{cr}(G)
$$

It follows from Theorem A that, for $e \geq 4 n, \kappa(n, e) n^{2} / e^{3}$ is bounded from below and from above by two positive constants. Erdős and Guy [EG] conjectured that if $e \gg n$, then $\lim \kappa(n, e) n^{2} / e^{3}$ exists. (We use the notation $f(n) \gg g(n)$ to express that $\lim _{n \rightarrow \infty} f(n) / g(n)=\infty$.) In Section 4, we settle this problem.

Theorem 4. If $n \ll e \ll n^{2}$, then

$$
\lim _{n \rightarrow \infty} \kappa(n, e) \frac{n^{2}}{e^{3}}=C>0
$$

exists.
We call the constant $C>0$ in Theorem 4 the midrange crossing constant. It is necessary to limit the range of e from below and from above. (See Remark 4.4 at the end of Section 4.)

All of the above problems can be reformulated for graph drawings on other surfaces. Let S_{g} denote a torus with g holes, i.e., a compact oriented surface of genus g with no boundary. Define $\mathrm{cr}_{g}(G)$, the crossing number of G on S_{g}, as the minimum number of crossing points in any drawing of G on S_{g}. Let

$$
\kappa_{g}(n, e)=\min _{\substack{n(G)=n \\ e(G) \geq e}} \operatorname{cr}_{g}(G)
$$

With this notation, $\mathrm{cr}_{0}(G)$ is the planar crossing number and $\kappa_{0}(n, e)=\kappa(n, e)$.
In Section 5 we prove that there is a midrange crossing constant for graph drawings on any surface S_{g} of fixed genus $g \geq 0$.

Theorem 5. For every $g \geq 0$, if $n \ll e \ll n^{2}$, then the limit

$$
\lim _{n \rightarrow \infty} \kappa_{g}(n, e) \frac{n^{2}}{e^{3}}
$$

exists and is equal to the constant $C>0$ in Theorem 4.
To prove this result, we have to generalize Theorem B.
Theorem 6. Let G be a graph with n vertices, whose degrees are $d_{1}, d_{2}, \ldots, d_{n}$. Then

$$
b(G) \leq 300\left(1+g^{3 / 4}\right) \sqrt{\operatorname{cr}_{g}(G)+\sum_{i=1}^{n} d_{i}^{2}}
$$

For more problems and results on crossing numbers, see [RT] and [WB].

2. Crossing Numbers and Monotone Properties—Proof of Theorem 1

Let \mathcal{P} be a monotone graph property with ex $(n, \mathcal{P}) \leq A n^{1+\alpha}$, for some $A, \alpha>0$. Let G be a graph with vertex set $V(G)$ and edge set $E(G)$, where $|V(G)|=n(G)=n$ and $|E(G)|=e(G)=e$. Suppose that G satisfies property \mathcal{P} and $e \geq c n \log ^{2} n$. To prove Theorem 1, we assume that

$$
\operatorname{cr}(G)<c^{\prime} \frac{e^{2+1 / \alpha}}{n^{1+1 / \alpha}}
$$

and, if c and c^{\prime} are suitable constant, we will obtain a contradiction.

We break G into smaller components, according to the following procedure.

DECOMPOSITION ALGORITHM

Step 0 . Let $G^{0}=G, G_{1}^{0}=G, M_{0}=1, m_{0}=1$.
Suppose that we have already executed Step i, and that the resulting graph, G^{i}, consists of M_{i} components, $G_{1}^{i}, G_{2}^{i}, \ldots, G_{M_{i}}^{i}$, each of at most $(2 / 3)^{i} n$ vertices. Assume, without loss of generality, that the first m_{i} components of G^{i} have at least $(2 / 3)^{i+1} n$ vertices and the remaining $M_{i}-m_{i}$ have fewer. Then

$$
(2 / 3)^{i+1} n(G) \leq n\left(G_{j}^{i}\right) \leq(2 / 3)^{i} n(G) \quad\left(j=1,2, \ldots, m_{i}\right)
$$

Thus, we have that $m_{i} \leq(3 / 2)^{i+1}$.
Step $i+1$. If

$$
\begin{equation*}
\left(\frac{2}{3}\right)^{i}<\frac{1}{(2 A)^{1 / \alpha}} \cdot \frac{e^{1 / \alpha}}{n^{1+1 / \alpha}} \tag{1}
\end{equation*}
$$

then STOP. Inequality (1) is called the stopping rule.
Else, for $j=1,2, \ldots, m_{i}$, delete $b\left(G_{j}^{i}\right)$ edges from G_{j}^{i} such that G_{j}^{i} falls into two components, each of at most $(2 / 3) n\left(G_{j}^{i}\right)$ vertices. Let G^{i+1} denote the resulting graph on the original set of n vertices. Clearly, each component of G^{i+1} has at most $(2 / 3)^{i+1} n$ vertices.

Suppose that the Decomposition Algorithm terminates in Step $k+1$. If $k>0$, then

$$
\left(\frac{2}{3}\right)^{k}<\frac{1}{(2 A)^{1 / \alpha}} \cdot \frac{e^{1 / \alpha}}{n^{1+1 / \alpha}} \leq\left(\frac{2}{3}\right)^{k-1}
$$

First, we give an upper bound on the total number of edges deleted from G.
Using that, for any nonnegative reals $a_{1}, a_{2}, \ldots, a_{m}$,

$$
\begin{equation*}
\sum_{j=1}^{m} \sqrt{a_{j}} \leq \sqrt{m \sum_{j=1}^{m} a_{j}} \tag{2}
\end{equation*}
$$

we obtain that, for any $0 \leq i<k$,

$$
\sum_{j=1}^{m_{i}} \sqrt{\operatorname{cr}\left(G_{j}^{i}\right)} \leq \sqrt{m_{i} \sum_{j=1}^{m_{i}} \operatorname{cr}\left(G_{j}^{i}\right)} \leq \sqrt{\left(\frac{3}{2}\right)^{i+1}} \sqrt{\operatorname{cr}(G)}<\sqrt{\left(\frac{3}{2}\right)^{i+1}} \sqrt{\frac{c^{\prime} e^{2+1 / \alpha}}{n^{1+1 / \alpha}}}
$$

Denoting by $d\left(v, G_{j}^{i}\right)$ the degree of vertex v in G_{j}^{i}, we have

$$
\begin{aligned}
\sum_{j=1}^{m_{i}} \sqrt{\sum_{v \in V\left(G_{j}^{i}\right)} d^{2}\left(v, G_{j}^{i}\right)} & \leq \sqrt{\left(\frac{3}{2}\right)^{i+1}} \sqrt{\sum_{v \in V\left(G^{i}\right)} d^{2}\left(v, G^{i}\right)} \\
& \leq \sqrt{\left(\frac{3}{2}\right)^{i+1}} \sqrt{\max _{v \in V\left(G^{i}\right)} d\left(v, G^{i}\right) \sum_{v \in V\left(G^{i}\right)} d\left(v, G^{i}\right)} \\
& \leq \sqrt{\left(\frac{3}{2}\right)^{i+1}} \sqrt{\left(\frac{2}{3}\right)^{i} n(2 e)}=\sqrt{3 e n}
\end{aligned}
$$

In view of Theorem B in the Introduction, the total number of edges deleted during the procedure is

$$
\begin{aligned}
\sum_{i=0}^{k-1} \sum_{j=1}^{m_{i}} b\left(G_{j}^{i}\right) & \leq 10 \sum_{i=0}^{k-1} \sum_{j=1}^{m_{i}} \sqrt{\operatorname{cr}\left(G_{j}^{i}\right)}+2 \sum_{i=0}^{k-1} \sum_{j=1}^{m_{i}} \sqrt{\sum_{v \in V\left(G_{j}^{i}\right)} d^{2}\left(v, G_{j}^{i}\right)} \\
& <10 \sqrt{c^{\prime}} \sqrt{\frac{e^{2+1 / \alpha}}{n^{1+1 / \alpha}} \sum_{i=0}^{k-1} \sqrt{\left(\frac{3}{2}\right)^{i}}+2 k \sqrt{3 e n}} \\
& \leq 250 \sqrt{c^{\prime}} \sqrt{\frac{e^{2+1 / \alpha}}{n^{1+1 / \alpha}}} \sqrt{(2 A)^{1 / \alpha} \frac{n^{1+1 / \alpha}}{e^{1 / \alpha}}}+2 k \sqrt{3 e n} \leq \frac{e}{2}
\end{aligned}
$$

provided that c^{\prime} is sufficiently small and c is sufficiently large.
Therefore, the number of edges of the graph G^{k} obtained in the final Step of the algorithm satisfies

$$
e\left(G^{k}\right) \geq \frac{e}{2}
$$

(Note that this inequality trivially holds if the algorithm terminates in the very first Step, i.e., when $k=0$.)

