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Abstract. A topological graph is k-quasi-planar if it does not contain
k pairwise crossing edges. An old conjecture states that for every fixed
k, the maximum number of edges in a k-quasi-planar graph on n ver-
tices is O(n). Fox and Pach showed that every k-quasi-planar graph
with n vertices and no pair of edges intersecting in more than O(1)
points has at most n(log n)O(log k) edges. We improve this upper bound
to 2α(n)cn log n, where α(n) denotes the inverse Ackermann function,
and c depends only on k. We also show that every k-quasi-planar graph
with n vertices and every two edges have at most one point in common
has at most O(n log n) edges. This improves the previously known upper
bound of 2α(n)cn log n obtained by Fox, Pach, and Suk.

1 Introduction

A topological graph is a graph drawn in the plane so that its vertices are
represented by points and its edges are represented by curves connecting the
corresponding points. The curves are always simple, that is, they do not have
self-intersections. The curves are allowed to intersect each other, but they can-
not pass through vertices except for their endpoints. Furthermore, the edges are
not allowed to have tangencies, that is, if two edges share an interior point, then
they must properly cross at that point. We only consider graphs without parallel
edges or loops. Two edges of a topological graph cross if their interiors share
a point. A topological graph is simple if any two of its edges have at most one
point in common, which can be either a common endpoint or a crossing.

It follows from Euler’s polyhedral formula that every topological graph on
n vertices and with no two crossing edges has at most 3n − 6 edges. A graph
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is called k-quasi-planar if it can be drawn as a topological graph with no k
pairwise crossing edges. Hence, a graph is 2-quasi-planar if and only if it is
planar. According to an old conjecture (see Problem 1 in Section 9.6 of [4]), for
any fixed k ≥ 2 there exists a constant ck such that every k-quasi-planar graph
on n vertices has at most ckn edges. Agarwal, Aronov, Pach, Pollack, and Sharir
[2] were the first to prove this conjecture for simple 3-quasi-planar graphs. Later,
Pach, Radoičić, and Tóth [14] generalized the result to all 3-quasi-planar graphs.
Ackerman [1] proved the conjecture for k = 4.

For larger values of k, several authors have proved upper bounds on the maxi-
mum number of edges in k-quasi-planar graphs under various conditions on how
the edges are drawn. These include but are not limited to [5,7,8,15,19]. In 2008,
Fox and Pach [7] showed that every k-quasi-planar graph with n vertices and
no pair of edges intersecting in more than t points has at most n(log n)c log k

edges, where c depends only on t. In this paper, we improve the exponent of the
polylogarithmic factor from O(log k) to 1 + o(1) for fixed t.

Theorem 1. Every k-quasi-planar graph with n vertices and no pair of edges
intersecting in more than t points has at most 2α(n)

c

n logn edges, where α(n)
denotes the inverse of the Ackermann function, and c depends only on k and t.

Recall that the Ackermann function A(n) is defined as follows. Let A1(n) =
2n, and Ak(n) = Ak−1(Ak(n− 1)) for k ≥ 2. In particular, we have A2(n) = 2n,
and A3(n) is an exponential tower of n two’s. Now let A(n) = An(n), and let
α(n) be defined as α(n) = min{k ≥ 1: A(k) ≥ n}. This function grows much
slower than the inverse of any primitive recursive function.

For simple topological graphs, Fox, Pach, and Suk [8] showed that every k-
quasi-planar simple topological graph on n vertices has at most 2α(n)

c

n logn
edges, where c depends only on k. We establish the following improvement.

Theorem 2. Every k-quasi-planar simple topological graph on n vertices has
at most ckn logn edges, where ck depends only on k.

We start the proofs of both theorems with a reduction to the case of topolog-
ical graphs containing an edge that intersects every other edge. This reduction
introduces the O(log n) factor for the bound on the number of edges. Then, the
proof of Theorem 1 follows the approaches of Valtr [19] and Fox, Pach, and
Suk [8], using a result on generalized Davenport-Schinzel sequences, which we
recall in Section 3. Although the proofs in [19] and [8] heavily depend on the
assumption that any two edges have at most one point in common, we are able
to remove this condition by establishing some technical lemmas in Section 4.
In Section 5, we finish the proof of Theorem 1. The proof of Theorem 2, which
relies on a recent coloring result due to Lasoń, Micek, Pawlik, and Walczak [10],
is given in Section 6.

