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We revisit the problem of estimating the nonlinear channel capacity of fiber-optic systems.
By taking advantage of the fact that a large fraction of the nonlinear interference between
different wavelength-division multiplexed channels manifests itself as phase noise, and by
accounting for the long temporal correlations of this noise, we show that the capacity is no-
tably higher than what is currently assumed. This advantage is translated into the doubling
of the link distance for a fixed transmission rate.

Estimation of the fiber-optic channel capacity has
come to be one of the most challenging and important
problems in the field of optical communications [1–7].
Recently, its importance has grown even higher as the
latest capacity estimates are being rapidly approached
by the rates of commercial communications systems [8].
The difficulty in estimating the capacity of the fiber-
optic channel is mostly due to the effect of fiber non-
linearity which generates complicated distortions of the
transmitted optical waveforms. Perhaps the most com-
prehensive and familiar attempt of estimating the fiber-
channel capacity to date is due to Essiambre et al. [3],
where it was argued that, under plausible assumptions
on network architecture, nonlinear interference between
different wavelength-division multiplexed (WDM) chan-
nels must be treated as noise, which was then identified
as the predominant nonlinear factor in limiting the ca-
pacity of the fiber-optic channel. This point of view has
been adopted by most subsequent studies [4–6], and we
also adopt it in the study presented herein.
A common feature of capacity estimates published so

far is that they treat the nonlinear noise as additive,
white and independent of the data transmitted on the
channel of interest. In reality, in the presence of chro-
matic dispersion, different WDM channels propagate at
different velocities so that every symbol in the channel
of interest interacts with multiple symbols of every in-
terfering channel. Consequently, adjacent symbols in the
channel of interest are disturbed by essentially the same
collection of interfering pulses and therefore they are af-
fected by nonlinearity in a highly correlated manner. In
addition, as has been recently demonstrated in [6,9], one
of the most pronounced manifestations of nonlinearity is
in the form of phase noise due to cross-phase modula-
tion (XPM). The dominance of the phase noise nature
of the nonlinear interference is particularly pronounced
in systems with distributed gain, which is the regime
where the capacity of the fiber-optic channel has been
evaluated [3], and which is also assumed in the present

work.
We demonstrate in what follows that by taking ad-

vantage of the long temporal correlations that allow the
cancelation of nonlinear phase noise, it is possible to
communicate at a higher rate than predicted in [3], or
equivalently (almost) double the distance achievable at
a given rate of communications. We stress that practi-
cal methods for canceling the nonlinear phase noise are
not discussed in this paper as we are only interested in
the capacity implications. We also note that nonlinear
phase noise is canceled inadvertently in coherent opti-
cal systems where an appropriately fast phase tracking
algorithm is deployed.
We start by expressing the received signal samples

after coherent detection and matched filtering as

yj = xj exp(iθj) + nNL
j + nj , (1)

where j is the time index and the term nNL
j accounts for

all nonlinear noise contributions that do not manifest
themselves as phase noise. As in [3–6] we assume that
the samples nNL

j are zero-mean statistically independent

complex Gaussian variables with variance σ2
NL. A similar

assumption holds for the amplified spontaneous emission
(ASE) samples nj, whose variance is denoted by σ2

ASE.
All three noise contributions θj , n

NL
j , and nj are assumed

to be statistically independent of each other. All of the
above assumptions, regarding the whiteness of nNL

j and
nj , the statistical independence of all noise contributions
and the Gaussianity of nNL

j constitute a worst case in
terms of the resultant capacity [10, Ch. 10] and hence
they are in accord with our goal of deriving a capacity
lower bound. Finally, consistently with what is suggested
by the analysis in [6], we will also assume that θj is a
Gaussian distributed variable and its variance will be
denoted by σ2

θ , whose expression can be found in [6, 9].
For arriving at an analytical lower bound for the ca-

pacity, we assume that the nonlinear phase noise θj is
blockwise constant. In other words, it is assumed that
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the noise θj does not change at all within a block of N
symbols and then in the subsequent block it changes in a
statistically independent manner. The assumption that
θj does not change within a block is consistent with the
very long temporal correlations of the phase noise, as
was demonstrated in [9, 11, 12]. The assumption of sta-
tistical independence of θj in adjacent blocks is again a
worst-case scenario which is in accord with our interest
in a lower bound.
The capacity of the block-wise independent phase

noise channel (1) is given by

C =
1

N
sup
pX

I(X;Y ), (2)

where X and Y are column random vectors representing
a block of N channel inputs and outputs, respectively, in
which the phase noise is constant. The term I(X;Y ) =
h(Y ) − h(Y |X) is the mutual information between the
channel’s input and output, where h(·) is the differential
entropy. The supremum is over all input distributions
satisfying the power constraint E[‖X‖2] = NP . In or-
der to obtain a lower bound on the capacity we assign
X a circular Gaussian distribution with statistically in-
dependent elements. Note that with this input distribu-
tion, and taking into account the fact that nNL

j and nj

are uncorrelated with the input signal [6,9], our assump-
tion that these quantities are white circular Gaussian
constitutes a worst case scenario from the standpoint of
the resultant capacity [10, Ch. 10, Ex. 1]. In this case Y
is also a circularly symmetric complex Gaussian vector
with differential entropy h(Y ) = N log2(πe(P + σ2

eff)),
where σ2

eff is the variance of the effective additive noise,
i.e., σ2

eff = σ2
ASE+σ2

NL. The conditional distribution of Y
givenX is obviously not Gaussian (see Eq. (1)), but since
the Gaussian distribution maximizes the differential en-
tropy of a vector of zero-mean random variables with a
given covariance matrix [10, Ch. 9, Theorem 9.6.5], the
differential entropy h(Y |X) satisfies

h(Y |X) = Ex

(

h(Y |X = x)
)