Next we give a lower bound on $e\left(G^{k}\right)$. The number of vertices of each connected component of G^{k} satisfies

$$
n\left(G_{j}^{k}\right) \leq\left(\frac{2}{3}\right)^{k} n<\frac{1}{(2 A)^{1 / \alpha}} \cdot \frac{e^{1 / \alpha}}{n^{1+1 / \alpha}} n=\left(\frac{e}{2 A n}\right)^{1 / \alpha} \quad\left(j=1,2, \ldots, M_{k}\right)
$$

Since each G_{j}^{k} has property \mathcal{P}, it follows that

$$
e\left(G_{j}^{k}\right) \leq A n^{1+\alpha}\left(G_{j}^{k}\right)<A n\left(G_{j}^{k}\right) \cdot \frac{e}{2 A n}
$$

Therefore, for the total number of edges of G_{k}, we have

$$
e\left(G^{k}\right)=\sum_{j=1}^{M_{k}} e\left(G_{j}^{k}\right)<A \frac{e}{2 A n} \sum_{j=1}^{M_{k}} n\left(G_{j}^{k}\right)=\frac{e}{2}
$$

the desired contradiction. This proves the bound of Theorem 1.
It remains to show that the bound is tight up to a constant factor. Suppose that $\operatorname{ex}(n, \mathcal{P}) \geq A^{\prime} n^{1+\alpha}$. For every $e\left(c n<e \leq A n^{1+\alpha}\right)$, we construct a graph G of at most n vertices and at least e edges, which has property \mathcal{P} and crossing number

$$
\operatorname{cr}(G) \leq c^{\prime \prime} \frac{e^{2+1 / \alpha}}{n^{1+1 / \alpha}}
$$

for a suitable constant $c^{\prime \prime}=c^{\prime \prime}\left(A^{\prime}, \alpha\right)$.
Let

$$
k=\left\lceil\frac{2 e}{A^{\prime} n}\right\rceil^{1 / \alpha}
$$

and let G_{k} denote a graph of k vertices and at least $A^{\prime} k^{1+\alpha}$ edges, which has property \mathcal{P}. Clearly,

$$
\operatorname{cr}\left(G_{k}\right) \leq e^{2}\left(G_{k}\right) \leq\left(A k^{1+\alpha}\right)^{2}=A^{2} k^{2+2 \alpha} .
$$

Let G be the union of $\lfloor n / k\rfloor$ disjoint copies of G_{k}. Then $n(G)=\lfloor n / k\rfloor k \leq n$,

$$
\begin{gathered}
e(G)=\left\lfloor\frac{n}{k}\right\rfloor e\left(G_{k}\right) \geq \frac{n}{2 k} A^{\prime} k k^{\alpha} \geq e, \\
\operatorname{cr}(G)=\left\lfloor\frac{n}{k}\right\rfloor \operatorname{cr}\left(G_{k}\right) \leq \frac{n}{k} A^{2} k^{2+2 \alpha} \leq A^{2} n\left(2\left(\frac{2 e}{A^{\prime} n}\right)^{1 / \alpha}\right)^{1+2 \alpha}=\frac{2^{3+2 \alpha+1 / \alpha} A^{2}}{\left(A^{\prime}\right)^{2+1 / \alpha}} \cdot \frac{e^{2+1 / \alpha}}{n^{1+1 / \alpha}},
\end{gathered}
$$

as required.

3. Forbidden Subgraphs—Proofs of Theorems 2 and 3

In Section 1 we established Theorem 1 under the assumption $e \geq c n \log ^{2} n$, where c is a suitable constant depending on property \mathcal{P}. It seems very likely that the same result is true for every $e \geq c n$. The appearance of the $\log ^{2} n$ factor was due to the fact that to estimate the total number of edges deleted during the Decomposition Algorithm, we applied Theorem B. We used a poor upper bound on the term $\sum d_{i}^{2}$, because some of the degrees d_{i} may be very large. However, in some interesting special cases, this difficulty can be avoided by a simple trick. We can split each vertex of high degree into vertices of "average degree," unless the new graph ceases to have property \mathcal{P}.

We illustrate this technique by proving the following result, which is the $r=s=2$ special case of Theorem 3 and a slight modification of Theorem 2 for $r=2$.

Theorem 3.1. Let G be a $K_{2,2}$-free (C_{4}-free) graph with $n(G)=n$ vertices and $e(G)=e$ edges, $e \geq 1000 n$. Then

$$
\operatorname{cr}(G) \geq \frac{1}{10^{8}} \frac{e^{4}}{n^{3}}
$$

This bound is tight up to a constant factor.
Proof. Let G be a graph with n vertices and $e \geq 1000 n$ edges, which does not contain $K_{2,2}$ as a subgraph. Suppose, in order to obtain a contradiction, that

$$
\operatorname{cr}(G)<\frac{1}{10^{8}} \frac{e^{4}}{n^{3}}
$$

and G is drawn in the plane with $\operatorname{cr}(G)$ crossings.
First, we split every vertex of G whose degree exceeds $\bar{d}:=2 e / n$ into vertices of degree at most \bar{d}, as follows. Let v be a vertex of G with degree $d(v, G)=d(v)=d>\bar{d}$, and let $v w_{1}, v w_{2}, \ldots, v w_{d}$ be the edges incident to v, listed in clockwise order. Replace v by $\lceil d / \bar{d}\rceil$ new vertices, $v_{1}, v_{2}, \ldots, v_{\lceil d / \bar{d}\rceil}$, placed in clockwise order on a very small circle around v. Without introducing any new crossings, connect w_{j} to v_{i} if and only if $\bar{d}(i-1)<j \leq \bar{d} i(1 \leq j \leq d, 1 \leq i \leq\lceil d / \bar{d}\rceil)$. Repeat this procedure for every vertex whose degree exceeds \bar{d}, and denote the resulting graph by G^{\prime}.

Obviously, G^{\prime} is also $K_{2,2}$-free, $e\left(G^{\prime}\right)=e(G)=e$, and

$$
\operatorname{cr}\left(G^{\prime}\right) \leq \operatorname{cr}(G)<\frac{1}{10^{8}} \frac{e^{4}(G)}{n^{3}(G)}
$$

Since all but at most n vertices of G^{\prime} have degree \bar{d}, we have $n\left(G^{\prime}\right)<2 n(G)=2 n$.
Apply the DECOMPOSITION ALGORITHM described in the previous section to the graph G^{\prime} with the difference that, instead of (1), use the following stopping rule: STOP in Step $i+1$ if

$$
\left(\frac{2}{3}\right)^{i}<\frac{e^{2}\left(G^{\prime}\right)}{16 n^{3}\left(G^{\prime}\right)}
$$

Suppose that the algorithm terminates in Step $k+1$. If $k>0$, then

$$
\left(\frac{2}{3}\right)^{k}<\frac{e^{2}\left(G^{\prime}\right)}{16 n^{3}\left(G^{\prime}\right)} \leq\left(\frac{2}{3}\right)^{k-1}
$$

Just like in the proof of Theorem 1, for every $i<k$, we have that

$$
\sum_{j=1}^{m_{i}} \sqrt{\operatorname{cr}\left(G_{j}^{i}\right)} \leq \sqrt{\left(\frac{3}{2}\right)^{i+1}} \sqrt{\operatorname{cr}(G)}<\frac{1}{10^{4}} \sqrt{\left(\frac{3}{2}\right)^{i+1}} \frac{e^{2}}{n^{3 / 2}}
$$

and, using the fact that the maximum degree in G^{\prime} is at most \bar{d},

$$
\begin{aligned}
\sum_{j=1}^{m_{i}} \sqrt{\sum_{v \in V\left(G_{j}^{i}\right)} d^{2}\left(v, G_{j}^{i}\right)} & \leq \sqrt{\left(\frac{3}{2}\right)^{i+1}} \sqrt{\sum_{v \in V\left(G^{\prime}\right)} d^{2}\left(v, G^{\prime}\right)} \\
& \leq \sqrt{\left(\frac{3}{2}\right)^{i+1}} \sqrt{\bar{d} 2 e\left(G^{\prime}\right)} \leq 2 \sqrt{\left(\frac{3}{2}\right)^{i+1}} \frac{e}{\sqrt{n}}
\end{aligned}
$$

