
New bounds on the existence of (n5)
and (n6) configurations: the Grünbaum
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Abstract. The “Grünbaum Incidence Calculus” is the common name
of a collection of operations introduced by Branko Grünbaum to produce
new (n4) configurations from various input configurations. In a previous
paper, we generalized two of these operations to produce operations
on arbitrary (nk) configurations, and we showed that for each k, there
exists an integer Nk such that for all n ≥ Nk, there exists at least
one (nk) configuration, with current records N5 ≤ 576 and N6 ≤ 7350.
In this paper, we further extend the Grünbaum calculus; using these
operations, as well as a collection of previously known and novel ad hoc
constructions, we refine the bounds for k = 5 and k = 6. Namely, we
show that N5 ≤ 166 and N6 ≤ 585.

1. Introduction

A geometric (nk) configuration is a collection of n points and n straight lines
in the Euclidean plane such that each line passes through k points and each
point lies on k lines. In a series of papers [13, 14, 15, 16] and in his 2009 book
on configurations [17], Branko Grünbaum described a sequence of operations
to produce new (n4) configurations from various input configurations. These
operations were later called the “Grünbaum Incidence Calculus” (see, e.g.,
[19, p. 251]). In [7], we generalized two of those constructions, which we called
affine replication and affine switch, to produce operations on arbitrary (nk)
configurations, and we used those two constructions to show that for any
k ≥ 2 there exists an integer Nk such that for any n, n ≥ Nk there exists at
least one geometric (nk) configuration. We refer to (nk) as the symbol and k as
the type of a configuration. Similarly, in case of a non-balanced configuration
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(i.e. where the number of points and number of lines are different), we use
(pq, nk) for its symbol and [q, k] for its type.

In this paper, we generalize further the affine replication and affine switch
operation, as well as Grünbaum’s two deleted union constructions; we also
describe an additional operation that we call parallel switch. Along with these
construction techniques, we describe or introduce various ad hoc construc-
tion methods that produce either sporadic (n5) (resp. (n6)) configurations
or systematic constructions that produce arithmetic series of (n5) (resp.
(n6)) configurations. By combining ad hoc constructions and the old and
new Grünbaum Calculus operations, we decrease the bounds on N5 and N6

significantly: we decreaseN5 from 576 to 166, andN6 from 7350 to 585.

We note that Garrett Flowers, in his 2015 PhD thesis [12], used ideas from
the Grünbaum Calculus to show that Nk always exists — in fact, he shows
a stronger result, that for any r, k, there exists an integer N ′(r, k) such that
an [r, k]-configuration on n points exists for all n ≥ N ′(r, k) satisfying the
divisibility condition nr = bk. However, his bounds are quite large: he says
they are “roughly on the order of (kr)2”, so in the case we are interested in,
where r = k, the bounds provided in [7] and refined in this paper are much
smaller.

The structure of the paper is as follows. In Section 2, we describe and refine
some geometric tools which allow us to carefully and specifically define the
geometric constructions we will discuss in the next sections. In Section 3,
we describe the Grünbaum Calculus operations we will be using. Section 4
describes previously discovered systematic constructions for 5-configurations
and introduces several new constructions. In Section 5, using the systematic
and Grünbaum calculus constructions, we prove that N5 ≤ 166. In Section 6,
we review known constructions for 6-configurations and use those, in addition
to the previous results, to show that N6 ≤ 585.

2. Some conceptual tools

2.1. Flexible and compatible configurations

Here we introduce two notions which are useful when applying the various
operations on configurations discussed later on in this paper.

Definition 2.1. Let C be a k-configuration and ` one of its lines. We say
that the line ` is flexible if one can prescribe the position of k configuration
points on some line `′ of a configuration C′, and there exists a projective
transformation that maps C to C′ in such a way that ` gets mapped to `′ and
the k configuration points on ` are mapped into the prescribed positions on
`′. Moreover, any configuration admitting a flexible line is called line-flexible.
Using duality one may define analogously a flexible point and a point-flexible
configuration.
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Definition 2.2. Let C1 and C2 be two k-configurations. We say that C1
and C2 are compatible if there is a point P ∈ C1 and a pencil P of lines
`1 . . . , `k ∈ C1 incident to P , and there is a line ` ∈ C2 and a range R of
points P1, . . . , Pk ∈ C2 incident to `, such that the following condition is
fulfilled:

(CR) There is a one-to-one correspondence between P and R such that for
any four lines `i1 , `i2 , `i3 , `i4 ∈ P, the cross ratio (`i1 , `i2 ; `i3 , `i4) is
equal to the cross ratio (Pi1 , Pi2 ;Pi3 , Pi4) of the corresponding four
points in R.

Since duality is a one-to-one correspondence preserving cross-ratio, the fol-
lowing proposition is obvious.

Proposition 2.3. Any configuration C is compatible with its dual Cδ.

A simple consequence of Definitions 2.1 and 2.2 is as follows.

Proposition 2.4. Two k-configurations are compatible if at least one of them
is flexible.

Proof. Let C1 be a line-flexible configuration and ` ∈ C1 a flexible line with a
range of points P1, . . . , Pk ∈ C1 incident to `. Let C2 be another configuration
and choose a pencil of lines `1 . . . , `k ∈ C2 incident to a point P ∈ C2. For
all i, i = 1, . . . , k, take the points of intersection Mi = ` ∩ `i. Since ` is
flexible, each Pi can be chosen so as to coincide with Mi. Thus we have an
elementary correspondence [10] between the range of points P1, . . . , Pk and
the pencil of lines `1 . . . , `k, hence condition (CR) in Definition 2.2 is fulfilled.
By dualization, the same arguments apply in case C1 is point-flexible. �

Note that the converse is not necessarily true: there exist compatible config-
urations which are not flexible.

2.2. Parametric affinity

Fix two different non-zero real numbers a and b, and define

At =

 a+ t

a
0

0
b+ t

b

 , (2.1)

where t ∈ R is a parameter.

Fix a point P0 with position vector r0 = (x0, y0) lying on neither of the
(Cartesian) coordinate axes. Multiplying by At transforms this point to a
point (

a+ t

a
x0,

b+ t

b
y0

)
= (x0, y0) + t

(
x0
a
,
y0
b

)
.
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Thus, the set of all transforms of P0 forms a straight line which passes through
P0 and whose direction vector is (x0/a, y0/b). The parametric equation of this
line is

(x, y) = (x0, y0) + t

(
x0
a
,
y0
b

)
, (2.2)

while the standard form of the equation of this line is
x

a− b
a

x0

+
y

b− a
b

y0

= 1. (2.3)

Let αt denote the affine transformation determined by the matrix At; we
shall use the family of affine transformations

{αt | t ∈ R}, (2.4)

which we denote by A(t).

Definition 2.5. For any point P0 given by a position vector r0(x0, y0), the
line given by equation (2.2) (or equivalently, by (2.3)) is called the orbit of
P0 under the action of the family of transformations A(t).

Here we use this term borrowed from the theory of group actions; we em-
phasize, however, that the analogy is only partial, since A(t) does not form
a group.

By converse arguments, we obtain:

Lemma 2.6. Let L(a, b) be a straight line with intercepts a and b on the x-
and y-axis, respectively, different from the origin. Then this line is the orbit
of any of its points P0 lying on none of the coordinate axes under the action
of the parametric family of affine transformations given by a matrix of the
form (2.1), where a = −x0/a and b = y0/b.

Proof. The parametric equation of L(a, b) can be written in the form

(x, y) = (x0, y0) + t((0, b)− (a, 0)) = (x0, y0) + t(−a, b).
Comparing this equation with (2.2) verifies the assertion. �

Both this and the following lemma will be utilized in the next section.

Lemma 2.7. The affine transformation αt has the following properties:

(a) αt is the commuting product of two axial affinities determined by the
matrices  a+ t

a
0

0 0

 and

(
0 0

0
b+ t

b

)
, (2.5)

whose axes are the x- and y-axis of the Cartesian coordinate system,
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respectively.

(b) Given k points (x0, yi) (i = 0, 1 . . . , k), lying on a line perpendicular
to the x-axis, the corresponding orbits intersect in a common point on
the x-axis. Similarly, given k points (xj , y0) (i = 0, 1 . . . , k), lying on a
line perpendicular to the y-axis, the corresponding orbits intersect in a
common point on the y-axis.

Proof. The commutation property is a trivial consequence of the fact that
(2.1) is a diagonal matrix. The component matrices (2.5) provide a well-
known analytic description of axial affinities. Since a and b are fixed, the
intercepts of line (2.3) depend only on x0 and y0; this verifies assertion (b).

�

Comparing matrix (2.1) in [7] with our matrix (2.1) given here shows that
the latter is a generalization of the former. In fact, choosing a = −b = h
returns matrix (2.1) with the integer values t = j = 1, . . . , h− 1.

Figure 1. Illustration of the action of affine transforma-
tions αt on a square at four distinct values of t. The original
square is t = 0, and the affine transformations applied use
t = −2,−1, 1). Orbits of vertices of the square are indicated
by red segments.

Figure 1 shows an example of the action of αt on a square with side length 12.
Here a = −1.5b, and the upper right vertex of the square is the point (90, 40).
The square is obviously fixed at t = 0. Choosing a = 2, the non-identical
transforms of the square shown in the figure have values t = −2,−1, 1. The
points of intersection of suitable pairs of vertex orbits are highlighted by red;
they lie in pairs on the coordinate axes, illustrating Lemma 2.7(b).
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3. Grünbaum incidence calculus extended

In [17], Section 3.3, Branko Grünbaum described a sequence of operations
to produce new (n4) configurations from various input configurations. These
operations were called the “Grünbaum Incidence Calculus” in [19], Section
6.5. Some of the operations Grünbaum described are specific to producing 3-
or 4-configurations. Other operations can be generalized in a straightforward
way to produce (nk) configurations either from smaller (mk) configurations
with certain properties, or from (mk−1) configurations.