2 Initial Reduction

We call a collection C of curves in the plane decomposable if there is a partition
C = C1∪· · ·∪Cw such that each Ci contains a curve intersecting all other curves
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in Ci, and for i �= j, no curve in Ci crosses nor shares an endpoint with a curve
in Cj .

Lemma 1 (Fox, Pach, Suk [8]). There is an absolute constant c > 0 such
that every collection C of m ≥ 2 curves such that any two of them intersect in
at most t points has a decomposable subcollection of size at least cm

t logm .

In the proofs of both Theorem 1 and Theorem 2, we establish a (near) linear
upper bound on the number of edges under the additional assumption that the
graph has an edge intersecting every other edge. Once this is achieved, we use
the following lemma to infer an upper bound for the general case.

Lemma 2 (implicit in [8]). Let G be a topological graph on n vertices such
that no two edges have more than t points in common. Suppose that for some
constant β, every subgraph G′ of G containing an edge that intersects every
other edge of G′ has at most β|V (G′)| edges. Then G has at most ctβn logn
edges, where ct depends only on t.

Proof. By Lemma 1, there is a decomposable subset E′ ⊂ E(G) such that |E′| ≥
c′t|E(G)|/ log |E(G)|, where c′t depends only on t. Hence there is a partition
E′ = E1 ∪ · · · ∪Ew, such that each Ei has an edge ei that intersects every other
edge in Ei, and for i �= j, the edges in Ei are disjoint from the edges in Ej . Let
Vi denote the set of vertices that are the endpoints of the edges in Ei, and let
ni = |Vi|. By the assumption, we have |Ei| ≤ βni for 1 ≤ i ≤ w. Hence

c′t|E(G)|
log |E(G)| ≤ |E′| ≤

w∑

i=1

βni ≤ βn.

Since |E(G)| ≤ n2, we obtain |E(G)| ≤ 2(c′t)
−1βn logn. ��

3 Generalized Davenport-Schinzel Sequences

A sequence S = (s1, . . . , sm) is called l-regular if any l consecutive terms of S are
pairwise different. For integers l,m ≥ 2, the sequence S = (s1, . . . , slm) is said
to be of type up(l,m) if the first l terms are pairwise different and si = si+l =
· · · = si+(m−1)l for 1 ≤ i ≤ l. In particular, every sequence of type up(l,m) is
l-regular. For convenience, we will index the elements of an up(l,m) sequence as

S = (s1,1, . . . , sl,1, s1,2, . . . , sl,2, . . . , s1,m, . . . , sl,m),

where s1,1, . . . , sl,1 are pairwise different and si,1 = · · · = si,m for 1 ≤ i ≤ l.

Theorem 3 (Klazar [9]). For l ≥ 2 and m ≥ 3, every l-regular sequence over
an n-element alphabet that does not contain a subsequence of type up(l,m) has
length at most

n · l · 2(lm−3) · (10l)10α(n)lm .

For more results on generalized Davenport-Schinzel sequences, see [13,16,17].
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4 Intersection Pattern of Curves

In this section, we will prove several technical lemmas on the intersection pattern
of curves in the plane. We will always assume that no two curves are tangent,
and that if two curves share an interior point, then they must properly cross at
that point.

Lemma 3. Let λ1 and λ2 be disjoint simple closed curves. Let C be a collection
of m curves with one endpoint on λ1, the other endpoint on λ2, and no other
common points with λ1 or λ2. If no k members of C pairwise cross, then C
contains 	m/(k − 1)2
 pairwise disjoint members.

Proof. Let G be the intersection graph of C. Since G does not contain a clique of
size k, by Turán’s theorem, |E(G)| ≤ (1−1/(k−1))m2/2. Hence there is a curve
a ∈ C and a subset S ⊂ C, such that |S| ≥ m/(k− 1)− 1 and a is disjoint from
every curve in S. We order the elements in S∪{a} as a0, a1, . . . , a|S| in clockwise
order as their endpoints appear on λ1, starting with a0 = a. Now we define the
partial order ≺ on the pairs in S so that ai ≺ aj if i < j and ai is disjoint
from aj . A simple geometric observation shows that ≺ is indeed a partial order.
Since S does not contain k pairwise crossing members, by Dilworth’s theorem
[6], S ∪ {a} contains 	m/(k − 1)2
 pairwise disjoint members. ��

A collection of curves with a common endpoint v is called a fan with apex v.
Let C = {a1, . . . , am} be a fan with apex v, and γ = γ1 ∪ · · · ∪ γm be a curve
with endpoints p and q partitioned into m subcurves γ1, . . . , γm that appear in
order along γ from p to q. We say that C is grounded by γ1 ∪ · · · ∪ γm, if

(i) γ does not contain v,
(ii) each ai has its other endpoint on γi.