Hence, by Theorem B, the total number of edges deleted during the algorithm is

$$
\begin{aligned}
\sum_{i=0}^{k-1} \sum_{j=1}^{m_{i}} b\left(G_{j}^{i}\right) & \leq 10 \sum_{i=0}^{k-1} \sum_{j=1}^{m_{i}} \sqrt{\operatorname{cr}\left(G_{j}^{i}\right)}+2 \sum_{i=0}^{k-1} \sum_{j=1}^{m_{i}} \sqrt{\sum_{v \in V\left(G_{j}^{i}\right)} d^{2}\left(v, G_{j}^{i}\right)} \\
& <\frac{1}{1000} \frac{e^{2}}{n^{3 / 2}} \sum_{i=0}^{k-1} \sqrt{\left(\frac{3}{2}\right)^{i+1}}+4 \frac{e}{\sqrt{n}} \sum_{i=0}^{k-1} \sqrt{\left(\frac{3}{2}\right)^{i+1}} \\
& =\sqrt{\frac{3}{2}} \frac{\sqrt{(3 / 2)^{k}}-1}{\sqrt{3 / 2}-1}\left(\frac{e^{2}}{1000 n^{3 / 2}}+\frac{4 e}{\sqrt{n}}\right) \\
& <100 \frac{n^{3 / 2}}{e}\left(\frac{e^{2}}{1000 n^{3 / 2}}+\frac{4 e}{\sqrt{n}}\right)<\frac{e}{10}+400 n<\frac{e}{2}
\end{aligned}
$$

Therefore, for the resulting graph,

$$
e\left(G^{k}\right) \geq \frac{e}{2} .
$$

On the other hand, each component of G^{k} has relatively few vertices:

$$
n\left(G_{j}^{k}\right)<\left(\frac{2}{3}\right)^{k} n\left(G^{\prime}\right)<\frac{e^{2}}{16 n^{2}\left(G^{\prime}\right)}=\frac{e^{2}}{16 n^{2}\left(G^{k}\right)} \quad\left(j=1,2, \ldots, M_{k}\right)
$$

Claim C [R]. Let ex $\left(n, K_{2,2}\right)$ denote the maximum number of edges that a $K_{2,2}$-free graph with n vertices can have. Then

$$
\operatorname{ex}\left(n, K_{2,2}\right) \leq \frac{n(1+\sqrt{4 n-3})}{4} \leq n^{3 / 2}
$$

Applying the claim to each G_{k}^{j}, we obtain

$$
e\left(G_{j}^{k}\right) \leq n^{3 / 2}\left(G_{j}^{k}\right)<n\left(G_{j}^{k}\right) \cdot \sqrt{\frac{e^{2}}{16 n^{2}\left(G^{k}\right)}},
$$

therefore,

$$
e\left(G^{k}\right)=\sum_{j=1}^{M_{k}} e\left(G_{j}^{k}\right)<\frac{e}{4 n\left(G^{k}\right)} \sum_{j=1}^{M_{k}} n\left(G_{j}^{k}\right)=\frac{e}{4},
$$

the desired contradiction. The tightness of Theorem 3.1 immediately follows from the fact that Theorem 1 was tight.

Theorems 2 and 3 can be proved similarly. It is enough to notice that splitting a vertex of high degree does not decrease the girth of a graph G and does not create a subgraph
isomorphic to $K_{r, s}$. Instead of Claim C, now we need
Claim $\mathrm{C}^{\prime}[\mathrm{BS}],[\mathrm{B} 2],[\mathrm{B} 1],[\mathrm{S} 2],[\mathrm{W}]$. For a fixed positive integer r, let $\mathcal{G}_{2 r}$ denote the property that the girth of a graph is larger than $2 r$. Then the maximum number of edges of a graph with n vertices, which has property $\mathcal{G}_{2 r}$, satisfies

$$
\operatorname{ex}\left(n, \mathcal{G}_{2 r}\right)=O\left(n^{1+1 / r}\right)
$$

For $r=2,3$, and 5, this bound is tight.
Claim C" [KST], [F], [ER], [B2], [ARS]. For any integers $s \geq r \geq 2$, the maximum number of edges of a $K_{r, s}$-free graph of n vertices, satisfies

$$
\operatorname{ex}\left(n, K_{r, s}\right)=O\left(n^{2-1 / r}\right)
$$

This bound is tight for $s>(r-1)$!.
In case $r=3$, we obtain the following slight generalization of Theorem 2.
Theorem 3.2. Let G be a graph of n vertices and $e \geq 4 n$ edges, which contains no cycle C_{6} of length 6 .

Then, for a suitable constant $c_{6}^{\prime}>0$, we have

$$
\operatorname{cr}(G) \geq c_{6}^{\prime} \frac{e^{5}}{n^{4}}
$$

To establish Theorem 3.2, it is enough to modify the proof of Theorem 2 at one point. Before splitting the high-degree vertices of G and running the DECOMPOSITION Algorithm, we have to turn G into a bipartite graph, by deleting at most half of its edges. After that, splitting a vertex cannot create a C_{6}, and the rest of the above argument shows that the crossing number of the remaining graph still exceeds $c_{6}^{\prime} e^{5} / n^{4}$.

We do not see, however, how to obtain the analogous generalization of Theorem 2 for $r>3$.

4. Midrange Crossing Constant in the Plane—Proof of Theorem 4

Lemma 4.1.

(i) For any $a>0$, the limit

$$
\gamma[a]=\lim _{n \rightarrow \infty} \frac{\kappa(n, n a)}{n}
$$

exists and is finite.
(ii) $\gamma[a]$ is a convex continuous function.
(iii) For any $a \geq 4,1>\delta>0$,

$$
\gamma[a]-\gamma[a(1-\delta)] \leq \gamma[a(1+\delta)]-\gamma[a] \leq 10^{3} \delta \gamma[a] .
$$

Proof. Clearly, any two graphs, G_{1} and G_{2}, can be drawn in the plane so that the edges of G_{1} do not intersect the edges of G_{2}. Therefore,

$$
\begin{equation*}
\kappa\left(n_{1}+n_{2}, e_{1}+e_{2}\right) \leqq \kappa\left(n_{1}, e_{1}\right)+\kappa\left(n_{2}, e_{2}\right) \tag{3}
\end{equation*}
$$

In particular, the function $f_{a}(n)=\kappa(n, n a)$ is subadditive and hence the limit

$$
\gamma[a]=\lim _{n \rightarrow \infty} \frac{\kappa(n, n a)}{n}
$$

exists and is finite for every fixed $a>0$. It also follows from (3) that, for any $a, b>0$ and $1>\alpha>0$, if n and αn are both integers,

$$
\kappa(n,(\alpha a+(1-\alpha) b) n) \leqq \kappa(\alpha n, \alpha a n)+\kappa((1-\alpha) n,(1-\alpha) b n),
$$

so, for any $1>\alpha>0$ rational,

$$
\gamma[\alpha a+(1-\alpha) b] \leq \alpha \gamma[a]+(1-\alpha) \gamma[b] .
$$

However, since the function $\gamma[a]$ is monotone increasing, it follows that, for any $1>$ $\alpha>0$,

$$
\begin{equation*}
\gamma[\alpha a+(1-\alpha) b] \leq \alpha \gamma[a]+(1-\alpha) \gamma[b] . \tag{4}
\end{equation*}
$$

That is, the function $\gamma[a]$ is convex. In particular, for every $1>\delta>0$, we have

$$
\gamma[a]-\gamma[a(1-\delta)] \leq \gamma[a(1+\delta)]-\gamma[a]
$$

It is known that, for any $a \geq 4$,

$$
\begin{equation*}
\frac{a^{3} n}{100} \leq \kappa(n, a n) \leq a^{3} n \Rightarrow \frac{a^{3}}{100} \leq \gamma[a] \leq a^{3} \tag{5}
\end{equation*}
$$

(see, e.g., [PT]). Let $a \geq 4,1>\delta>0$. By (4),

$$
\gamma[a(1+\delta)] \leq(1-\delta) \gamma[a]+\delta \gamma[2 a] .
$$

Therefore, using (5),

$$
\gamma[a(1+\delta)]-\gamma[a] \leq \delta \gamma[2 a] \leq \delta 8 a^{3}<10^{3} \delta \gamma[a]
$$

Set

$$
C:=\limsup _{a \rightarrow \infty} \frac{\gamma[a]}{a^{3}} .
$$

By (5), we have that $C<1$.
Lemma 4.2. For any $0<\varepsilon<1$, there exists $N=N(\varepsilon)$ such that $\kappa(n, e)>$ $C\left(e^{3} / n^{2}\right)(1-\varepsilon)$, whenever $\min \left\{n, e / n, n^{2} / e\right\}>N$.