In [7], we generalized two constructions, the affine replication and affine
switch operations. In this section we revise them, the latter in more detail,
generalizing it by using parametric affinities. We also generalize three other
constructions, the parallel switch and two deleted union operations. In the
next two sections, we use these constructions to produce a large number of
relatively small 5- and 6-configurations, in order to decrease the bounds on
N5 and N6.

3.1. Affine replication

This operation, generalizing Grünbaum’s (5m) construction, takes as input
an (mk−1) configuration C and produces a ((k+ 1)mk) configuration D with
a pencil of m parallel lines. A sketch of the construction is that we apply
to C a sequence of k orthogonal axial affinities α1, . . . , αk with a suitably
chosen common axis A. Then, each point P of C and its k images will be
collinear. Moreover, each line ` of C and its k images are concurrent at a
single point, a fixed point of the affinities, lying on the common axis. The
new configuration D consists of the points and lines of C and its images,
the new lines corresponding to the collinearities from each point P , and the
new points corresponding to the concurrences from each line `. A detailed
description of this construction is given in [7] (see also the examples given
there in Figures 2 and 3). It is denoted by AR(mk).

Proposition 3.1. If affine replication AR(mk) is applied to any (mk−1)
configuration C, the result is a (((k + 1)m)k) line-flexible configuration with
a pencil of m parallel flexible lines. The flexible lines are precisely the lines
connecting a configuration point with each of its affine images.

Proof. Let P be any point of C at a distance d from the axis A. Let r1, . . . , rk
be the ratios of the affinities α1, . . . , αk. Then the distance of the points
α1(P ), . . . , αk(P ) from A is r1d, . . . , rkd, respectively; moreover, all these
points lie on a common line `P perpendicular to A (recall the basic prop-
erties of an orthogonal axial affinity). Hence it is clear that using suitable
affinities, the position of the points P, α1(P ), . . . , αk(P ) on the line `P can
be prescribed. Thus the new configuration is line-flexible, and the flexible
lines are the m parallel new lines. The rest of the proposition is contained
precisely in Lemma 2.2 in [7]. �



Bounds on (n5) and (n6) configurations 7

3.2. Affine switch

The original version of this operation, denoted by (3m+) and applied to (m4)
configurations, occurred also in Grünbaum’s book [17], Section 3.3. In [7], it
was generalized to (mk) configurations, but the affine transformations used in
that presentation were parameterized by integers. Here we generalize it fur-
ther, using a continuous parameter; this generalization results in line-flexible
configurations.

Suppose that C is an (mk) configuration that contains a pencil P of paral-
lel lines `1, . . . , `p with p ≥ 1 and a pencil Q of parallel lines `p+1, . . . , `p+q

with q ≥ 0 such that the two pencils are independent, which means that they
share no common configuration points. We also assume that these pencils are
perpendicular to each other, since if the configuration has non-perpendicular
pencils, it can easily be transformed, using a suitable affine transformation,
into to an isomorphic copy in which two arbitrarily chosen independent par-
allel pencils will be perpendicular.

We slightly change the notation in [7] and use AS(mk, rp, rq) to denote this
construction, where rp and rq denote the number of deleted lines from pencil
P and Q, respectively.

Proposition 3.2. Starting from any (mk) configuration with independent
pencils of p ≥ 1 and q ≥ 0 parallel lines, for each integer r with 1 ≤ r ≤ p+q,
the AS(mk, rp, rq) construction produces a line-flexible (nk) configuration,
where n = (k−1)m+r. This configuration contains independent pencils with
p′ = (k − 1)(p− rp) and q′ = (k − 1)(q − rq) parallel lines, respectively.

Proof. The steps of the construction are as follows.

1. Take a copy of C in a position such that P and Q are parallel with the
x- and y-axis of the Cartesian coordinate system, respectively, and
none of the configuration points is incident to either of the coordinate
axes.

2. Take the line `1 of P, choose a configuration point P1 that is incident
to this line, and draw a straight line L(P1) through P1 such that it
intersects (say) the positive branches of the coordinate axes, avoids
all the other configuration points of C, and is not parallel with any
line connecting two points of C.

3. Choose k−2 points (arbitrarily) on L(P1) different from P1 and from
each other such that none of them lie on either of the coordinate axes.

By Lemma 2.6, each of these k − 2 points can be considered as the
transforms of P1 by affinities αt with k− 2 different values of t. By a
slight abuse of notation, we shall denote these affinities αt1 , . . . , αtk−2

by α1, . . . , αk−2, respectively. Thus we have the k − 1 points

P1, α1(P1), . . . , αk−2(P1).



8 Leah Wrenn Berman∗, Gábor Gévay and Tomaž Pisanski

4. Using the pairs (P1, α1(P1)), . . . , (P1, αk−2(P1)), construct the im-
ages

C1 = α1(C), . . . , Ck−2 = αk−2(C). (3.1)

Note that the affinities αt are products of axial affinities (cf. Lemma 2.7(a));
moreover, an axial affinity is determined by its axis and a pair con-
sisting of a point and its image. Thus the constructions above can
easily be realized (recall e.g. Proposition 2.8 in [7] for the details).

5. Take now the configuration point P2 incident to `1, and consider its
images

α1(P2), . . . , αk−2(P2).

Again by Lemma 2.6, these points will lie on the orbit of P2, which
we denote by L(P2).

6. Repeat the preceding step for the rest of the configuration points
P3, . . . , Pk incident to `1, and denote the corresponding lines by
L(P3), . . . , L(Pk). By Lemma 2.7(b), these lines, along with L(P1)
and L(P2), intersect in a common point on the y-axis. Denote this
point by Y 1.

7. Remove `1 from C and all its images from the images of C given
in (3.1). We denote the resulting structure by C′.

8. Form a new configuration as the following union:

{C′, α1(C′), . . . , αk−2(C′)} ∪ {L(P1), . . . , L(Pk)} ∪ {Y 1}.

The configuration obtained in this way is a (((k − 1)m+ 1)k) configuration.

The procedure can be repeated at most p − 1 times using further lines
`2, . . . , `p of P. Furthermore, interchanging the role of P and Q as well as
of the coordinate axes, the whole procedure can be repeated again, with the
same affine images as before, but using the lines of Q and the configuration
points incident to them. In this way we obtain at most r = p+q distinct new
k-configurations.

Observe that with reference to Lemmas 2.6 and 2.7 where it is needed, re-
alizability of all the 8 steps above is verified. In addition, each of the r new
configurations that can obtained in this way is line-flexible, which is a simple
consequence of the freedom in choosing the k− 1 points in steps (2) and (3).

The rest of the proposition on independent pencils of parallel lines is straight-
forward. �

Figure 2 shows example of the affine switch operation applied to a configura-
tion of type (244). In the construction, the configuration has two independent
pencils which are perpendicular to each other and which both consist of two
lines. In the figure, only one line is used from each of the pencils, producing a



Bounds on (n5) and (n6) configurations 9

Figure 2. A (744) configuration formed by applying the
affine switch operation to a (244) configuration. The (244)
configuration has two independent pencils, but only one line
is used from each pencils, for clarity. The dashed lines are
excluded from the final configuration.

(744) configuration. (For an example where consecutively one, two and three
lines of a single pencil are used, see Figure 5 in [7].)

3.3. Parallel switch

Start from an (mk) configuration C, and delete a line from it. We denote the
incidence structure obtained in this way by C0. Take k − 1 translated copies
C1, . . . , Ck−1, where the direction of translation differs from that of each line
of C; the k − 1 distances of translation are arbitrary, but must be chosen so
that no new incidences occur. Finally, add k new parallel lines to the set-
union C0 ∪C1 ∪ · · · ∪ Ck−1 such that they pass through the “defective” points
of C0 and of its k− 1 translates. We denote this construction as PS(mk) and
note that this construction also occurs in [19].

As a result of the PS(mk) construction, a ((km)k) configuration is obtained
which contains a parallel pencil of k new lines. However, any parallel pencil
in C0 is multiplied by k (see the example given in Figure 3) as well, which
produces at least as many parallel lines as the new ones, and usually more.
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Figure 3. The (214) Grünbaum–Rigby configuration C
(top), and the parallel switch construction applied to it (bot-
tom). The lightly dotted lines have been removed. The con-
struction produces a (844) configuration, which has a parallel
pencil of 4 new lines generated by the construction. However,
since C contained a pencil of 3 parallel lines already, D also
contains a pencil of 12 parallel lines (black).

Proposition 3.3. Start from an (mk) configuration C. Assume that it has
a pencil P of p lines, and an independent pencil Q of q lines, none of which
is the line deleted in the construction process. Then the parallel switch con-
struction PS(mk) produces from C a line-flexible ((km)k) configuration D.
This configuration contains a pencil of kp lines, and an independent pencil
of kq lines.

3.4. The deleted union constructions

These constructions again generalize a construction of Grünbaum, which he
briefly described in [17, pp. 180–182].

3.4.1. The DU(C1, C2) construction. This is the basic case of the deleted
union constructions, and each of the other cases can be considered as a mod-
ification of this. Here C1 and C2 are two compatible k-configurations, usually
different (cf. Definition 2.2). Let P be a pencil of lines in C1 incident to a
point P ∈ C1, and let R be a range of points in C2 incident to a line ` ∈ C2,
defining the compatibility of these configurations. Apply a suitable projective
collineation π to C2 which produces a configuration C′2 such that each point
in R′ ⊂ C′2 is incident to a corresponding line in P, but is not incident to
any other line in C1. Finally, delete the point incident to the lines of P, and
delete the line incident to the points of R′.

This construction is illustrated by the scheme in Figure 4.

The following proposition is straightforward.
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Figure 4. A scheme illustrating the DU(C1, C2) construc-
tion. The point and line deleted in the last step are denoted
by an empty circle and a dashed line, respectively.

Proposition 3.4. Let C1 and C2 be two compatible configurations with the
respective symbols (nk) and (n′k). Then DU(C1, C2) exists and is a configura-
tion with symbol ((n+ n′ − 1)k).

Note that a suitable projective collineation could equally well be applied to C1
instead of C2, thus yielding an isomorphic copy of the configuration obtained
in the former case.

The crucial part the DU(C1, C2) construction (and in each of its modified ver-
sions) is to find the precise form of the projective collineation π. We proceed
in the following steps.