We say that C is well-grounded by γ1∪· · ·∪γm if C is grounded by γ1∪· · ·∪γm
and each ai intersects γ only within γi. Note that both notions depend on a
particular partition γ = γ1 ∪ · · · ∪ γm.

Lemma 4. Let C = {a1, . . . , am} be a fan grounded by a curve γ = γ1 ∪ · · · ∪
γm. If each ai intersects γ in at most t points, then there is a subfan C′ =
{ai1 , . . . , air} ⊂ C with i1 < · · · < ir and r = logt+1 m� that is grounded by a
subcurve γ′ = γ′

1 ∪ · · · ∪ γ′
r ⊂ γ. Moreover,

(i) γ′
j ⊃ γij for 1 ≤ j ≤ r,

(ii) aij intersects γ′ only within γ′
1 ∪ · · · ∪ γ′

j for 1 ≤ j ≤ r.

Proof. We proceed by induction on m. The base case m ≤ t is trivial. Now
assume that m ≥ t + 1 and the statement holds up to m − 1. Since a1 inter-
sects γ in at most t points, there exists an integer j such that a1 is disjoint
from γj ∪ γj+1 ∪ · · · ∪ γj+�m/(t+1)�−1. By the induction hypothesis applied to
{aj, aj+1, . . . , aj+�m/(t+1)�−1} and the curve γj ∪ γj+1 ∪ · · · ∪ γj+�m/(t+1)�−1, we
obtain a subfan C∗ = {ai2 , . . . , air} of r−1 = logt+1m/(t+1)�� = logt+1 m�−
1 curves, and a subcurve γ∗ = γ′

2∪· · ·∪γ′
r ⊂ γj∪γj+1∪· · ·∪γj+�m/(t+1)�−1 with
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the desired properties. Let γ′
1 be the subcurve of γ obtained by extending the

endpoint of γ1 to the endpoint of γ∗ along γ so that γ′
1 ⊃ γ1. Set γ

′ = γ′
1 ∪ γ∗.

Hence the collection of curves C′ = {a1} ∪ C∗ and γ′ have the desired proper-
ties. ��
Lemma 5. Let C = {a1, . . . , am} be a fan grounded by a curve γ = γ1 ∪ · · · ∪
γm. If each ai intersects γ in at most t points, then there is a subfan C′ =
{ai1 , . . . , air} ⊂ C with i1 < · · · < ir and r = logt+1 logt+1 m� that is well-
grounded by a subcurve γ′ = γ′

1 ∪· · ·∪γ′
r ⊂ γ. Moreover, γ′

j ⊃ γij for 1 ≤ j ≤ r.

Proof. We apply Lemma 4 to C and γ = γ1 ∪ · · · ∪ γm to obtain a subcollection
C∗ = {aj1 , aj2 , . . . , ajm∗} of m∗ = logt+1 m� curves, and a subcurve γ∗ =
γ∗
1 ∪ · · · ∪ γ∗

m∗ ⊂ γ with the properties listed in Lemma 4. Then we apply
Lemma 4 again to C∗ and γ∗ with the elements in C∗ in reverse order. By the
second property of Lemma 4, the resulting subcollection C′ = {ai1 , . . . , air} of
r = logt+1 logt+1 m� curves is well-grounded by a subcurve γ′ = γ′

1∪· · ·∪γ′
r ⊂ γ,

and by the first property we have γ′
j ⊃ γij for 1 ≤ j ≤ r. ��

We say that fans C1, . . . , Cl are simultaneously grounded (simultaneously well-
grounded) by a curve γ = γ1 ∪ · · · ∪ γm to emphasize that they are grounded
(well-grounded) by γ with the same partition γ = γ1 ∪ · · · ∪ γm.