(3)

≤
1

2
Ex

(

log2 det(2πe Q
Ŷ |X=x

)
)

, (4)

where Ŷ =
[

Re(Y )
Im(Y )

]

and Q
Ŷ |X=x

is the covariance ma-

trix of Ŷ given X = x. By applying some algebraic ma-
nipulations the determinant of QŶ |X=x can be shown to
satisfy

det(Q
Ŷ |X=x

) = (
σ2
eff

2
)2N (1 + 2

‖x‖2

σ2
eff

σ2
c )(1 + 2

‖x‖2

σ2
eff

σ2
s ) ,

(5)

where the terms σ2
c = 0.5(1 − e−σ2

θ )2 and σ2
s = 0.5(1 −

e−2σ2

θ ) are the variances of cos(θ) and sin(θ), respec-
tively, and their calculation relies on the Gaussianity of
θj . Note that throughout this paper the Gaussianity as-
sumption of the phase noise is needed only here, for cal-

culating σ2
c and σ2

s . Finally, by plugging (5) into (4), the
following capacity lower bound is obtained

C ≥ log2

(

1 +
P

σ2
eff

)

−
1

2N
Eυ

{

log2

(

1 + υσ2
c

P

σ2
eff

)}

−
1

2N
Eυ

{

log2

(

1 + υσ2
s

P

σ2
eff

)}

, (6)

where the symbol Eυ stands for ensemble averaging with
respect to a standard Chi-square distributed variable υ
with 2N degrees of freedom. Notice that the first line on
the right-hand-side of Eq. (6) follows from treating the
nonlinear noise as white circular Gaussian – similarly to
the analysis in [3]. Yet, the difference is that in our case
σ2
NL corresponds only to the part of the nonlinear noise

that does not manifest itself as phase noise and hence
it is smaller than the nonlinear noise that is accounted
for in [3]. The effect of phase noise on the capacity is
captured in our case by the bottom two lines on the
right-hand-side of (6). This capacity loss, which may be
viewed as a rate reduction needed for tracking the phase
noise, vanishes when the phase exhibits very long term
correlations (i.e., when N → ∞).
We have performed a set of numerical simulations

in order to extract the variances σ2
θ and σ2

eff and to
obtain lower bounds on the capacity of the nonlinear
fiber channel. The simulations were performed using the
parameters of a standard single mode fiber; dispersion
D = 17 ps/nm/km, attenuation of 0.2 dB/km, nonlin-
ear coefficient γ = 1.27 W−1km−1 and signal wavelength
λ0 = 1.55 µm. Perfectly distributed and quantum lim-
ited (i.e. fully inverted) amplification with spontaneous
emission factor nsp = 1 was assumed. Sinc-shaped pulses
with a perfectly square 100 GHz wide spectrum were
used for transmission and the spacing between adjacent
WDM channels was 102 GHz (i.e leaving a 2 GHz guard
band). The number of simulated WDM channels was 5,
with the central channel being the channel of interest.
All of the above assumptions are identical to those made
by Essiambre et al. in the computation of the capacity
lower bound reported in [3]. The number of simulated
symbols in each run was 8192 for the 500km system
and 16384 for the 1000km and 2000km systems. Up to
500 runs (each with independent and random data sym-
bols) were performed with each set of system parameters,
so as to accumulate sufficient statistics. We assumed a
circularly symmetric complex Gaussian distribution of
points in the transmitted constellation. This constella-
tion was used to derive our capacity lower bound (6). At
the receiver, the central channel was filtered out with a
perfectly square filter (which is also the matched filter
with sinc pulses) and back-propagated ideally (using the
same step-size criteria as in the forward propagation).
Then, the signal was optimally sampled and analyzed.
As in [3], all simulations have been performed with the
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Fig. 1. The numerically estimated σ2
eff (normalized by T )

vs. block-size in a 500km link for input average power
levels of -9dBm, -7dBm and -5dBm. Red dashed line
shows σ2

ASE/T . Due to insufficient statistics for small
values of N , the estimated σ2

eff grows rapidly with block-
size. Then, when the accumulated statistics is sufficient,
the growth is much slower and it is due to the fact that
phase fluctuations inflate the estimated σ2

eff .