0. Let P = {`1, `2, . . . , `k} ⊂ C1 be a pencil of lines used in the con-
struction (cf. Figure 4). Let `′ be a line incident to none of the points
of C1 or C2. Take the intersections P ′i = `′ ∩ `i for all i = 1, . . . , k.

1. Let R = {P1, P2, . . . , Pk} ∈ C2 be a range of points used in the
construction. The first main step of our procedure is to establish a
one-dimensional projectivity π(1) between this range and the range
{P ′1, P ′2, . . . , P ′k} ⊂ `′ as follows:

P1P2 · · ·Pk Z P ′1P ′2 · · ·P ′k. (3.2)

This can be realized by the product of two perspectivities:

P1P2 · · ·Pk [Q1Q2 · · ·Qk [ P ′1P ′2 · · ·P ′k, (3.3)

whose centres are (say) P ′1 and P1, respectively (cf. Figure 1.6B and
relationship (1.61) in [10]). (Here we use the traditional transforma-
tion symbols due to von Staudt and Veblen [10].)

2. In this second main step the projectivity π(1) is extended to a two-
dimensional projectivity π := π(2), which is a projective collineation
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transforming the whole configuration C2 to C′2:

π : C2 7→ C′2. (3.4)

This can be realized by extending each of the two perspectivities in
(3.3) to a perspective collineation. The centre of the first and second
collineation is the point P ′1 and P1, respectively. When chosing the
axis for these collineations, observe that there is a point F ′ = `′ ∩ q
different from P ′ fixed by the first perspectivity in (3.3), and likewise
a point F = `∩ q different from P fixed by the second perspectivity;
hence the axis of the first collineation must go through F ′, while the
axis of the second collineation must go through F .

We note that the (technically, somewhat lengthy) procedure described above
can be omitted, and thus the DU construction can be made much simpler,
in the following special case.

Remark 3.5. Assume that one of the component configurations is line-flexible.
In this case we apply Proposition 2.4, and the precise position of the points
incident to the line to be deleted can easily be found using the proof of this
proposition. (Note that the dual case, i.e. if one of the component configura-
tions is point-flexible, can be treated similarly.)

As a consequence, we have the following special case of the previous propo-
sition.

Proposition 3.6. Let C1 and C2 be two configurations with the respective
symbols (nk) and (n′k) and let C2 be flexible. Then DU(C1, C2) exists and is
a configuration with symbol ((n+ n′ − 1)k).

Figure 5 shows an example of this special case of the construction, applied
to a (103) and a (93) configuration. Here the second component, the Pappus
configuration, is a flexible configuration; its flexible line used in the construc-
tion is highlighted by green. The white point p and the dashed green line is
deleted in the last step of the construction.

3.4.2. The DU(1)(C) construction. When discussing the deleted union
construction in case of (n4) configurations, Grünbaum observes that one can
choose for C2 the polar of C1 [17]. This observation is naturally valid for any
(nk) configuration in a slightly more general form, thus we introduce for the
DU(C, Cδ) construction the notation DU(1)(C), or simply DU(1) if we do
not want to specify the configuration. Indeed,

We have the following simple consequence of Propositions 2.3 and 3.4.

Corollary 3.7. Let C be any (nk) configuration. Then DU(1)(C) exists and
is a configuration with symbol ((2n− 1)k).
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L3

L2

L1

Show Objects

v1

v2

v3

p

Figure 5. Example of the DU(C1, C2) construction, where
C1 is the cyclic (103) configuration and C2 is the (93) Pappus
configuration. The construction produces an (183) configu-
ration. Neither the white point nor the green dashed line are
elements of the final configuration.

The polarity applied here is induced by a conic [10]. Often, when C is a
configuration with rotational symmetry, we take this conic to be a circle
concentric with the centre of rotation; hence the polarity in this particular
case reduces to a reciprocation with respect to the circle in question (cf.
e.g. [11]).

An example of this construction is shown in Figure 6. The original configu-
ration C is shown in black, with the deleted point p shown as a hollow green
circle and the lines of the configuration labelled Li. The dotted circle is the
circle of reciprocation, and the magenta points vi are the poles of the lines
Li ∈ C obtained under the reciprocation. The arbitrary line ` intersecting the
lines L1, L2, L3 is shown dashed green. The projective collineation π mapped
v1, v2, v3 in order to `1, `2, `3, and the rest of the points vi were mapped using
this collineation to the other green points (unlabeled for clarity). The final
configuration DU(1)(C) is the union of the solid black and green points and
lines.

3.4.3. The DU(t) construction. This iterates the DU(1) construction,
except that instead of working with a single configuration point p and arbi-
trary line `, the construction uses several points p1, p2, . . . , pt−1 and lines `1,
`2, . . . , `t−1. That is, we construct each of the configurations (Ci)′ associated
with each pair pi, `i independently, and then delete all the points pi and lines
πi(%(pi)) and combine what remains (here % denotes the polarity, which in
some cases reduces to reciprocity).

It can directly be seen that for the iteration any number of configuration
points can be used (each at one time). Thus we have:
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Figure 6. The DU(1) construction applied to one of the
non-Pappus (93) configurations (for the details, see the text).

Proposition 3.8. Let C be any (nk) configuration and t ≤ n a positive
integer. Then DU(t)(C) exists and is a configuration with symbol (((t+1)n−
t)k).

Figure 7 shows a (333) configuration constructed by applying the DU(3)
construction to a (93) configuration: the construction can be applied inde-
pendently multiple times, even to points that are collinear in the original
construction. (We note that the non-Pappus (93) configuration used here
and in the previous figure is the one specified as (93)2 by Hilbert and Cohn-
Vossen [18].)

Remark 3.9. Since projective transformations do not preserve parallel lines,
no additional pencils of parallel lines are guaranteed to be generated by this
construction. Thus, if a configuration C has independent pencils with p and q
parallel lines, the configuration Ĉ arising from applying DU(t) to C will also
have independent pencils of p and q parallel lines.

3.4.4. The DU(2)(C1,AR(C2)) construction. This is a modified version
of the DU(C1, C2) construction; here we use two points of C1 and two lines of
AR(C2) to be deleted in the last step of the construction (the superscript in
the notation refers to this feature). (We note that such a modification of the
DU construction is also used by Grünbaum, see [17, Figure 3.3.18].)

Assume that C1 is a k-configuration. Then Proposition 3.1 implies that C2
must be a (k − 1)-configuration; moreover, AR(C2) is a line-flexible configu-
ration. Observe that if we used a simple DU construction (with one deleted
point and one deleted line), then (by Remark 3.5) the latter flexibility prop-
erty would imply that the construction could easily be realized without any
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Figure 7. The configuration DU(3)(93) is a (333) config-
uration. Hollow points have been deleted from the original
configuration (shown in black in the middle), and the dashed
lines are the lines `1, `2, `3 which are not lines of the final
configuration.

further condition. However, in the present case some additional conditions
are needed, as follows.

Condition (P). Configuration C1 must contain a pencil P through a config-
uration point D and a pencil P ′ through a configuration point D′ such that
these two pencils form a centrally symmetric pair with respect to a centre O
(which is not necessarily a configuration point).

The second condition concerns the mutual position of C1 and AR(C2) guar-
anteeing that the construction is feasible.

Condition (M). Let P0 and P ′0 be two configuration points of C2, and let M
be the midpoint of the segment P0P

′
0. Then choose a mutual position of C1

and C2 such that

(M1) M coincides with O;

(M2) the axis of affinity used in the AR(C2) construction goes through
M ;

(M3) one of the lines in pencil P must go through P0 (denote it by
`0).
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Now observe that the symmetry conditions ensure that the symmetric coun-
terpart of the line `0 will go through P ′0. Furthermore, recall that the flexible
lines of AR(C2) are precisely the lines connecting a configuration point with
each of its affine images (cf. Proposition 3.1). In particular, the line con-
necting the points P0, P1 = α1(P0), P2 = α2(P0), . . . , Pk = αk(P0), where αi
denotes the ith affine transformation, will be a flexible line of AR(C2). For
all i (i = 1, 2, . . . , k), the transformation αi must be chosen so that αi(P0)
is incident with the ith line of pencil P. Practically, this means that first we
determine the points Pi as intersections `i ∩ d where `i is the ith line in the
pencil P and d is a line going through p0 and perpendicular to the axis of
affinity. Then, by this intersection condition, all the αi affinities are deter-
mined (recall that an axial affinity is determined by its axis and one pair of
corresponding points; hence in our case αi is determined by the pair (P0, Pi)
for all i). For an illustration, see Figure 8.

Figure 8. Illustration for the DU(2)(C1,AR(C2)) construc-
tion with k = 4. Elements belonging to C1 are coloured red,
while those belonging to AR(C2) are distingushed by blue.
The vertical black line is the axis of affinity, and the centre
of symmetry is denoted by an empty black circle.

The symmetry conditions imposed above ensure that for the points Pi and the
line d we have their symmetric counterparts (with respect to the centre O) P ′i
and d′ such that the points are incident to the corresponding lines of P ′, and
d′ is a (flexible) line of AR(C2) parallel to d. Thus, what remains is to delete

the points Q, Q′ and the lines d, d′, and the construction DU(2)(C1,AR(C2))
is now complete.

Figure 9 shows an example of a (264) configuration obtained by this con-
struction. Here C1 is a (123) configuration shown in Figure 9a; its two pencils
forming a centrally symmetric pair are highlighted in red, and their centre of
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symmetry is denoted by an empty circle. The points denoted by red empty
circles will be deleted. In the AR(C2) configuration shown in Figure 9b, C2
is a (42) quadrilateral. The flexible lines are horizontal (the dashed copies
will be deleted). The vertical dashed line is the axis of affinity. The starting
quadrilateral is shaded; its two vertices forming a centrally symmetric pair
are shown in a larger size. The completed configuration is shown in Figure
9c.

(a) C1. (b) AR(C2). (c) The complete config-
uration.

Figure 9. Example of the DU(2)(C1,AR(C2)) construction
producing a (263) configuration (for the details see the the
text).