Proof. Let $A>10^{9} / \varepsilon^{3}$ be a rational number satisfying

$$
\begin{equation*}
\frac{\gamma[A]}{A^{3}}>C\left(1-\frac{\varepsilon}{10}\right) \tag{6}
\end{equation*}
$$

Let $N=N(\varepsilon) \geq A$ such that, if $n>N, e=n A^{\prime}$, and $\left|A-A^{\prime}\right| \leq A \varepsilon$, then

$$
\begin{equation*}
\kappa(n, e)>\gamma\left[A^{\prime}\right]\left(1-\frac{\varepsilon}{10}\right) n \tag{7}
\end{equation*}
$$

Let n and e be fixed, $\min \left\{n, e / n, n^{2} / e\right\}>N$ and let $G=(V, E)$ be a graph with $|V|=n$ vertices and $|E|=e$ edges, drawn in the plane with $\kappa(n, e)$ crossings. Set $p=A n / e$. Let U be a randomly chosen subset of V with $\operatorname{Pr}[v \in U]=p$, independently for all $v \in V$. Let $v=|U|$, and let η (resp. ξ) be the number of edges (resp. crossings) in the (drawing of the) subgraph of G induced by the elements of U.
v has mean $p n$ and variance $p(1-p) n \leqq p n$, so, by the Chebyshev Inequality,

$$
\operatorname{Pr}\left[|v-p n|>\frac{\varepsilon}{10^{4}} p n\right]<\frac{\varepsilon}{10}
$$

Write $\eta=\sum I_{u v}$, where the sum is taken over all edges $u v=v u \in E$, and $I_{u v}$ denotes the indicator for the event $u, v \in U$. Obviously, $E[\eta]=\sum_{u v \in E} E\left[I_{u v}\right]=e p^{2}$. We decompose

$$
\operatorname{Var}[\eta]=\sum_{u v \in E} \operatorname{Var}\left[I_{u v}\right]+\sum_{u v, u w \in E} \operatorname{Cov}\left[I_{u v}, I_{u w}\right],
$$

as $\operatorname{Cov}\left[I_{u v}, I_{w z}\right]=0$ when all four indices are distinct. As always with indicators, we have

$$
\sum_{u v \in E} \operatorname{Var}\left[I_{u v}\right] \leqq \sum_{u v \in E} E\left[I_{u v}\right]=E[\eta]=e p^{2}
$$

Using the bound $\operatorname{Cov}\left[I_{u v}, I_{u w}\right] \leqq E\left[I_{u v} I_{u w}\right]=p^{3}$, we obtain

$$
\operatorname{Var}[\eta] \leqq p^{2} e+p^{3} \sum_{v \in V}\binom{d(v)}{2}
$$

where $d(v)$ is the degree of vertex v in G. However, $\sum_{v \in V} d(v)=2 e$ and all $d(v)<n$, so

$$
\sum_{v \in V}\binom{d(v)}{2} \leqq \frac{1}{2} \sum_{v \in V} d^{2}(v) \leqq e n
$$

Thus, we have

$$
\operatorname{Var}[\eta] \leqq p^{2} e+p^{3} e n \leqq 2 p^{3} e n
$$

as $p n=A n^{2} / e \geq 1$. Again, by the Chebyshev Inequality,

$$
\operatorname{Pr}\left[\left|\eta-p^{2} e\right|>\frac{\varepsilon}{10^{4}} p^{2} e\right]<\frac{\varepsilon}{10}
$$

With probability at least $1-\varepsilon / 5$, $p n\left(1-\frac{\varepsilon}{10^{4}}\right)<v<p n\left(1+\frac{\varepsilon}{10^{4}}\right) \quad$ and $\quad p^{2} e\left(1-\frac{\varepsilon}{10^{4}}\right)<\eta<p^{2} e\left(1+\frac{\varepsilon}{10^{4}}\right)$,
so with probability at least $1-\varepsilon / 5$,

$$
A\left(1-\frac{3 \varepsilon}{10^{4}}\right)<\frac{\eta}{v}=A^{\prime}<A\left(1+\frac{3 \varepsilon}{10^{4}}\right) .
$$

Therefore, in view of (7), with probability at least $1-\varepsilon / 5$, the subgraph of G induced by U has at least $p n(1-\varepsilon / 10) \gamma\left[A^{\prime}\right](1-\varepsilon / 10)$ crossings. However, then we have

$$
\begin{aligned}
E[\xi] & \geq\left(1-\frac{\varepsilon}{5}\right) p n\left(1-\frac{\varepsilon}{10}\right) \gamma\left[A^{\prime}\right]\left(1-\frac{\varepsilon}{10}\right) \\
& \geq\left(1-\frac{\varepsilon}{5}\right) p n\left(1-\frac{\varepsilon}{10}\right) \gamma[A]\left(1-\frac{3 \varepsilon}{10}\right)\left(1-\frac{\varepsilon}{10}\right) \\
& \geq\left(1-\frac{\varepsilon}{5}\right) p n\left(1-\frac{\varepsilon}{10}\right) C A^{3}\left(1-\frac{\varepsilon}{10}\right)\left(1-\frac{3 \varepsilon}{10}\right)\left(1-\frac{\varepsilon}{10}\right) \\
& \geq(1-\varepsilon) C A^{3} p n,
\end{aligned}
$$

where the second and third inequalities follow from Lemma 4.1(iii) and from the choice of A, respectively.

On the other hand,

$$
E[\xi]=p^{4} \kappa(n, e),
$$

as every crossing lies in U with probability p^{4}. Thus

$$
\kappa(n, e) \geq(1-\varepsilon) \frac{p n C A^{3}}{p^{4}}=C \frac{e^{3}}{n^{2}}(1-\varepsilon)
$$

as desired.

To complete the proof of Theorem 4, we have to establish the "counterpart" of Lemma 4.2.

Lemma 4.3. For any $1>\varepsilon>0$, there exists $M=M(\varepsilon)$ such that $\kappa(n, e)<$ $C\left(e^{3} / n^{2}\right)(1+\varepsilon)$, whenever $\min \left\{n, e / n, n^{2} / e\right\}>M$.

Proof. Let $A>10^{4} / \varepsilon^{2}$ be a rational number satisfying

$$
C\left(1-\frac{\varepsilon}{10}\right)<\frac{\gamma[A]}{A^{3}}<C\left(1+\frac{\varepsilon}{10}\right) .
$$

Let $M_{1}=M_{1}(\varepsilon) \geq A$ such that, if $n>M_{1}$ and $e=n A$, then

$$
C A^{3} n\left(1-\frac{\varepsilon}{5}\right)<\kappa(n, e)<C A^{3} n\left(1+\frac{\varepsilon}{5}\right) .
$$

Let $G_{1}=G_{1}\left(n_{1}, e_{1}\right)$ be a graph with $n_{1}>M_{1}$ vertices, $e_{1}=A n_{1}$ edges, and suppose that G_{1} is drawn in the plane with $\kappa\left(n_{1}, e_{1}\right)$ crossings, where $C A^{3} n_{1}(1-\varepsilon / 5)<$ $\kappa\left(n_{1}, e_{1}\right)<C A^{3} n_{1}(1+\varepsilon / 5)$. For each vertex v of G_{1} with degree $d(v)>A^{3 / 2}$, we do the following. Let $d(v)=r A^{3 / 2}+s$, where $0 \leq s<A^{3 / 2}$. Substitute v with $r+1$ vertices, each of degree $A^{3 / 2}$, except one which has degree s, each drawn very close to the original position of v. Clearly, this can be done without creating any additional crossing. We obtain a graph $G_{2}\left(n_{2}, e_{2}\right)$ such that

$$
n_{1} \leq n_{2} \leq n_{1}\left(1+\frac{2}{\sqrt{A}}\right) \leq n_{1}\left(1+\frac{\varepsilon}{10}\right)
$$

$e_{2}=e_{1}$, and G_{2} is drawn in the plane with $\kappa\left(n_{1}, e_{1}\right)$ crossings.
Suppose that n and e are fixed, $\min \left\{n, e / n, n^{2} / e\right\}>M(\varepsilon)=10 M_{1} / \varepsilon$. Let

$$
L=\frac{e / n}{e_{2} / n_{2}} \quad \text { and } \quad K=\frac{n^{2} / e}{n_{2}^{2} / e_{2}},
$$

so that

$$
n=K L n_{2} \quad \text { and } \quad e=K L^{2} e_{2}
$$

Let

$$
\tilde{L}=\left\lfloor L\left(1+\frac{\varepsilon}{10}\right)\right\rfloor \quad \text { and } \quad \tilde{K}=\left\lfloor K\left(1-\frac{\varepsilon}{10}\right)\right\rfloor
$$

and let

$$
\tilde{n}=\tilde{K} \tilde{L} n_{2} \quad \text { and } \quad \tilde{e}=\tilde{K} \tilde{L}^{2} e_{2}
$$

Then $n(1-\varepsilon / 5)<\tilde{n}<n$ and $e_{2}<\tilde{e} \leq e_{2}(1+\varepsilon / 4)$, so we have $\kappa(n, e)<\kappa(\tilde{n}, \tilde{e})$.
Substitute each vertex of G_{2} with \tilde{L} very close vertices, and substitute each edge of G_{2} with the corresponding \tilde{L}^{2} edges, all running very close to the original edge. Make \tilde{K} copies of this drawing, each separated from the others. This way we got a graph $\tilde{G}(\tilde{n}, \tilde{e})$ drawn in the plane. We estimate the number of crossings X in this drawing.