scalar nonlinear Schrödinger equation and correspond to
a single polarization. Consideration of the polarization
multiplexed case, where cross-polarization phenomena
are directly accounted for in the simulations and in the
analysis, is left for future study.
In order to extract the angle θ we exploit the fact that

the nonlinear phase noise changes very slowly on the
scale of the symbol duration, and apply the least-squares
estimation procedure. Namely, we evaluated exp(iθ) by
averaging the variable x∗

jyj over N = 50 adjacent sym-
bols and then normalizing the absolute value of the av-
eraged quantity to 1, so as to ensure that we are only
extracting phase noise. The estimate of exp(iθ) will be

denoted by exp(iθ̂) in what follows. We then subtracted

xj exp(iθ̂) from yj to obtain nNL
j + nj and to evaluate

σ2
eff . Note that the choice ofN affects the estimated noise

variance in two ways. On the one hand, the estimation
of σ2

eff improves as N increases (the mean square error
of the estimation is proportional to N−1). On the other
hand, the assumption of constant phase noise becomes
less accurate as N increases. As a result the variations
of the phase noise inflate the estimate of σ2

eff and re-
duce the tightness of our capacity lower bound. Fig. 1
shows the dependence of the estimated value of σ2

eff on
the assumed block-size N for several values of average
signal power per-channel. The various curves share an
important and very distinct feature. In all cases, the es-
timated value of σ2

eff grows with N at small N values
and then it abruptly transitions to a much slower rate of
growth. The fast growth in the first stage is due to the
lack of sufficient statistics at small N values, whereas
the slow growth in the second stage is due to the slow
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Fig. 2. (a) Capacity lower bound vs. linear SNR for
500km (red dots), 1000km (blue squares), and 2000km
(green triangles). Dashed curves result from treating the
entire nonlinear noise as noise. Solid curves represent
the new bounds derived here. Dotted curve represents
the Shannon limit log2(1 + SNR). (b) The maximum
achievable transmission distance as a function of spec-
tral efficiency with (solid) and without (dashed) phase
noise cancelation.

variations of the phase noise whose significance increases
with increasing block-size. Our choice of N = 50 is al-
ways higher than the value of N that corresponds to the
transition between the two growth rates, thereby guaran-
teeing that sufficient statistics is used in all cases (albeit
at the expense of a slightly overestimated σ2

eff). Finally,

the variance σ2
θ was evaluated by extracting θ̂j from a

sliding window average (of width N = 50) performed
over all simulated symbols.
Fig. 2a shows the capacity lower bound curves as a

function of the linear SNR (which is the ratio between
the average signal power, P , and the power of the ASE
noise within the channel bandwidth, σ2

ASE). The dashed
curves correspond to the case in which we do not sepa-
rate the phase noise and treat the entire nonlinear distor-
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Fig. 3. Noise-to-signal ratio vs. average input power in
a 500km link. Decreasing solid line shows σ2

ASE/(PT ),
increasing solid line shows σ2

θ . Dashed line is the theo-
retical expression for σ2

θ found in [6, 9]. Dotted line is
σ2
NL/(PT ). Triangles and dots show σ2

eff/(PT ) with and
without phase noise cancelation, respectively.

tions as noise. These curves are consistent with the study
reported in [3], except that our usage of Gaussian modu-
lation leads to slightly higher capacity values. The solid
curves represent our new lower bound, achieving a peak
capacity that is higher by approximately 0.7 bit/sec/Hz
in all cases. In Fig. 2b we invert the peak capacity re-
sults of Fig. 2a so as to plot the maximum achievable
system length as a function of the spectral efficiency. As
is evident from the figure, the achievable system length
is approximately doubled by exploiting our scheme. Fi-
nally in Fig. 3 we show the various noise contributions
as a function of the average power per channel in the
case of a 500km link. The monotonically decreasing blue
curve shows the noise to signal ratio (NSR) σ2

ASE/(PT )
due to the ASE noise by itself. The monotonically in-
creasing solid blue curve shows σ2

θ , which in the limit of
small variations in θj , represents the NSR due to phase
noise. The dashed blue line is the theoretical expression
for σ2

θ as given in [6,9], which is seen to be in very good
agreement with our numerical result. The blue dotted
line shows the NSR due to the residual nonlinear noise
σ2
NL/(PT ) after separating the phase noise. As is evident

in the figure, separation of nonlinear phase noise reduces
the nonlinear noise by approximately 6dB. Triangles and
dots show σ2

eff/(PT ) with and without phase noise can-
celation, respectively. Evidently, the minimum effective
NSR of the system is improved by approximately 2dB.
We note that to facilitate the distinction between the
noise contributions the simulation that produced Fig. 3
was performed without ASE propagation. In Figs. 2a and
2b ASE noise was propagated, although similar results
were observed when the ASE was added at the end. We
also note that these figures were obtained using more
statistics than those presented in [11].

To conclude, we have derived a new lower bound for
the capacity of the nonlinear fiber channel by taking into
account the fact that phase noise is one of the the most
significant consequences of nonlinear interference, and by
taking advantage of the fact that this noise is character-
ized by strong temporal correlations.We showed that the
peak capacity per polarization can be increased by ap-
proximately 0.7bit/s/Hz or equivalently the length of a
system can be (almost) doubled for a given transmission
rate.
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