4. Systematic geometric constructions for k = 5

The smallest known geometric 5-configuration is a (485) configuration (shown
in Figure 10). It is unknown whether there are smaller geometric 5-configurations.
In order to reduce the bound on N5, in the next section we discuss var-
ious previously-known constructions that produce infinite series of (non-
consecutive) 5-configurations, and introduce a few that have not been de-
scribed previously in the literature.

4.1. “A-series” configurations

In [5], one of the authors (LWB) and Jill Faudree described a construction
method that produces (nk) configurations for any arbitrary k ≥ 3 (but where
n depends on the details of the construction and chosen parameters). For k =
5, the configurations A(m; 3, 3; 1, 2, 4) (among many other 5-configurations)
are guaranteed to exist for all m ≥ 7 except m = 12 and produce config-
urations (8m5). An example of the (805) configuration A(10; 3, 3; 1, 2, 4) is
shown in Figure 11 along with the reduced Levi graph for the general family
A(m; a, b; d1, d2, d3). Moreover, a straightforward geometric argument shows
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Figure 10. The smallest known 5-configuration (left), a
(485) configuration, and the smallest known 6-configuration
(right), a (966) configuration. Observe that the (485) config-
uration has two independent parallel pencils of size 2, and
the (966) configuration has two independent parallel pencils
of size 4.

that if m is odd, we are guaranteed that for A(m; 3, 3; 1, 2, 4), p = q = 2,
while if m is even, p = q = 4.

There are a few special cases among the A-series configurations; of particular
note is the configuration A(12; 4, 4; 1, 3), which according to the details of the
construction should be expected to produce a 4-configuration, but in fact has
“extra incidences” and produces the smallest known 5-configuration, a (485)
configuration. The configuration A(12; 3, 3; 1, 2, 4) has other extra incidences
that cause it to not be a 5-configuration. However, the (965) configuration
A(12; 5, 5; 1, 4, 6) does exist and has p = q = 4. In Table 1, we use the
notation A(m) to refer to the specific configurations A(m; 3, 3; 1, 2, 4) for
m 6= 12.

4.2. 5-configurations that are h-astral in E+

A celestial 4-configuration with symbol m#(s1, t1; . . . ; sh, th) is a polycyclic
(actually, polydihedral) (mh4) configuration with h symmetry classes of points
and lines under the action of Zm and the reduced Levi graph shown in Figure
12. It has been described in a number of references; see, e.g., [17, Sections
3.5–3.8] (under the name h-astral, although h-astral typically refers to any
polycyclic configuration with h symmetry classes, not just celestial ones) and
[1]. There are several constraints that need to be satisfied for the parameters
si, ti to correspond to a realizable geometric configuration, described the cited
references, but for most of the examples in this paper, the parameters are
trivial, which means that the constraints are automatically satisfied.
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(a) An example of a 5-configuration
constructed as part of the A-series,
A(10; 3, 3; 1, 2, 4)
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(b) The reduced Levi graph for
A(m; a, b; d1, d2, d3). Colors of sym-
metry classes match those in the
configuration in (A).

Figure 11. The (8m5) A-series configurations, and their
reduced Levi graphs

Following [8], we say that a diameter of a celestial configuration passes
through the center of the configuration and one point of the symmetry class
v0, and a mid-diameter is the rotation of a diameter by π

m . If m is even,
then diameters connect points (v0)i and (v0)i+m

2
, and mid-diameters may or

may not pass through configuration points depending on parity considera-
tions of the celestial configuration symbol, while if m is odd, mid-diameters
and diameters coincide.

In [17, p. 235], Grünbaum describes two configurations which are h-astral in
the extended Euclidean plane, formed by adding diameters to certain celestial
4-configurations to form pencils of 5 parallel lines, and then adding certain
points at infinity at the intersections of the pencils in such a way that each
point of the configuration lies on 5 lines, and each line passes through 5
points. He provides two examples of this construction: one produces a (605)
configuration (which is actually astral—that is, it has bk+1

2 c symmetry classes
of points and lines, where k = 5—in E+) by adding diameters and points at
infinity to (2)12#(4, 1; 4, 5), and one which produces a (505) configuration
with 5 symmetry classes in E+, by adding diameters and points at infinity
to the trivial celestial configuration 10#(1, 2; 3, 4; 2, 1; 4, 3).

Our first construction generalizes Grünbaum’s (505) construction to form
(10`5) configurations for ` ≥ 1, and our new second construction provides
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v1
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Lh
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t1s2
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sk

t k
+
δδ

Zm

Figure 12. The reduced Levi graph for a general h-celestial
4-configuration with symbol m#(s1, t1; s2, t2; . . . ; sh, th).

The quantity δ = 1
2

∑h
i=1(si − ti) is the “twist” of the con-

figuration.

a series of (6(2` + 1)5) configurations for ` ≥ 5. Small examples of each
construction are shown in Figure 13.

(a) The (505) configuration
D4(5), which can be notated
2 · 5#(2, 1; 4, 3; 1, 2; 3, 4)D∞;MD∞.

∞

(b) A (665) configuration, D5(5). One
parallel pencil (in E2+) is shown with
thick dashed lines.

Figure 13. Examples of the D4(`) and D5(`) construction
in E2+. Points outside the circular boundary of the configu-
ration are at infinity.
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4.2.1. The (10`5) configurations D4(`) based on the celestial 2`#(2, 1; 4, 3; 1, 2; 3, 4)
configuration.

Construction. The D4(`) construction proceeds as follows:

1. Construct the trivial celestial configuration 2`#(2, 1, 4, 3, 1, 2, 3, 4),
which has 4 symmetry classes of points and lines.

2. Construct all the diameters and mid-diameters (see [8] for discus-
sion).

3. Add points at infinity in the directions of each of the diameters and
mid-diameters.

4. Use a suitable projective transformation to project the configuration
into E2.

Lemma 4.1. The D4(`) construction produces a series of (10`5) configura-
tions, for ` ≥ 5, with p = q = 1 when the configuration is projected into E2

from E2+.

Proof. First, note that 2`#(2, 1; 4, 3; 1, 2; 3, 4) is only defined for ` ≥ 5. By
considering the parity of the spans of the configuration (following the similar
analysis from [8]), note that the red and green points lie on lines through the
origin at each even multiple of π

2` (“diameters” in the language of [8]), while
the blue and magenta points lie on lines at an odd multiple of π

2` (“mid-
diameters” in the language of [8]). That is, each diameter and mid-diameter
passes through four points, two each of two colors.

When ` is odd, the configuration has ` quadruples of blue-green parallels,
parallel to the diameters, and and ` quadruples of red-magenta parallels,
parallel to each of the mid-diameters, for 2` sets of parallels, and by this
description, each is also parallel to one of the diameters, that is, lines through
the origin at an angle of iπ

2` for each i with 0 ≤ i < 2`. When ` is even, the
blue-green parallels are parallel to the mid-diameters and the red-magenta
parallels are parallel to the diameters.

In total, there are (4 · 2`) points and (4 · 2`) lines from the original config-
uration; 2` added diameters, and 2` added points at infinity, for a total of
5 · 2` points, each lying on 5 lines, and 5 · 2` lines, each passing through 5
points. �

4.2.2. The ((12` + 6)5) configurations D5(`) based on the 5-celestial
configuration
(2`+ 1)#(5, 1; 2, 3; 4, 5; 1, 2; 3, 4). A second, new, construction, called D5(`),
begins with a trivial 5-celestial 4-configuration with pencils of 5 parallel lines
and again adds diameters and points at infinity. In this case, the underly-
ing celestial configurations have an odd number of points in each symmetry
class.
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Construction. The D5(`) construction proceeds as follows:

1. Construct the trivial celestial configuration (2`+1)#(5, 1; 2, 3; 4, 5; 1, 2; 3, 4)
for any ` ≥ 5.

2. Add all diameters (which, since 2`+1 is odd, are also mid-diameters).

3. Add points at infinity in each of the directions 2iπ
2`+1 .

4. If you like, use a suitable projective transformation to project the
configuration into E2.

Lemma 4.2. The construction D5(`) produces a (6(2`+ 1)5) = ((12`+ 6)5)
configuration for all ` ≥ 5, with p = q = 1 if the configuration is projected
into E2.

Proof. First, observe that the configuration (2`+ 1)#(5, 1; 2, 3; 4, 5; 1, 2; 3, 4)
is only defined for ` ≥ 5. Following the arguments in [8] (applied to the
situation where m = 2q+ 1 is odd), observe that diameters pass through one
point of each of the five symmetry classes of points. Specifically, the diameter
Di, which passes through (v0)i (black) and the center of the configuration,
also passes through (v1)i−2 (red), (v2)i+4, (v3)i−1, and (v4)i+5.

Next observe that the lines (L0)i+3 (black), (L1)i−3 (red), (L2)i+2 (blue),
(L3)i+4 (green), (L4)i−2 (magenta) are all parallel; we add a point at infinity,
∞i, in each of those parallel directions.

Projecting via an appropriate projective transformation yields a 5-configuration
in the ordinary Euclidean plane. Any parallels in the original configuration
are likely destroyed in the projected version, but we certainly can find two
independent lines in two different directions, hence p = q = 1. �

The smallest member of this family, a (665) configuration named D5(11), is
shown in Figure 13b.

4.3. Nesting celestial 4-configurations to produce 5-configurations

In [9], new 5-configurations (in particular, the first known class of movable 5-
configurations) were developed by “nesting” certain celestial 4-configurations
and connecting them via repeated applications of two geometric lemmas,
the Crossing Spans Lemma (see, e.g., [6]) and the Configuration Construc-
tion Lemma. In particular, given any h-celestial cohort m#S;T where S =
{s1, . . . , sh} and T = {t1, . . . , th}, if S ∩ T = ∅, then the construction in [9]
produces a ((mh2)5) configuration. In what follows, we abbreviate certain of
these configurations (with fixed choices of parameters) as N (h,m/s, s), where
the particular choices of S and T depend on s and are described below.