A crossing in the original drawing of G_{2} corresponds to $\tilde{K} \tilde{L}^{4}$ crossings in the present drawing of \tilde{G}. For any two edges of G_{2} with common endpoint, $u v$ and $u w$, the edges arise from them have at most $\tilde{K} \tilde{L}^{4}$ crossings with each other. So

$$
X \leq \tilde{K} \tilde{L}^{4}\left(\kappa\left(n_{1}, e_{1}\right)+\sum_{v \in V\left(G_{2}\right)}\binom{d(v)}{2}\right) .
$$

However, $\sum_{v \in V\left(G_{2}\right)} d(v)=2 e_{2}$ and $d(v) \leq A^{3 / 2}$, so

$$
\sum_{v \in V\left(G_{2}\right)}\binom{d(v)}{2}<3 A^{5 / 2} n_{2}
$$

Therefore,

$$
\begin{aligned}
\kappa(n, e) & <\kappa(\tilde{n}, \tilde{e}) \leq c<\tilde{K} \tilde{L}^{4} \kappa\left(n_{1}, e_{1}\right)+\tilde{K} \tilde{L}^{4} 3 A^{5 / 2} n_{2}<\tilde{K} \tilde{L}^{4} \kappa\left(n_{1}, e_{1}\right)\left(1+\frac{\varepsilon}{10}\right) \\
& <\tilde{K} \tilde{L}^{4} C A^{3} n_{1}\left(1+\frac{\varepsilon}{5}\right)\left(1+\frac{\varepsilon}{10}\right)=\tilde{K} \tilde{L}^{4} C \frac{e_{1}^{3}}{n_{1}^{2}}\left(1+\frac{\varepsilon}{5}\right)\left(1+\frac{\varepsilon}{10}\right) \\
& <K L^{4} C \frac{e_{2}^{3}}{n_{2}^{2}}\left(1+\frac{\varepsilon}{10}\right)^{6}\left(1+\frac{\varepsilon}{5}\right)\left(1+\frac{\varepsilon}{10}\right)<C(1+\varepsilon) \frac{e^{3}}{n^{2}}
\end{aligned}
$$

Remark 4.4. It was shown in [PT] that $0.06 \geq C \geq 0.029$.

We cannot decide whether Theorem 4 remains true under the weaker condition that $C_{1} n \leq e \leq C_{2} n^{2}$ for suitable positive constants C_{1} and C_{2}. If the answer were in the affirmative, then, clearly, $C_{1}>3$. We would also have that $C_{2}<\frac{1}{2}$, because, by [G], for $e=\binom{n}{2}, \operatorname{cr}\left(K_{n}\right)>\left(\frac{1}{10}-\varepsilon\right)\left(e^{3} / n^{2}\right)$ for any $\varepsilon>0$ if n is large enough.

5. Midrange Crossing Constants on Other Surfaces-Proof of Theorem 5

Lemma 5.1. For any integer $g \geq 0$ and for any $1>\varepsilon>0$, there exists $N=N(g, \varepsilon)$ such that $\kappa_{g}(n, e)>C\left(e^{3} / n^{2}\right)(1-\varepsilon)$, whenever $\min \left\{n, e / n, n^{3 / 2} / e\right\}>N$.

Proof. For $g=0$, the assertion follows from Lemma 4.2. Suppose that $g>0$ is fixed and we have already proved the lemma for $g-1$. For any $\varepsilon>0$, let $N(g, \varepsilon)=$ $\left(10^{5} / \varepsilon^{2}\right) g N(g-1, \varepsilon / 10)$. Suppose, in order to get a contradiction, that $\min \{n, e / n$, $\left.n^{3 / 2} / e\right\}>N$, and let $G(n, e)$ be a graph drawn on S_{g} with $\operatorname{cr}_{g}(G)=\kappa_{g}(n, e)<$ $C\left(e^{3} / n^{2}\right)(1-\varepsilon)$ crossings.

As long as there is an edge with at least $4 C\left(e^{2} / n^{2}\right)$ crossings, delete it. Let the resulting graph be $G_{1}\left(n_{1}, e_{1}\right)$. Suppose that we deleted e^{\prime} edges. Then G_{1} has $n_{1}=n$ vertices, $e_{1}=e-e^{\prime}$ edges, and the number of crossings in the resulting drawing of G_{1} is at $\operatorname{mostr}^{\operatorname{cr}}(G)-4 C\left(e^{2} / n^{2}\right) e^{\prime}$. Therefore, $e^{\prime}<e / 4$, so $e \geq e_{1} \geq 3 e / 4$. It is not hard to check that $\mathrm{cr}_{g}\left(G_{1}\right)<C\left(e_{1}^{3} / n_{1}^{2}\right)(1-\varepsilon)$ and G_{1} contains no edge with more than $4 C\left(e^{2} / n^{2}\right)<8 C\left(e_{1}^{2} / n_{1}^{2}\right)$ crossings.

Consider all cycles of G_{1}, as they are drawn on S_{g}. If each cycle is trivial, i.e., each cycle is contractible to a point of S_{g}, then every connected component of G is contractible to a point. That is, in this case, our drawing of G on S_{g} is equivalent to a drawing of G_{1} on the plane. Consequently, $\operatorname{cr}_{g-1}\left(G_{1}\right) \leq \operatorname{cr}_{0}\left(G_{1}\right)<C\left(e^{3} / n^{2}\right)(1-\varepsilon)$ contradicting the induction hypothesis.

Suppose that there is a nontrivial (i.e., noncontractible) cycle \mathcal{C} of G_{1} with at most $(\varepsilon / 80 C),\left(n_{1}^{2} / e_{1}\right)$ edges. Clearly, \mathcal{C} contains a nontrivial closed curve, \mathcal{C}^{\prime}, which does not intersect itself. The total number of crossings along \mathcal{C}^{\prime} is at most

$$
\frac{\varepsilon}{80 C} \frac{n_{1}^{2}}{e_{1}} 8 C \frac{e_{1}^{2}}{n_{1}^{2}}=\frac{\varepsilon}{10} e_{1}
$$

Delete all edges that cross \mathcal{C}^{\prime}. Cut S_{g} along \mathcal{C}^{\prime}. Replace every vertex (resp. edge) \mathcal{C}^{\prime} by two vertices, one on each side of the cut. Every edge of G arriving at a vertex v of \mathcal{C}^{\prime} from a given side of the cut will be connected to the copy of v lying on the same side. Thus, we obtain a graph $G_{2}\left(n_{2}, e_{2}\right)$, drawn with fewer than $\mathrm{cr}_{g}\left(G_{1}\right)$ crossings. Attaching a half-sphere to each side of the cut, we obtain either a surface of genus $g-1$ or two surfaces whose genuses are smaller than g. We discuss only the former case (the calculation in the latter one is very similar). Since we doubled at most

$$
\frac{\varepsilon}{80 C} \frac{n_{1}^{2}}{e_{1}}=\varepsilon n_{1} \frac{n_{1}}{e_{1}} \frac{1}{80 C}<\varepsilon n_{1} \frac{1}{N}<n_{1} \frac{\varepsilon}{10}
$$

vertices and deleted at most $(\varepsilon / 10) e$ edges, we have $n_{2} \leq n_{1}(1+\varepsilon / 10)$ and $e_{2} \geq$ $e_{1}(1-\varepsilon / 0)$. In the resulting drawing there are fewer than $\mathrm{cr}_{g}\left(G_{1}\right)$ crossings, therefore

$$
\begin{aligned}
\operatorname{cr}_{g-1}\left(G_{2}\right)<\operatorname{cr}_{g}\left(G_{1}\right)<C \frac{e_{1}^{3}}{n_{1}^{2}}(1-\varepsilon) & \leq C \frac{e_{2}^{3}}{n_{2}^{2}}(1-\varepsilon)\left(1-\frac{\varepsilon}{10}\right)^{-3}\left(1+\frac{\varepsilon}{10}\right)^{2} \\
& \leq C \frac{e_{2}^{3}}{n_{2}^{2}}\left(1-\frac{\varepsilon}{10}\right)
\end{aligned}
$$