Lemma 6. Let C1, . . . , Cl be l fans with Ci = {ai,1, . . . , ai,m}, simultaneously
grounded by a curve γ = γ1 ∪ · · · ∪ γm. If each ai,j intersects γ in at most

t points, then there are indices j1 < · · · < jr with r = log(2l)t+1 m� ( 2l-times
iterated logarithm of m) and a subcurve γ′ = γ′

1 ∪ · · · ∪ γ′
r ⊂ γ such that

(i) the subfans C′
i = {ai,j1 , . . . , ai,jr} ⊂ Ci for 1 ≤ i ≤ l are simultaneously

well-grounded by γ′
1 ∪ · · · ∪ γ′

r,
(ii) γ′

s ⊃ γjs for 1 ≤ s ≤ r.

Proof. We proceed by induction on l. The base case l = 1 follows from Lemma
5. Now assume the statement holds up to l − 1. We apply Lemma 5 to the
fan C1 = {a1,1, . . . , a1,m} and the curve γ = γ1 ∪ · · · ∪ γm, to obtain a subfan
C∗

1 = {a1,w1 , . . . , a1,ws} ⊂ C1 with w1 < · · · < ws and s = logt+1 logt+1 m�
that is well-grounded by a subcurve γ∗ = γ∗

1 ∪ · · · ∪ γ∗
s ⊂ γ and satisfies γ∗

i ⊃
γwi for 1 ≤ i ≤ s. For 2 ≤ i ≤ l, let C∗

i = {ai,w1 , . . . , ai,ws} ⊂ Ci. Now
we apply the induction hypothesis on the collection of l − 1 fans C∗

2 , . . . , C
∗
l

that are simultaneously grounded by the curve γ∗ = γ∗
1 ∪ · · · ∪ γ∗

s . Hence we
obtain indices j1 < · · · < jr with r = log(2l−2)

t+1 s� = log(2l)t+1 m� and a subcurve
γ′ = γ′

1 ∪ · · · ∪ γ′
r ⊂ γ∗ such that each subfan C′

i = {ai,j1 , . . . , ai,jr} ⊂ Ci with
2 ≤ i ≤ l is well-grounded by γ′

1 ∪ · · · ∪ γ′
r, and moreover γ′

z ⊃ γ∗
z ⊃ γz for

1 ≤ z ≤ r. By setting C′
1 = {a1,j1 , . . . , a1,jr} ⊂ C∗

1 , the collection C′
1, . . . , C

′
l is

simultaneously well-grounded by the subcurve γ′ = γ′
1 ∪ · · · ∪ γ′

r ⊂ γ. ��
Let C = {a1, . . . , am} be a fan with apex v grounded by a curve γ = γ1∪· · ·∪

γm with endpoints p and q. We say that ai is left-sided (right-sided) if moving
along ai from v until we reach γ for the first time, and then turning left (right)



100 A. Suk and B. Walczak

onto the curve γ, we reach the endpoint q (p). We say that Ci is one-sided, if
the curves in Ci are either all left-sided or all right-sided.

Lemma 7. Let C1, . . . , Cl be l fans with Ci = {ai,1, . . . , ai,m}, simultaneously
grounded by a curve γ. Then there are indices j1 < · · · < jr with r = 	m/2l

such that the subfans C′

i = {ai,j1 , . . . , ai,jr} ⊂ Ci for 1 ≤ i ≤ l are one-sided.

Proof. We proceed by induction on l. The base case l = 1 is trivial since at
least half of the curves in C1 = {a1,1, . . . , a1,m} form a one-sided subset. For
the inductive step, assume that the statement holds up to l − 1. Let C∗

1 =
{a1,w1 , . . . , a1,w�m/2�} with w1 < · · · < w�m/2� be a subset of 	m/2
 curves that
is one-sided. For i ≥ 2, set C∗

i = {ai,w1 , . . . , ai,w�m/2�}. Then apply the induction
hypothesis on the l − 1 fans C∗

2 , . . . , C
∗
l , to obtain indices j1 < · · · < jr with

r = 		m/2
/2l−1
 = 	m/2l
 such that the subfans C′
i = {ai,j1 , . . . , ai,jr} ⊂ C∗

i

for 2 ≤ i ≤ l are one-sided. By setting C′
1 = {a1,j1 , . . . , a1,jr} ⊂ C∗

1 , the collection
C′

1, . . . , C
′
l have the desired properties. ��

Since at least half of the fans obtained from Lemma 7 are either left-sided or
right-sided, we have the following corollary.

Corollary 1. Let C1, . . . , C2l be 2l fans with Ci = {ai,1, . . . , ai,m}, simultane-
ously grounded by a curve γ. Then there are indices i1 < · · · < il and j1 < · · · <
jr with r = 	m/22l
 such that the subfans C′

iw = {aiw,j1 , . . . , aiw,jr} ⊂ Ciw for
1 ≤ w ≤ l are all left-sided or all right-sided.