While a complete understanding of parameters that correspond to celestial
configurations for large values of h does not exist, there are known results for
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h = 2, 3, 4 (see [1, 2, 17] among others) that are particularly relevant for the
construction of small (n5) configurations.

Proposition 4.3. The following cohorts of systematic celestial configurations
produce infinite classes of 5-configurations through the “nesting” construction
with useful smallest elements:

1. The systematic 2-celestial cohort 6s#{3s − 1, 1}; {2s, 3s − 2} pro-
duces a (24s5) configuration with symbol N (2, 6, s) = [6s#{3s −
1, 1}; {2s, 3s − 2}] ∗ 2 for all s ≥ 2; the case where s = 2 produces
the known (485) configuration, which is the smallest known geometric
5-configuration.1 Note that all elements of the celestial configuration
6s#(3s − 1, 2s; 1, 3s − 2) have two pairs of disjoint parallel pairs,
inherited by the nested configuration, so p = q = 2.

2. The systematic 3-celestial cohort 2s#{s− 1, 1, s− 4}; {s− 2, 2, s− 2}
produces a (32(2s)5) = (18s5) configuration with symbol N (3, 2, s) =
[2s#{s−1, 1, s−4}; {s−2, 2, s−2}]∗3 for s ≥ 5, 3 - s. The smallest
element is a (905) configuration. When s is odd, the celestial con-
figuration 2s#(s − 1, s − 2; 1, s − 2; s − 4, 2) has two disjoint bands
of 6 parallel lines inherited by the nested configuration. When s is
even, each of the three celestial configurations involved in the “nest-
ing” process has one pencil of four parallel lines and one pair of two
parallel lines, so using one pencil of four parallel lines from two of the
nested configurations maximizes the values of p and q. In summary,
if s is odd, p = q = 6, and if s is even, p = q = 4.

3. The systematic 3-celestial cohort 3s#{s+1, s−1, 1}; {s, s, 3} produces
a (32(3s)5) = (27s5) configuration with symbol N (3, 3, s) = [3s#{s+
1, s−1, 1}; {s, s, 3}]∗3 for all s ≥ 3 except s = 4; the case where s = 3
produces the known (815) configuration. When s is even, each celestial
configuration contains 4 parallels in each of two directions. When s
is odd and larger than 5, they have disjoint triples of parallels in two
directions. However, when s = 3, 5 in a single configuration, due to
the small number of points of the celestial configuration resulting in
non-disjoint pencils, there is only a triple of parallels. However, these
can taken in each of two of the nested configurations. In summary,
when s is even, p = q = 4, and when s is odd, p = q = 3.

Proof. These results follow directly from Algorithm 2 in [9] and the lists
of systematic celestial configurations in [1], along with ad hoc analysis of
parallels in 2-celestial and 3-celestial configurations.

Note that in the case N (3, 2, s), the restriction that 3 - s is due to the
fact that when s is a multiple of 3, one of the permutations in the nested

1It is interesting to note that this particular configuration can be re-analyzed as coming
from several different constructions; it is also a special case of the A-series construction,

with symbol A(12; 3, 3; 1, 4) (expected to be a 4-configuration), due to extra incidences.
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configurations results in celestial configurations with extra incidences (6 lines
passing through one symmetry class of points, rather than 4).

In the caseN (3, 3, s), when s = 4, the celestial configuration 12#(5, 3; 3, 4; 1, 4),
which would be one of the participants in the nesting, is degenerate, and so
must be excluded. �

We introduce here a more restrictive variant of this construction, which in-
volves nesting only two copies of a h-celestial configuration (producing a
non-movable configuration); this construction produces different configura-
tions from those formed by applying Algorithm 2 from [9] with h = 2, and
the allowable cohorts are significantly more restrictive. We present the con-
struction in generality, but in Section 5 we only use the (545) configuration
constructed as N ′(9) = [9#{4, 2, 1}; {3, 3, 3}] ∗ 2′, which is the third-smallest
known 5-configuration.

Construction. A construction for [m#{s1, s2, s3}; {t, t, t}] ∗ 2′ and
[m#{s1, s2, s3, s4}; {t1, t1, t2, t2}] ∗ 2′, respectively, where S ∩ T = ∅.

1. Construct the celestial configurationm#(s1, t; s2, t; s3, t) (respectively,
m#(s1, t1; s2, t2; s3, t1; s4, t2)) with vertex classes (v1i ) and (L1

i ) and
centre O, i = 1, 2, 3; (respectively, i = 1, 2, 3, 4).

2. Choose a parameter d so that the circle passing through (v13)d, O
and (v13)d−s2 (respectively, (v14)d−s2) intersects line (L1

1)0; there are
typically several possibilities.

3. Construct the circle and choose an intersection with line (L1
1)0 to

form (v21)0;

4. Using (v21)0 as the initial starting vertex, construct the celestial con-
figuration
m#(s2, t; s3, t; s1, t) (respectively, m#(s2, t1; s3, t2; s4, t1; s1, t2)).

The reduced Levi graph of the construction for [m#{s1, s2, s3}; {t, t, t}] ∗ 2′

and the (545) configuration N ′(9) = [9#{4, 2, 1}; {3, 3, 3}] ∗ 2′ are shown
in Figure 14; as usual with celestial configurations, δ = 1

2 (
∑
si −

∑
ti).

Analysis of the base celestial configuration shows that p = q = 3 in the (545)
configuration (taking one pencil of 3 parallel lines in each sub-configuration,
for example).

Lemma 4.4. Given a celestial cohort m#{s1, s2, s3}; {t, t, t}, Construction
4.3 produces a (6m5) configuration, and given a celestial cohort
m#{s1, s2, s3, s4}; {t1, t1, t2, t2}, Construction 4.3 produces a (8m5) configu-
ration.

Proof. The argument to show that the resulting incidence structure is a 5-
configuration is extremely similar to those given in the proof of Algorithm
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(a) The general reduced Levi graph for
[m#{s1, s2, s3}; {t, t, t}] ∗ 2′.

(b) The (545) configuration N ′(9) =
[9#{4, 2, 1}; {3, 3, 3}] ∗ 2′.

Figure 14. A new class of 5-configuration, denoted
[m#{s1, s2, s3}; {t, t, t}] ∗ 2′, is constructed similarly to the
construction in [9] and produces (18m5) configurations in the
rare cases when there exists a celestial 4-configuration of the
cohort form m#{s1, s2, s3}; {t, t, t}. The smallest example,
a (545) configuration, is N ′(9) = [9#{4, 2, 1}; {3, 3, 3}] ∗ 2′,
which has p = 3 and q = 3 (using a triple of parallels in each
nested configuration).

2 from [9], using the Crossing Spans Lemma and Configuration Construc-
tion Lemma described in that reference. Dotted lines in the reduced Levi
graph shown in Figure 14a are forced by the Crossing Spans Lemma, and
the highlighted green “gadget” in the reduced Levi graph is a result of the
Configuration Construction Lemma, because in the construction, a circle was
used to construct the points (v21)0. �

This construction generalizes in a straightforward way.

Lemma 4.5. Given a celestial configuration cohort m#S;T with the property
that S∩T = ∅ and if h is even, T is partitioned into two subsets each of size
h/2 where all the entries are the same, while if h is odd, all elements of T
are equal, the construction [m#S;T ] ∗ 2′ produces a (2mh5) configuration.

Note that small celestial cohorts that satisfy the requirements of Lemma 4.5
are somewhat rare. The construction [15#{7, 4, 2, 1}; {6, 6, 3, 3}]∗2′ produces
a (1205) configuration using this new construction, and [24#{1, 2, 11}; {8, 8, 8}]∗
2′ produces a (1445) configuration, but we can produce these values of n in
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other ways. There are no other cohorts with the necessary requirements for
m < 200.

It is also interesting to note that the infinite cohort 3q#{1, 2, . . . , 2h−1}; {q, q, . . . , q}
for q = 2h+1

3 , t odd, and h > 2 described in [9, Theorem 5.3] produces infin-
itely many cohorts of this type, including 33#{1, 2, 4, 8, 16}, {11, 11, 11, 11, 11}
which constructs a (3305) configuration, but the size of the corresponding con-
figurations grows quickly. This does let us conclude that there are infinitely
many 6-astral 5-configurations in E2, however.

5. Bound for 5-configurations

In this section we establish a lower bound for the parameter Nk defined in
the Introduction, in the particular case of 5-configurations. The constructions
used are summarized in Table 1.

Theorem 5.1. N5 ≤ 166.

Proof. In [7], we showed that N5 ≤ 576.

Furthermore, we have constructed a sequence of existing (n5) configurations
from m = 166 to m = 576, with no gaps, as described below. This shows that
N5 ≤ 166.

In the appendix, in Table 6, we present a list of one example of an (n5)
configuration for each n with 48 ≤ n ≤ 250, along with notations for missing
configurations, choosing to include a configuration with a maximal known
number of parallel lines. A list of all known configurations 48 ≤ n ≤ 576 is
available at https://github.com/UP-LaTeR/5-bounds-6-bounds.

To confirm the correctness of the bounds in Theorem 5.1 we performed two
separate computer computations. The first computation used Mathematica
[21] and kept track of all construction information with each configuration
constructed. The second approach used Sage [20] and used the idea of com-
bining arithmetic sequences of configurations.

The known (n5) configurations were produced in Mathematica as follows. At
each step, the number of points and lines and the size of the independent
pencils p and q for each configuration were tracked.

1. Construct the numbers n corresponding to the known systematic (n5)
configurations for n = 48 to 576 (note some numbers n are produced
from several systematic constructions):

• 8m for m = 7, ..., 72 using A(m).

• 10m for m = 5, ..., 57 using D4(s)

• 12s+ 6 for s = 5, ..., 47 using D5(s)

https://github.com/UP-LaTeR/5-bounds-6-bounds
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Table 1. Summary of constructions for 5-configurations.
By max1(C,D) we mean the largest value among
{pC , pD, qC , qD} and max2(C,D) is the second largest value
among {pC , pD, qC , qD}, used with the DU construction, and
max1(C, rp, rq) (resp. max2(C, rp, rq)) is the largest (resp.
second largest) value from among {4(pC−rp), 4(pC−rq), 1},
used in the AS construction. Configurations marked with ∗
are line-flexible.