contradicting the induction hypothesis.
Thus, we can assume that every nontrivial cycle of G_{1} contains at least $(\varepsilon / 80 C)\left(n_{1}^{2} / e_{1}\right)$ edges. For each vertex v of G_{1} with degree $d(v)>10 e_{1} / \varepsilon n_{1}$, we do the following. Let $d(v)=r\left(10 e / \varepsilon n_{1}\right)+s$, where $0 \leq s<10 e_{1} / \varepsilon n_{1}$. Without creating any new crossing, replace v by $r+1$ nearby vertices, each of degree $10 e_{1} / \varepsilon n$, except one, whose degree is s. We obtain a graph $G_{3}\left(n_{3}, e_{3}\right)$ drawn on S_{g} with $n_{1} \leq n_{3} \leq n_{1}(1+\varepsilon / 5)$, $e_{3}=e_{1}$, and with the same number of crossings as G_{1}. Hence,

$$
\operatorname{cr}_{g}\left(G_{3}\right) \leq \operatorname{cr}_{g}\left(G_{1}\right) \leq C \frac{e_{1}^{3}}{n_{1}^{2}}(1-\varepsilon) \leq C \frac{e_{3}^{3}}{n_{3}^{2}}(1-\varepsilon)\left(1+\frac{\varepsilon}{5}\right)^{2} \leq C \frac{e_{3}^{3}}{n_{3}^{2}}\left(1-\frac{\varepsilon}{2}\right)
$$

The maximum degree D in G_{3} cannot exceed $10 e_{1} / \varepsilon n_{1}<18 e_{3} / \varepsilon n_{3}$, and the length of each nontrivial cycle is at least

$$
\frac{\varepsilon}{80 C} \frac{n_{1}^{2}}{e_{1}} \geq \frac{\varepsilon}{100 C} \frac{n_{3}^{2}}{e_{3}}
$$

Apply to G_{3} the DECOMPOSITION AlGORITHM described in Section 2 with the difference that, instead of (1), use the following stopping rule: STOP in Step $i+1$ if

$$
\left(\frac{2}{3}\right)^{i}<\frac{\varepsilon}{100 C} \frac{n_{3}}{e_{3}}
$$

Suppose that the algorithm terminates in Step $k+1$. Then

$$
\left(\frac{2}{3}\right)^{k}<\frac{\varepsilon}{100 C} \frac{n_{3}}{e_{3}} \leq\left(\frac{2}{3}\right)^{k-1}
$$

First, we give an upper bound on the total number of edges deleted from G_{3}. Let $G^{0}=G_{1}^{0}=G_{3}$ and $m_{0}=1$. Using (2), we obtain that, for every $0 \leq i<k$,

$$
\begin{aligned}
\sum_{j=1}^{m_{i}} \sqrt{\operatorname{cr}_{g}\left(G_{j}^{i}\right)} & \leq \sqrt{m_{i} \sum_{j=1}^{m_{i}} \operatorname{cr}_{g}\left(G_{j}^{i}\right)} \\
& \leq \sqrt{\left(\frac{3}{2}\right)^{i+1}} \sqrt{\operatorname{cr}_{g}\left(G_{3}\right)} \leq \sqrt{\left(\frac{3}{2}\right)^{i+1}} \sqrt{C \frac{e_{3}^{3}}{n_{3}^{2}}\left(1-\frac{\varepsilon}{2}\right)}
\end{aligned}
$$

Denoting by $d\left(v, G_{j}^{i}\right)$ the degree of vertex v in G_{j}^{i}, we have

$$
\begin{aligned}
\sum_{j=1}^{m_{i}} \sqrt{\sum_{v \in V\left(G_{j}^{i}\right)} d^{2}\left(v, G_{j}^{i}\right)} & \leq \sqrt{\left(\frac{3}{2}\right)^{i+1}} \sqrt{\sum_{v \in V\left(G^{i}\right)} d^{2}\left(v, G^{i}\right)} \\
& \leq \sqrt{\left(\frac{3}{2}\right)^{i+1}} \sqrt{\max _{v \in V\left(G^{i}\right)} d\left(v, G^{i}\right) \sum_{v \in V\left(G^{i}\right)} d\left(v, G^{i}\right)} \\
& \leq \sqrt{\left(\frac{3}{2}\right)^{i+1}} \sqrt{\frac{18 e_{3}^{3}}{\varepsilon n_{3}^{2}}\left(2 e_{3}\right)}=12 \sqrt{\left(\frac{3}{2}\right)^{i+1}} \frac{e_{3}}{\sqrt{\varepsilon n_{3}}}
\end{aligned}
$$

By Theorem 6 (proved in the next section), the total number of edges deleted during the algorithm is

$$
\begin{aligned}
\sum_{i=0}^{k-1} \sum_{j=1}^{m_{i}} b\left(G_{j}^{i}\right) \leq & 300\left(1+g^{3 / 4}\right) \sum_{i=0}^{k-1} \sum_{j=1}^{m_{i}} \sqrt{\operatorname{cr}_{g}\left(G_{j}^{i}\right)+\sum_{v \in V\left(G_{j}^{i}\right)} d^{2}\left(v, G_{j}^{i}\right)} \\
\leq & 300\left(1+g^{3 / 4}\right) \sum_{i=0}^{k-1} \sum_{j=1}^{m_{i}} \sqrt{\operatorname{cr}_{g}\left(G_{j}^{i}\right)} \\
& +300\left(1+g^{3 / 4}\right) \sum_{i=0}^{k-1} \sum_{j=1}^{m_{i}} \sqrt{\sum_{v \in V\left(G_{j}^{i}\right)} d^{2}\left(v, G_{j}^{i}\right)} \\
\leq & 300\left(1+g^{3 / 4}\right) \sum_{i=0}^{k-1} \sqrt{\left(\frac{3}{2}\right)^{i+1}}\left(\sqrt{C \frac{e_{3}^{3}}{n_{3}^{2}}\left(1-\frac{\varepsilon}{2}\right)}+6 \frac{e_{3}}{\sqrt{\varepsilon n_{3}}}\right) \\
\leq & 300\left(1+g^{3 / 4}\right) \sqrt{\frac{3}{2}} \sqrt{(3 / 2)^{k}}-1 \\
\sqrt{3 / 2}-1 & \left.\sqrt{C \frac{e_{3}^{3}}{n_{3}^{2}}\left(1-\frac{\varepsilon}{2}\right)}+6 \frac{e_{3}}{\sqrt{\varepsilon n_{3}}}\right) \\
\leq & 2000\left(1+g^{3 / 4}\right) \sqrt{\frac{C}{\varepsilon}} \sqrt{\frac{e}{n}}\left(\sqrt{C \frac{e_{3}^{3}}{n_{3}^{2}}\left(1-\frac{\varepsilon}{2}\right)}+6 \frac{e_{3}}{\sqrt{\varepsilon n_{3}}}\right) \leq e_{3} \frac{\varepsilon}{10} .
\end{aligned}
$$

Therefore, the number of edges $e\left(G^{k}\right)$ of the graph G^{k} obtained in the final Step of the algorithm satisfies $e\left(G^{k}\right) \geq e_{3}(1-\varepsilon / 10)$. Consider the drawing of G^{k} on S_{g} inherited from the drawing of G_{3}. Each connected component of G^{k} has fewer than $(\varepsilon / 100 C)\left(n_{3}^{2} / e_{3}\right)$ vertices, therefore, each cycle of G^{k}, as drawn on S_{g}, is contractible to a point. Consequently, this drawing is equivalent to a planar drawing of G^{k}. Hence,

$$
\begin{aligned}
\operatorname{cr}_{g-1}\left(G^{k}\right) \leq \operatorname{cr}_{0}\left(G^{k}\right) \leq \operatorname{cr}_{g}\left(G_{3}\right) \leq C \frac{e_{3}^{3}}{n_{3}^{2}}\left(1-\frac{\varepsilon}{2}\right) & \leq C \frac{e^{3}\left(G^{k}\right)}{n^{2}\left(G^{k}\right)}\left(1-\frac{\varepsilon}{2}\right)\left(1-\frac{\varepsilon}{10}\right)^{-3} \\
& <C \frac{e^{3}\left(G^{k}\right)}{n^{2}\left(G^{k}\right)}\left(1-\frac{\varepsilon}{10}\right)
\end{aligned}
$$

a contradiction. This concludes the proof of Lemma 5.1.

Lemma 5.2. For any integer $g \geq 0$ and for any $\varepsilon>0$, there exists $N^{\prime}=N^{\prime}(g, \varepsilon)$ such that $\kappa_{g}(n, e)>C\left(e^{3} / n^{2}\right)(1-\varepsilon)$, whenever $\min \left\{n, e / n, n^{2} / e\right\}>N^{\prime}$.