Construction n p q conditions

Systematic constructions

A(2s) 16s 4 4 s ≥ 4, s 6= 6

A(2s + 1) 16s + 8 2 2 s ≥ 3
D4(s) 10s 1 1 s ≥ 5

D5(s) 12s + 6 1 1 s ≥ 5

N (2, 6, s) 24s 2 2 s ≥ 2
N (3, 2, 6j + 1) 180j + 18 4 4 j ≥ 1

N (3, 2, 6j + 2) 180j + 36 6 6 j ≥ 1

N (3, 2, 6j + 4) 180j + 72 6 6 j ≥ 1
N (3, 2, 6j + 5) 180j + 90 4 4 j ≥ 0

N (3, 3, 2j + 1) 54j + 27 3 3 j ≥ 1

N (3, 3, 2j) 54j 4 4 j > 2

Sporadic constructions

N ′(9) 54 3 3

A(12) 96 4 4 A(12; 5, 5; 1, 2, 4)
Grünbaum Calculus constructions (* = flexible)

DU(t)(C) (t + 1)m− t pC qC C = (m5)

DU(C,D∗) m + `− 1 max1(C,D) max2(C,D) C = (m5), D =

(`∗5)

DU(2)(C,AR(D)) n + 6m− 2 m− 2 max{pC , qC} C = (n5) with

central symmetry;
D = (m4)

AR(C)∗ 6m m 0 C = (m4)

PS(C)∗ 5m 5pC 5qC C = (m5)
AS(C, rp, rq)∗ 4m + (pC −

rp)+(qC−rq)
max1(C, rp, rq) max2(C, rp, rq) C = (m5), 1 ≤

rp ≤ pC , 0 ≤
rq ≤ qC

• 24s using N (2, 6, s); in particular, this includes the known (485)
configuration N (2, 6, 2)

• 18(3s+ 2) and 18(3q + 4) for q = 1, 2, ..., 7 using N (3, 2, s)

• 27s for s = 3, . . . , 32 using N (3, 3, s)

• Include n = 54 using the (545) configurationN ′(9) = [9#{4, 2, 1}; {3, 3, 3}]∗
2′

2. Apply Affine Replication to the sequence of 4-configurations {(184),
(204), (214), (224), (244),(254),(264), . . . , (964)} (consecutive after
n = 24).
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3. Next, apply each of the following constructions, at each step append-
ing the results with n ≤ 576 to the list of known (n5) configurations
before applying the next step:

(a) Parallel Switch

(b) DU(t) for t = 1, ..., 11 (this produces lots of (n5) configurations
with n > 576, since DU(11)(N (2, 6, 2)) produces a (5655) con-
figuration, but we ignore them)

(c) Affine Switch

(d) Parallel Switch

(e) DU(t) for t = 1, ..., 11 (Note that the single known configuration
(5555) is formed as DU(1)(PS(A(7))), so we do need to do this
second round).

Continuing to iterate the sequence of constructions (PS, DU, AS) more
times does not result in any new configurations with n ≤ 576. This sequence
of constructions produces consecutive configurations for n ≥ 470.

Next, observe that the outputs of Parallel Switch, Affine Switch, and Affine
Replication are all line-flexible configurations, so we use these outputs as one
of the configurations D in the DU(C,D∗) flexible construction. This allows
us to construct additional (n5) configurations which were not constructible
using the previous techniques. Specifically, we identify pairs of configurations
C = (n5) and D = ((n∗x)5), where x ∈ {PS, AR, AS} means that D is
the output of an application of parallel switch, affine replication, or affine
switch respectively, such that n+nx−1 is missing from the list of previously
constructed configurations. Then we apply DU(C,D∗) to those pairs to con-
struct additional configurations. (Note that because the configurations D are
line-flexible, we can use the DU construction to “attach” them to C without
disrupting the parallel lines contained in C.)

Finally, we find three small 5-configurations by hand using the DU(2)(C,AR(D))
construction, where C is an (n5) configuration with a halfturn symmetry re-
lating two pencils and the configuration D is a (m4) configuration, as dis-
cussed in Section 3.4.4. Note that the A-series configurations have halfturn
symmetry for even m, and the known (485) configuration has 12-fold rota-
tional symmetry (and thus halfturn symmetry) as well, so beginning with one
point and pencil of the configuration, the image of the pencil under halfturn
rotation is itself a pencil of the configuration, as required.

• (1825) = DU(2)(A(8),AR(204)) (note A(8) = (645))

• (1725) = DU(2)(N (2, 6, 2),AR(214)) (note N (2, 6, 2) = (485))

• (1545) = DU(2)(N (2, 6, 2),AR(184))
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The final list of missing 5-configuration numbers greater than 48 is {49, 51,
52, 53, 55, 57, 58, 59, 61, 62, 63, 65, 67, 68, 69, 71, 73, 74, 75, 76, 77, 79,
82, 83, 84, 85, 86, 87, 89, 91, 92, 93, 94, 97, 98, 101, 103, 105, 106, 109, 113,
115, 116, 117, 118, 121, 122, 123, 124, 125, 129, 133, 134, 137, 141, 145, 146,
147, 149, 151, 153, 158, 164, 165}. �

It is unknown whether there exist (n5) configurations with n in the list of
missing 5-configurations. Note that the smallest possible combinatorial 5-
configuration is (215) and the smallest known topological 5-configuration is
(365) (unpublished, found by the first author); the existence of geometric
(n5) configurations for 21 ≤ n < 48 is unknown as well.

6. Bound for 6-configurations

We use similar techniques to reduce the lower bound for N6. In [7], we showed
that N6 < 7350, by using the fact that N4 ≤ 24, so that there is a consecutive
sequence of configurations [(244), (254), (264), . . .], using affine replication to
produce the sequence [(1445), (1505), (6 · 265), . . .], using affine replication
again to produce the sequence [(10086), (10505), (7 · 6 · 265), . . .] and then
applying affine switch to produce consecutive bands of 6-configurations for
all n ≥ 7350.

The smallest known 6-configuration is a (966) configuration, constructed us-
ing the A-series construction with parameters that lead to extra incidences
in just the right way. Its construction is described in [4] and it is shown in
Figure 10.

To decrease the bound and fill in gaps between n = 96 and n = 7350, as in
the 5-configuration case, we consider known constructions for systematic 6-
configurations, as well as the Grünbaum calculus operations described above.
The three smallest known 6-configurations have n = 96, 110, 112, although
the (1126) configuration has symmetry classes of points that are very close
together, so it is not very intelligible.

Known systematic constructions for 6-configurations are described in [4];
there are two known infinite families. The first is the A-series described above
for 5-configurations, but using one more parameter: the familyA(m; 3, 3; 1, 2, 4, 5)
for m ≥ 7 produces (16m6) configurations, excluding m = 12 due to extra
incidences. However, the configuration A(12; 5, 5; 1, 2, 3, 7) is well-defined. In
Table 3, we use the notation A(m) to refer to the specific configurations
A(m; 3, 3; 1, 2, 4, 5) for m 6= 12. As with the A-series for 5-configurations,
these configurations have p = q = 4 when m is even and p = q = 2 when
m is odd. The configuration A(7; 3, 3; 1, 2, 4, 5) produces the known (1126)
configuration.

The second known infinite family of 6-configurations, first described as part
of a general family of (2q, 2k)-configurations in [3], are called multicelestial
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configurations. The construction of multicelestial 6-configurations with sym-
bol m#(t0, t1, t2)(s0, s1) is specifically detailed in [4]. These produce (10m6)
configurations with dihedral m-gonal symmetry for all integers m ≥ 11 except
m = 12, with the known (1106) configuration arising from 11#(3, 2, 1)(4, 5).
In general, these configurations have a lot of parallel lines, but the number of
parallels depends on the choice of parameters. The parametersm#(3, 2, 1)(4, 5)
are valid for m = 11 and m ≥ 13 (m = 12 has extra incidences), and the
parameters m#(5, 3, 1)(7, 9) are valid for m ≥ 19. Note that while the multi-
celestial construction does not produce a (1206) configuration, there are sev-
eral known (1206) configurations, using a variant construction, described in
[4] (e.g., the one shown in Figure 7 of that paper); inspection shows p = q = 4.
Examples of a multicelestial configuration and an A-series 6-configuration are
shown in Figure 15.

Because we will use multicelestial configurations as input into Grünbaum
Calculus operations, specifically into Affine Switch, it is useful to perform
a detailed analysis of the maximum number of independent parallel lines in
these configurations. Multicelestial configurations have 10 symmetry classes
of points and 10 symmetry classes of lines, where the 10 line classes are
indexed as (L)i (one class), (Lrj)i where j ∈ {0, 1, 2} and r ∈ {0, 1} (6 classes),

and (L0,1
j,k)i where {j, k} ⊆ {0, 1, 2} (3 classes). The parameters j, k, r refer

to indices in the ordered sets T = (t0, t1, t2) or (s0, s1) where 0 < tj , sr <
m
2

and S ∩T = ∅. Analyzing the details of the construction from [4] shows that

lines (Lrj) 1
2 (tj−sr)+i

and lines (L0,1
j,k) 1

2 (tj+tk−s0−s1)+i
are parallel to line (L)0

whenever the indices (i.e., 1
2 (tj + tk − s0 − s1) or 1

2 (tj − sr)) are integers.

Furthermore, if m is odd, we can replace 1
2 with dm2 e in all cases, so that for

each of the other nine line types, there is one representative that is parallel to
(L)0. When m is odd, some line types have representatives that are parallel
to (L)0 and some do not (depending whether the indices 1

2 (tj + tk − s0 − s1)

or 1
2 (tj − sr) are integers); however, it is true that if (Lyx)a is parallel to (L)0,

then so is (Lyx)a+m
2

.

In summary, if m is odd, any value of parameters (t0, t1, t2)(s0, s1) produces
a pencil of 10 parallel lines in a single direction (say, parallel to (L)0). How-
ever, when m is even, analysis of the parities shows that if the parameters
(t0, t1, t2)(s0, s1) contains elements of both parities, then the best we can do
is six lines in a single direction. Since m#(t0, t1, t2)(s0, s1) is disconnected
when m and the parameters are all even, it follows that the most parallel
lines in a single direction for even m occurs when tj , sr are all odd, which is
possible only when m ≥ 20.

Finally, we need to determine whether the lines in the pencils are disjoint. For
m ≥ 21, m odd, the configuration m#(5, 3, 1)(7, 9) has two disjoint pencils
with 10 lines in each pencil; similarly, for m ≥ 40, m even, the configuration
m#(5, 3, 1)(7, 9) has two disjoint pencils with 20 lines in each pencil. For
smaller values of m, we inspected all configurations for each set of possible
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parameter values (m ≤ 20) or odd parameter values (22 ≤ m < 40, m even)
after eliminating all lines that are incident with points of an initial pencil of
lines parallel to (L)0, to determine the maximum number of parallel lines in
independent pencils. The results are shown in Table 2.

Table 2. Maximum number of independent lines in
two parallel pencils in a multicelestial 6-configuration
m#(t0, t1, t2)(s0, s1).

odd m parameters p q
11 (3,2,1)(4,5) 10 0
13 (3,2,1)(4,5) 10 1
15 (3,2,1)(4,5) 10 1
17 (3,2,1)(4,5) 10 2
19 (5,3,1)(7,9) 10 4
≥ 21 (5,3,1)(7,9) 10 10

even m parameters p q
12 -
14 (3,2,1)(4,5) 12 0
16 (5,4,2)(6,7) 12 4
18 (5,4,1)(6,7) 12 4
20 (5,3,1)(7,9) 20 0
22 (5,3,1)(7,9) 20 0
24 (5,3,1)(7,9) 20 2
26 (5,3,1)(7,9) 20 2
28 (5,3,1)(7,9) 20 4
30 (5,3,1)(7,9) 20 2
32 (5,3,1)(7,9) 20 8
34 (5,3,1)(7,9) 20 4
36 (5,3,1)(7,9) 20 8
38 (5,3,1)(7,9) 20 8
≥ 40 (5,3,1)(7,9) 20 20

Theorem 6.1. N6 ≤ 585.

Proof. First we enumerated the systematic 6-configurations. Then we enu-
merated the 5-configurations up to 1050, following the procedure listed in the
proof of Theorem 5.1. Note this count already includes the 4-configurations
bootstrapped up through affine replication. We took this longer list of 5-
configurations and applied affine replication to produce a starting collection
of 6-configurations.

Next, we iteratively applied the constructions DU, PS, and AS until no new
configurations were produced, to produce a “current set”M of missing values
for n, a “current set” S of all known 6-configurations on less than 7350 points,
and a subset of S called F consisting of the flexible configurations formed as
outputs of affine or parallel switch or affine replication.

Next, we constructed DU(C,D∗) where C = (`6), D∗ = (m6) such that
`+m− 1 ∈M, where C ∈ S and D∗ ∈ F .

We included these configurations into S, and determined the “current miss-
ing” values between n = 96 and n = 7350.
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(a) A (1106) multicelestial configura-
tion, 11#(3, 2, 1)(4, 5)

(b) The A-series (1446) configuration
A(m; 3, 3; 1, 2, 4, 5) with m = 9. The
configurations (1126) and (1286) config-
urations with m = 7, 8 are well-defined
but their points are too close together to
be intelligible.

Figure 15. Some pictures of small 6-configurations.

Figure 16. The multicelestial configuration
20#(5, 3, 1)(7, 9) has 20 parallel lines.
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Table 3. Summary of constructions for 6-configurations.
By max1(C,D) we mean the largest value among
{pC , pD, qC , qD} and max2(C,D) is the second largest value
among {pC , pD, qC , qD}, used with the DU construction, and
max1(C, rp, rq) (resp. max2(C, rp, rq)) is the largest (resp.
second largest) value from among {5(pC−rp), 5(pC−rq), 1},
used in the AS construction. Configurations marked with ∗
are line-flexible.

Construction n p q conditions

Systematic constructions

A(2j + 1) 32j + 16 2 2 j ≥ 3

A(2j) 32j 4 4 j ≥ 4, j 6= 6

m#(t0, t1, t2)(s0, s1) 10m see Table 2 see Table 2 m ≥ 11, m 6= 12

Sporadic constructions

A(12; 4, 4; 1, 3, 5) 96 4 4

A(12) 192 4 4 A(12; 5, 5; 1, 2, 3, 7)
4-astral 120 4 4 See [4, Figure 7]

Grünbaum Calculus constructions (* = flexible)

DU(t)(C) (t + 1)m− t pC qC C = (m6)
DU(C,D∗) m + `− 1 max1(C,D) max2(C,D) C = (m6), D∗ =

(`6)

DU(2)(C,AR(D)) see Table 5 m− 2 max{pC , qC} C = (n6) with

central symmetry;

D = (m5)
AR(C)∗ 7m m 0 C = (m5)

PS(C)∗ 6m 6pC 6qC C = (m6)

AS(C, rp, rq)∗ 5m + (pC −
rp)+(qC−rq)

max1(C, rp, rq) max2(C, rp, rq) C = (m6), 1 ≤
rp ≤ pC , 0 ≤
rq ≤ qC

Finally, we applied DU(2)(C,AR(D)), forD in the set of known 5-configurations,
by hand, since for n ≤ 618 we only needed to consider (m5) configurations
with m ≤ 100. The resulting 6-configurations are listed in Table 5. The
configurations C listed in the table have been abbreviated by their symbol
for conciseness; specifically, we used (2006) = 20#(5, 3, 1)(7, 9), (1606) =
16#(5, 4, 2)(6, 7), (1406) = 14#(3, 2, 1)(4, 5), the sporadic 4-astral (1206),
and the sporadic (966) configuration A(12; 4, 4; 1, 3, 5), which all have half-
turn symmetry.

Table 5. Small 6-configurations produced by ad hoc appli-

cation of DU(2)(C,AR(D)).

(6186) = DU(2)(2006,AR(605)) (5866) = DU(2)(1406,AR(645)) (5666) = DU(2)(1206,AR(645))

(5486) = DU(2)(2006,AR(505)) (5426) = DU(2)(966,AR(645)) (5366) = DU(2)(1606,AR(545))

(5346) = DU(2)(2006,AR(485)) (5166) = DU(2)(1406,AR(545)) (5146) = DU(2)(1806,AR(485))

(4946) = DU(2)(1606,AR(485)) (4746) = DU(2)(1406,AR(485)) (4726) = DU(2)(966,AR(545))

(4686) = DU(2)(1206,AR(505)) (4546) = DU(2)(1206,AR(485)) (4446) = DU(2)(966,AR(505))
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This results in the following missing values: {97, 98, 99, 100, 101, 102, 103,
104, 105, 106, 107, 108, 109, 111, 113, 114, 115, 116, 117, 118, 119, 121, 122,
123, 124, 125, 126, 127, 129, 131, 132, 133, 134, 135, 136, 137, 138, 139, 141,
142, 143, 145, 146, 147, 148, 149, 151, 152, 153, 154, 155, 156, 157, 158, 159,
161, 162, 163, 164, 165, 166, 167, 168, 169, 171, 172, 173, 174, 175, 177, 178,
179, 181, 182, 183, 184, 185, 186, 187, 188, 189, 193, 194, 195, 196, 197, 198,
199, 201, 202, 203, 204, 205, 206, 207, 209, 211, 212, 213, 214, 215, 216, 217,
218, 221, 222, 225, 226, 227, 228, 229, 231, 232, 233, 234, 235, 236, 237, 238,
241, 242, 243, 244, 245, 246, 247, 248, 249, 251, 252, 253, 254, 257, 258, 261,
262, 263, 264, 265, 266, 267, 268, 269, 271, 273, 274, 275, 276, 277, 278, 281,
282, 283, 284, 285, 289, 291, 292, 293, 294, 295, 296, 297, 298, 301, 302, 303,
305, 306, 307, 308, 309, 311, 312, 313, 314, 315, 316, 317, 318, 321, 322, 323,
324, 325, 326, 327, 329, 331, 332, 333, 335, 337, 338, 341, 342, 343, 344, 345,
346, 347, 348, 349, 353, 354, 355, 356, 357, 361, 362, 363, 364, 365, 366, 367,
369, 371, 372, 373, 374, 375, 376, 377, 385, 386, 387, 389, 391, 393, 394, 395,
396, 397, 398, 401, 402, 403, 404, 405, 406, 407, 408, 409, 411, 412, 413, 414,
417, 421, 422, 423, 424, 425, 426, 427, 428, 429, 433, 434, 435, 436, 438, 441,
442, 443, 446, 449, 451, 452, 453, 456, 457, 458, 466, 467, 471, 491, 492, 498,
502, 506, 513, 518, 522, 523, 524, 532, 533, 564, 584}. �

7. Open questions and further work

Question 1. What are the actual values for N4, N5 and N6?

The A-series construction produces k-configurations for all k ≥ 4, and the
multicelestial construction can theoretically be applied to produce 2q-configurations
for q ≥ 2, but in general, very little is known about extremely highly incident
(nk) configurations, where k > 6.

Question 2. What do the techniques used in this paper say about bounds on
Nk for k ≥ 7?

The smallest known geometric 5-configuration has 48 points and lines, and we
use it extensively in constructing additional 5- and 6-configurations. Finding
a smaller configuration would likely allow lowering the value for N5.

Question 3. We know that the smallest geometric 3-configuration has 9 points
and lines, and the smallest geometric 4-configuration has 18 points and lines,
but there is no (194) configuration. How many points and lines does the
smallest 5-configuration have? What about the smallest k-configuration in
general?