Proof. The proof is analogous to that of Lemma 4.2.

Lemma 5.3. For any integer $g \geq 0$ and for any $\varepsilon>0$, there exists $M=M(g, \varepsilon)$ such that $\kappa_{g}(n, e)<C\left(e^{3} / n^{2}\right)(1+\varepsilon)$, whenever $\min \left\{n, e / n, n^{2} / e\right\}>M$.

Proof. Clearly, for any graph G and for any $g \geq 0$, we have $\mathrm{cr}_{0}(G) \geq \mathrm{cr}_{g}(G)$. Therefore, Lemma 5.3 is a direct consequence of Lemma 4.3.

Theorem 5 now readily follows from Lemmas 5.2 and 5.3.

6. A Separator Theorem—Proof of Theorem 6

For the proof of Theorem 6, we need a slight variation of the notion of bisection width. The weak bisection width, $\bar{b}(G)$, of a graph G is defined as the minimum number of edges whose removal splits the graph into two components, each of size at least $|V(G)| / 5$. That is,

$$
\bar{b}(G)=\min _{\left|V_{A}\right|,\left|V_{B}\right| \geq n / 5}\left|E\left(V_{A}, V_{B}\right)\right|,
$$

where $E\left(V_{A}, V_{B}\right)$ denotes the number of edges between V_{A} and V_{B}, and the minimum is taken over all partitions $V(G)=V_{A} \cup V_{B}$ with $\left|V_{A}\right|,\left|V_{B}\right| \geq|V(G)| / 5$.

Lemma 6.1. For any graph G, we have

$$
\bar{b}(G) \leq b(G) \leq 2 \max _{H \subset G} \bar{b}(H)
$$

Proof. The first inequality is obviously true. To prove the second one, let $|V(G)|=n$ and consider a partition $V(G)=V_{A} \cup V_{B}$ such that $n / 5 \leq\left|V_{A}\right|,\left|V_{B}\right| \leq 4 n / 5$ and $\left|E\left(V_{A}, V_{B}\right)\right|=\bar{b}(G)$. Suppose that $\left|V_{A}\right| \leq\left|V_{B}\right|$. If $n / 3 \leq\left|V_{A}\right|$, then $b(G)=\bar{b}(G)$ and we are done. So we can assume that $n / 5 \leq\left|V_{A}\right| \leq n / 3$ and $2 n / 3 \leq\left|V_{B}\right| \leq 4 n / 5$.

Let H be the subgraph of G induced by V_{B}. By definition, there is a partition $V_{B}=$ $V_{B}^{\prime} \cup V_{B}^{\prime \prime}$ such that $\left|V_{B}\right| / 5 \leq\left|V_{B}^{\prime}\right|,\left|V_{B}^{\prime \prime}\right| \leq 4\left|V_{B}\right| / 5$, and $\left|E\left(V_{B}^{\prime}, V_{B}^{\prime \prime}\right)\right|=\bar{b}(H)$. We can assume that $\left|V_{B}^{\prime}\right| \leq\left|V_{B}^{\prime \prime}\right|$. Then

$$
\frac{n}{3} \leq \frac{\left|V_{B}\right|}{2} \leq\left|V_{B}^{\prime \prime}\right| \leq \frac{4\left|V_{B}\right|}{5} \leq \frac{16 n}{25}<\frac{2 n}{3} .
$$

Letting $V_{1}=V_{A} \cup V_{B}^{\prime}$ and $V_{2}=V_{B}^{\prime \prime}$, we have $V(G)=V_{1} \cup V_{2}, n / 3 \leq\left|V_{1}\right|,\left|V_{2}\right| \leq 2 n / 3$,

$$
\left|E\left(V_{1}, V_{2}\right)\right| \leq\left|E\left(V_{A}, V_{B}\right)\right|+\left|E\left(V_{B}^{\prime}, V_{B}^{\prime \prime}\right)\right| \leq \bar{b}(G)+\bar{b}(H),
$$

and the result follows.

Fig. 1. The definition of H.

Theorem 6 is an immediate consequence of Lemma 6.1 and the following statement.
Theorem 6.2. Let G be a graph with n vertices of degrees $d_{1}, d_{2}, \ldots, d_{n}$. Then

$$
\bar{b}(G) \leq 150\left(1+g^{3 / 4}\right) \sqrt{c r_{g}(G)+\sum_{i=1}^{n} d_{i}^{2}}
$$

Proof. Clearly, we can assume that G contains no isolated vertices, that is, $d_{i}>0$ for all $1 \leq i \leq n$. Consider a drawing of G on S_{g} with exactly $\mathrm{cr}_{g}(G)$ crossings. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of G with degrees $d_{1}, d_{2}, \ldots, d_{n}$, respectively. Introduce a new vertex at each crossing. Denote the set of these vertices by V_{0}. Replace each $v_{i} \in V(G)(i=1,2 \ldots, n)$ by a set V_{i} of vertices forming a $d_{i} \times d_{i}$ piece of a square grid, in which each vertex is connected to its horizontal and vertical neighbors. Let each edge incident to v_{i} be hooked up to distinct vertices along one side of the boundary of V_{i} without creating any crossing. These d_{i} vertices will be called the special boundary vertices of V_{i}.

Thus, we obtain a graph H of $\sum_{i=0}^{n}\left|V_{i}\right|=\mathrm{cr}_{g}(G)+\sum_{i=1}^{n} d_{i}^{2}$ vertices and no crossing (see Fig. 1). For each $1 \leq i \leq n$, assign weight $1 / d_{i}$ to each special boundary vertex of V_{i}. Assign weight 0 to all other vertices of H. For any subset v of the vertex set of H, let $w(\nu)$ denote the total weight of the vertices belonging to ν. With this notation, $w\left(V_{i}\right)=1$ for each $1 \leq i \leq n$. Consequently, $w(V(H))=n$.

Since H is drawn on S_{g} without crossing, H does not contain K_{α} as a minor, where $\alpha=\lfloor 4+4 \sqrt{g}\rfloor[R Y]$. Then, by a result of Alon et al. [AST1] (see also [AST2]), the vertices of H can be partitioned into three sets, A, B, and C, such that $w(A), w(B) \geq n / 3$ and $|C| \leq 25\left(1+g^{3 / 4}\right) \sqrt{\operatorname{cr}_{g}(G)+\sum_{i=1}^{n} d_{i}^{2}}$, and there is no edge from A to B. Let $A_{i}=A \cap V_{i}, B_{i}=B \cap V_{i}, C_{i}=C \cap V_{i}(i=0,1, \ldots, n)$.

For any $1 \leq i \leq n$, we say that V_{i} is of type A (resp. type B) if $w\left(A_{i}\right) \geq \frac{5}{6}$ (resp. $w\left(B_{i}\right) \geq \frac{5}{6}$), and it is of type C, otherwise.

Define a partition $V(G)=V_{A} \cup V_{B}$ of the vertex set of G, as follows. For any $1 \leq i \leq n$, let $v_{i} \in V_{A}$ (resp. $v_{i} \in V_{B}$) if V_{i} is of type A (resp. type B). The remaining vertices, $\left\{v_{i} \mid V_{i}\right.$ is of type $\left.C\right\}$ are assigned either to V_{A} or to V_{B} so as to minimize $\left|\left|V_{A}\right|-\left|V_{B}\right|\right|$.

Claim 1. $n / 5 \leq\left|V_{A}\right|,\left|V_{B}\right| \leq 4 n / 5$
To prove the claim, define another partition $V(H)=\bar{A} \cup \bar{B} \cup \bar{C}$ such that $\bar{A} \cap V_{i}=$ $A \cap V_{i}$ and $\bar{B} \cap V_{i}=B \cap V_{i}$, for $i=0$ and for every V_{i} of type C. If V_{i} is of type A (resp. type B), then let $V_{i}=\bar{A}_{i} \subset \bar{A}$ (resp. $V_{i}=\bar{B}_{i} \subset \bar{B}$), finally, let $\bar{C}=V(H)-\bar{A}-\bar{B}$.

For any V_{i} of type $A, w\left(\bar{A}_{i}\right)-w\left(A_{i}\right) \leq w\left(A_{i}\right) / 5$. Similarly, for any V_{i} of type B, $w\left(\bar{B}_{i}\right)-w\left(B_{i}\right) \leq w\left(B_{i}\right) / 5$. Therefore,

$$
|w(\bar{A})-w(A)| \leq \frac{\max \{w(A), w(B)\}}{5} \leq \frac{2 n}{15}
$$

Hence, $n / 5 \leq w(\bar{A}) \leq 4 n / 5$ and, analogously, $n / 5 \leq w(\bar{B}) \leq 4 n / 5$. In particular, $|w(\bar{A})-w(\bar{B})| \leq 3 n / 5$. Using the minimality of $\left|\left|V_{A}\right|-\left|V_{B}\right|\right|$, we obtain that $\left|\left|V_{A}\right|-\right.$ $\left|V_{B}\right| \mid \leq 3 n / 5$, which implies Claim 1 .

Claim 2. For any $1 \leq i \leq n$,
(i) if V_{i} is of type A (resp. of type B), then $w\left(B_{i}\right) d_{i} \leq\left|C_{i}\right|\left(\right.$ resp. $\left.w\left(A_{i}\right) d_{i} \leq\left|C_{i}\right|\right)$;
(ii) if V_{i} is of type C, then $d_{i} / 6 \leq\left|C_{i}\right|$.

In V_{i}, every connected component belonging to A_{i} is separated from every connected component belonging to B_{i} by vertices in C_{i}. There are $w\left(A_{i}\right) d_{i}$ (resp. $\left.w\left(B_{i}\right) d_{i}\right)$ special boundary vertices in V_{i}, which belong to A_{i} (resp. B_{i}). It can be shown by an easy case analysis that the number of separating points $\left|C_{i}\right| \geq \min \left\{w\left(A_{i}\right), w\left(B_{i}\right)\right\} d_{i}$, and Claim 2 follows (see Fig. 2.).

In order to establish Theorem 6.2 (and hence Theorem 6), it remains to prove the following statement.

Claim 3. The total number of edges between V_{A} and V_{B} satisfies

$$
\left|E\left(V_{A}, V_{B}\right)\right| \leq 150\left(1+g^{3 / 4}\right) \sqrt{\operatorname{cr}_{g}(G)+\sum_{i=1}^{n} d_{i}^{2}}
$$

To see this, denote by E_{0} the set of all edges of H adjacent to at least one element of C_{0}. For any $1 \leq i \leq n$, define $E_{i} \subset E(H)$ as follows. If V_{i} is of type A (resp. type B),

$A: \bigcirc \quad B: \bigcirc \quad C:$

Fig. 2. The tripartition of $V_{i}(i \geq 1)$.
let E_{i} consist of all edges leaving V_{i} and adjacent to a special boundary vertex belonging to B_{i} (resp. A_{i}). If V_{i} is of type C, let all edges leaving V_{i} belong to E_{i}.

For any $1 \leq i \leq n$, let E_{i}^{\prime} denote the set of edges of G corresponding to the elements of $E_{i}(0 \leq i \leq n)$. Clearly, we have $\left|E_{i}^{\prime}\right| \leq\left|E_{i}\right|$, because distinct edges of G give rise to distinct edges of H. It is easy to see that every edge between V_{A} and V_{B} belongs to $\bigcup_{i=0}^{n} E_{i}^{\prime}$.

Obviously, $\left|E_{0}^{\prime}\right| \leq\left|E_{0}\right| \leq 4\left|C_{0}\right|$. By Claim 2, if V_{i} is of type A or of type B, then $\left|E_{i}^{\prime}\right| \leq\left|E_{i}\right| \leq\left|C_{i}\right|$. If V_{i} is of type C, then $\left|E_{i}^{\prime}\right| \leq\left|E_{i}\right|=d_{i} \leq 6\left|C_{i}\right|$. Therefore,

$$
\left|E\left(V_{A}, V_{B}\right)\right| \leq\left|\bigcup_{i=0}^{n} E_{i}^{\prime}\right| \leq \sum_{i=0}^{n}\left|E_{i}\right| \leq 6|C| \leq 150\left(1+g^{3 / 4}\right) \sqrt{\operatorname{cr}_{g}(G)+\sum_{i=1}^{n} d_{i}^{2}}
$$

This concludes the proof of Claim 3 and hence Theorem 6.2 and Theorem 6.

Acknowledgments

We would like to express our gratitude to Zoltán Szabó for his help in writing Section 5, and to László Székely for many very useful remarks.

References

[ACNS] M. Ajtai, V. Chvátal, M. Newborn, and E. Szemerédi, Crossing-free subgraphs, in: Theory and Practice of Combinatorics, Mathematical Studies, Vol. 60, North-Holland, Amsterdam, 1982, pp, 912.
[ARS] N. Alon, L. Rónyai, and T. Szabó, Norm-graphs: variations and applications, J. Combin. Theory Ser. B, to appear.
[AST1] N. Alon, P. Seymour, and R. Thomas, A separator theorem for nonplanar graphs, J. Amer. Math. Soc. 3 (1990), 801-808.
[AST2] N. Alon, P. Seymour, and R. Thomas, Planar separators, SIAM J. Discrete Math. 7 (1994), 184-193.
[B1] C. Benson, Minimal regular graphs of girth eight and twelve, Canad. J. Math. 18 (1966), 1091-1094.
[BS] J. A. Bondy and M. Simonovits, Cycles of even length in graphs, J. Combin. Theory Ser. B 16 (1974), 97-105.
[B2] W. G. Brown, On graphs that do not contain a Thomsen graph, Canad. Math. Bull. 9 (1966), 281-285.
[D] T. K. Dey, Improved bounds for planar k-sets and related problems, Discrete Comput. Geom. 19 (1998), 373-382.
[EG] P. Erdős and R. K. Guy, Crossing number problems, Amer. Math. Monthly 80 (1973), 52-58.
[ER] P. Erdős and A. Rényi, On a problem in the theory of graphs (in Hungarian), Magyar Tud. Akad. Mat. Kutató Int. Közl. 7 (1962), 623-641.
[F] Z. Füredi, New asymptotics for bipartite Turán numbers, J. Combin. Theory Ser. A 75 (1996), 141144.
[GJ] M. R. Garey and D. S. Johnson, Crossing number is NP-complete, SIAM J. Algebraic Discrete Methods 4 (1983), 312-316.
[G] R. K. Guy, Crossing numbers of graphs, in: Graph Theory and Applications (Proc. Conf. Western Michigan University, Kalamazoo, Michigan, 1972), Lecture Notes in Mathematics, Vol. 303, Springer-Verlag, Berlin, pp. 111-124.
[KST] T. Kővári, V. T.'Sós, and P. Turán, On a problem of K. Zarankiewicz, Colloq. Math. 3 (1954), 50-57.
[L1] F. T. Leighton, Complexity Issues in VLSI, MIT Press, Cambridge, MA, 1983.
[L2] F. T. Leighton, New lower bound techniques for VLSI, Math. Systems Theory 17 (1984), 47-70.
[LT] R. Lipton and R. Tarjan, A separator theorem for planar graphs, SIAM J. Appl. Math. 36 (1979), 177-189.
[PSS] J. Pach, F. Shahrokhi, and M. Szegedy, Applications of the crossing number, Algorithmica 16 (1996), 111-117.
[PS] J. Pach and M. Sharir, On the number of incidences between points and curves, Combin. Probab. Comput. 7 (1998), 121-127.
[PT] J. Pach and G. Tóth, Graphs drawn with few crossings per edge, Combinatorica 17 (1997), 427-439.
[R] I. Reiman, Über ein Problem von K. Zarankiewicz, Acta Math.Acad. Sci. Hungar. 9 (1958), 269-279.
[RT] R. B. Richter and C. Thomassen, Relations between crossing numbers of complete and complete bipartite graphs, Amer. Math. Monthly 104 (1997), 131-137.
[RY] G. Ringel and J. W. T. Youngs, Solution of the Heawood map-coloring problem, Proc. Nat. Acad. Sci. U.S.A. 60 (1968), 438-445.
[S1] M. Simonovits, Personal communication.
[S2] R. Singleton, On minimal graphs of maximum even girth, J. Combin. Theory 1 (1966), 306-332.
[S3] L. A. Székely, Crossing numbers and hard Erdős problems in discrete geometry, Combin. Probab. Comput. 6 (1998), 353-358.
[W] R. Wenger, Extremal graphs with no C_{4} 's, C_{6} 's, or C_{10} 's, J. Combin. Theory Ser. $B 52$ (1991), 113-116.
[WB] A. T. White and L. W. Beineke, Topological graph theory, in: Selected Topics in Graph Theory (L. W. Beineke and R. J. Wilson., eds.), Academic Press (Harcourt Brace Jovanovich), London, 1983, pp. 15-49.

Received January 27, 1999, and in revised form March 23, 1999. Online publication March 21, 2000.

[^0]: * J. Pach was supported by NSF Grant CCR-97-32101 and PSC-CUNY Research Award 667339, and G. Tóth was supported by DIMACS Center, OTKA-T-020914, and OTKA-F-22234.