Question 4. There are only two known constructions (the A-series and mul-
ticelestial constructions) that produce infinite families of symmetrically real-
izable 6-configurations. Can we find other symmetric constructions that will
let us reduce the bound for N6?
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Question 5. Most of the Grünbaum Calculus operations do not apply to
unbalanced configurations, where the number of points and lines is different.
Can we find other operations that allow the development of small bounds on
the existence of [q, k]-configurations?
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Appendix

The following list gives an example of an (n5) configuration for each n where
we know such a configuration exists, for n ≤ 250.
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Table 6. Examples of known geometric (n5) configura-
tions, n ≤ 250. Values of n marked with ∗ indicate that
that configuration is flexible. For each n, although there
may be multiple known configurations, a configuration with
a highest-known number of parallel lines from our compu-
tational results is chosen to be displayed, if one is known.

n p q Description
≤ 47 Unknown
48 2 2 N (2, 6, 2)
49 Unknown
50 1 1 D4(5)
51 Unknown
52 Unknown
53 Unknown
54 3 3 N ′(9)
55 Unknown
56 1 1 A(7)
57 Unknown
58 Unknown
59 Unknown
60 1 1 D4(6)
61 Unknown
62 Unknown
63 Unknown
64 2 2 A(8)
65 Unknown
66 1 1 D5(5)
67 Unknown
68 Unknown
69 Unknown
70 1 1 D4(7)
70 Unknown
72 2 2 N (2, 6, 3)
73 Unknown
74 Unknown
75 Unknown
76 Unknown
77 Unknown
78 1 1 D5(6)
79 Unknown
80 2 2 A(10)
81 3 3 N (3, 3, 3)
82 Unknown
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Table 6. Known geometric (n5) configurations, n ≤ 250
(continued)

n p q Description
83 Unknown
84 Unknown
85 Unknown
86 Unknown
87 Unknown
88 1 1 A(11)
89 Unknown
90 6 6 N (3, 2, 5)
91 Unknown
92 Unknown
93 Unknown
94 Unknown
95 2 2 DU(1)(N (2, 6, 2))
96 2 2 A(12; 5, 5; 1, 2, 4)
97 Unknown
98 Unknown
99 1 1 DU(1)(D4(5))
100 1 1 D4(10)
101 Unknown
102 1 1 D5(8)
103 Unknown
104 1 1 A(13)
105 Unknown
106 Unknown
107 3 3 DU(1)(N ′(9))
108∗ 18 0 AR(184)∗

109 Unknown
110 1 1 D4(11)
111 1 1 DU(1)(A(7))
112 2 2 A(14)
113 Unknown
114 1 1 D5(9)
115 Unknown
116 Unknown
117 Unknown
118 Unknown
119 1 1 DU(1)(D4(6))
120∗ 20 0 AR(204)∗

121 Unknown
122 Unknown
123 Unknown
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Table 6. Known geometric (n5) configurations, n ≤ 250
(continued)

n p q Description
124 Unknown
125 Unknown
126∗ 21 0 AR(214)∗

127 2 2 DU(1)(A(8))
128 2 2 A(16)
129 Unknown
130 1 1 D4(13)
131 1 1 DU(1)(D5(5))
132∗ 22 0 AR(224)∗

133 Unknown
134 Unknown
135 3 3 N (3, 3, 5)
136 1 1 A(17)
137 Unknown
138 1 1 D5(11)
139 1 1 DU(1)(D4(7))
140 1 1 D4(14)
141 Unknown
142 2 2 DU(2)(N (2, 6, 2))
143 2 2 DU(1)(N (2, 6, 3))
144∗ 24 0 AR(244)∗

145 Unknown
146 Unknown
147 Unknown
148 1 1 DU(2)(D4(5))
149 Unknown
150∗ 25 0 AR(254)∗

151 Unknown
152 1 1 A(19)
153 Unknown

154 16 2 DU(2)(N (2, 6, 2),AR(184)∗)
155 1 1 DU(1)(D5(6))
156∗ 26 0 AR(264)∗

157 18 1 DU(D4(5),AR(184)∗)
158 Unknown
159 2 2 DU(1)(A(10))
160 3 3 DU(2)(N ′(9))
161 3 3 DU(1)(N (3, 3, 3))
162∗ 27 0 AR(274)∗

163 18 1 DU(A(7),AR(184)∗)
164 Unknown
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Table 6. Known geometric (n5) configurations, n ≤ 250
(continued)

n p q Description
165 Unknown
166 1 1 DU(2)(A(7))
167 20 2 DU(N (2, 6, 2),AR(204)∗)
168∗ 28 0 AR(284)∗

169 20 1 DU(D4(5),AR(204)∗)
170 1 1 D4(17)
171 18 2 DU(A(8),AR(184)∗)

172 19 2 DU(2)(N (2, 6, 2),AR(214))
173 21 2 DU(N (2, 6, 2),AR(214)∗)
174∗ 29 0 AR(294)∗

175 1 1 DU(1)(A(11))
176 2 2 A(22)
177 18 1 DU(D4(7),AR(184)∗)
178 1 1 DU(2)(D4(6))
179 6 6 DU(1)(N (3, 2, 5))
180∗ 30 0 AR(304)∗

181 22 1 DU(D4(5),AR(224)∗)

182 18 2 DU(2)(A(8),AR(204))
183 20 2 DU(A(8),AR(204)∗)
184 1 1 A(23)
185 22 3 DU(N ′(9),AR(224)∗)
186∗ 31 0 AR(314)∗

187 22 1 DU(A(7),AR(224)∗)
188 18 3 DU(N (3, 3, 3),AR(184)∗)
189 3 3 N (3, 3, 7)
190 2 2 DU(2)(A(8))
191 2 2 DU(1)(A(12))
192∗ 32 0 AR(324)∗

193∗ 4 2 AS(N (2, 6, 2), 1, 0)∗

194∗ 1 2 AS(N (2, 6, 2), 2, 0)∗

195∗ 1 4 AS(N (2, 6, 2), 2, 1)∗

196∗ 1 1 AS(N (2, 6, 2), 2, 2)∗

197 1 1 DU(3)(D4(5))
198∗ 33 0 AR(334)∗

199 1 1 DU(1)(D4(10))
200 1 1 D4(20)
201∗ 1 1 AS(D4(5), 1, 0)∗

202∗ 1 1 AS(D4(5), 1, 1)∗

203 1 1 DU(1)(D5(8))
204∗ 34 0 AR(344)∗

205 26 1 DU(D4(5),AR(264)∗)
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Table 6. Known geometric (n5) configurations, n ≤ 250
(continued)

n p q Description
206 21 3 DU(N (3, 3, 3),AR(214)∗)
207 1 1 DU(1)(A(13))
208 2 2 A(26)
209 27 2 DU(N (2, 6, 2),AR(274)∗)
210∗ 35 0 AR(354)∗

211 27 1 DU(D4(5),AR(274)∗)
212 22 3 DU(N (3, 3, 3),AR(224)∗)
213 3 3 DU(3)(N ′(9))
214 2 2 DU(2)(N (2, 6, 3))
215 18 0 DU(1)(AR(184)∗)
216∗ 36 0 AR(364)∗

217∗ 8 3 AS(N ′(9), 1, 0)∗

218∗ 4 3 AS(N ′(9), 2, 0)∗

219∗ 1 3 AS(N ′(9), 3, 0)∗

220∗ 1 8 AS(N ′(9), 3, 1)∗

221∗ 1 4 AS(N ′(9), 3, 2)∗

222∗ 37 0 AR(374)∗

223 2 2 DU(1)(A(14))
224 2 2 A(28)
225∗ 1 1 AS(A(7), 1, 0)∗

226∗ 1 1 AS(A(7), 1, 1)∗

227 1 1 DU(1)(D5(9))
228∗ 38 0 AR(384)∗

229 30 1 DU(D4(5),AR(304)∗)
230 1 1 D4(23)
231 28 2 DU(A(8),AR(284)∗)
232 1 1 DU(2)(D5(6))
233 31 2 DU(N (2, 6, 2),AR(314)∗)
234∗ 39 0 AR(394)∗

235 31 1 DU(D4(5),AR(314)∗)
236 2 2 DU(4)(N (2, 6, 2))
237 1 1 DU(3)(D4(6))
238 2 2 DU(2)(A(10))
239 20 0 DU(1)(AR(204)∗)
240∗ 40 0 AR(404)∗

241 3 3 DU(2)(N (3, 3, 3))
242∗ 1 1 AS(D4(6), 1, 1)∗

243 3 3 N (3, 3, 9)
244 25 2 DU(DU(1)(N (2, 6, 2)),AR(254)∗)
245 33 2 DU(N (2, 6, 2),AR(334)∗)
246∗ 41 0 AR(414)∗
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Table 6. Known geometric (n5) configurations, n ≤ 250
(continued)

n p q Description
247 33 1 DU(D4(5),AR(334)∗)
248 1 1 A(31)
249 31 2 DU(A(8),AR(314)∗)
250∗ 5 5 PS(D4(5))∗
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Szeged, 6720
Hungary

e-mail: gevay@math.u-szeged.hu

Tomaž Pisanski
University of Primorska
Koper, Slovenia
and Institute of Mathematics, Physics and Mechanics
University of Ljubljana
Ljubljana, Slovenia

e-mail: pisanski@upr.si

1*Corresponding Author


	1. Introduction
	2. Some conceptual tools
	2.1. Flexible and compatible configurations
	2.2. Parametric affinity

	3. Grünbaum incidence calculus extended
	3.1. Affine replication
	3.2. Affine switch
	3.3. Parallel switch
	3.4. The deleted union constructions
	3.4.1. The DU(C1, C2) construction
	3.4.2. The DU(1)(C) construction
	3.4.3. The DU(t) construction
	3.4.4. The DU(2)(C1, AR(C2)) construction


	4. Systematic geometric constructions for k = 5
	4.1. ``A-series'' configurations
	4.2. 5-configurations that are h-astral in E+
	4.2.1. The (105) configurations D4() based on the celestial 2#(2,1;4,3;1,2;3,4) configuration.
	4.2.2. The ((12+6)5) configurations D5() based on the 5-celestial configuration (2+1)#(5,1;2,3;4,5;1,2;3,4).

	4.3. Nesting celestial 4-configurations to produce 5-configurations

	5. Bound for 5-configurations
	6. Bound for 6-configurations
	7. Open questions and further work
	8. Acknowledgements
	References
	Appendix