By combining Lemma 6 and Corollary 1, we easily obtain the following lemma
which will be used in Section 5.

Lemma 8. Let C1, . . . , C2l be 2l fans with Ci = {ai,1, . . . , ai,m}, simultaneously
grounded by a curve γ = γ1 ∪ · · · ∪ γm. Then there are indices i1 < · · · < il and
j1 < · · · < jr with r = 	log(4l)t+1 m�/22l
 and a subcurve γ∗ = γ∗

1 ∪ · · · ∪ γ∗
r ⊂ γ

such that

(i) the subfans C′
iw = {aiw,j1 , . . . , aiw ,jr} ⊂ Ciw for 1 ≤ w ≤ l are simultane-

ously well-grounded by γ∗
1 ∪ · · · ∪ γ∗

r ,
(ii) γ∗

s ⊃ γjs for 1 ≤ s ≤ r,
(iii) the subfans C′

i1 , . . . , C
′
il
are all left-sided or all right-sided.

5 Proof of Theorem 1

By Lemma 2 and the fact that the function α(n) is non-decreasing, it is enough
to prove that every k-quasi-planar topological graph on n vertices such that no
two edges have more than t points in common and there is an edge that intersects
every other edge has at most 2α(n)

c

n edges, where c depends only on k and t.
Let G be a k-quasi-planar graph on n vertices with no two edges intersecting

in more than t points. Let e0 = pq be an edge that intersects every other edge
of G. Let V0 = V (G) \ {p, q} and E0 be the set of edges with both endpoints in
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V0. Hence we have |E0| > |E(G)| − 2n. Assume without loss of generality that
no two elements of E0 cross e0 at the same point.

By a well-known fact (see e.g. Theorem 2.2.1 in [3]), there is a bipartition
V0 = V1∪V2 such that at least half of the edges in E0 connect a vertex in V1 to a
vertex in V2. Let E1 be the set of these edges. For each vertex vi ∈ V1, consider
the graph Gi whose each vertex corresponds to the subcurve γ of an edge e ∈ E1

such that

(i) e is incident to vi,
(ii) the endpoints of γ ⊂ e are vi and the first intersection point in e ∩ e0 as

moving from vi along e.

Two vertices are adjacent in Gi if the corresponding subcurves cross. Each graph
Gi is isomorphic to the intersection graph of a collection of curves with one
endpoint on a simple closed curve λ1 and the other endpoint on a simple closed
curve λ2 and with no other points in common with λ1 or λ2. To see this, enlarge
the point vi and the curve e0 a little, making them simple closed curves λ1 and
λ2, and shorten the curves γ appropriately, so as to preserve all crossings between
them. Since no k of these curves pairwise intersect, by Lemma 3, Gi contains
an independent set of size 	|V (Gi)|/(k − 1)2
. We keep all edges corresponding
to the elements of this independent set, and discard all other edges incident
to vi. After repeating this process for all vertices in V1, we are left with at
least 	|E1|/(k − 1)2
 edges, forming a set E2. We continue this process on the
vertices in V2 and the edges in E2. After repeating this process for all vertices
in V2, we are left with at least 	|E2|/(k − 1)2
 edges, forming a set E′. Thus
|E(G)| < 2(k − 1)4|E′| + 2n. Now, for any two edges e1, e2 ∈ E′ that share an
endpoint, the subcurves γ1 ⊂ e1 and γ2 ⊂ e2 described above must be disjoint.

For each edge e ∈ E′, fix an arbitrary intersection point s ∈ e ∩ e0 to be
the main intersection point of e and e0. Let e1, . . . , e|E′| denote the edges in
E′ listed in the order their main intersection points appear on e0 from p to
q, and let s1, . . . , s|E′| denote these points respectively. We label the endpoints
of each ei as pi and qi, as follows. As we move along e0 from p to q until we
arrive at si, then we turn left and move along ei, we finally reach pi, while as
we turn right at si and move along ei, we finally reach qi. We define sequences
S1 = (p1, . . . , p|E′|) and S2 = (q1, . . . , q|E′|). They are sequences of length |E′|
over the (n− 2)-element alphabet V0.

Lemma 9 (Valtr [19]). For 2l ≥ 1, at least one of the sequences S1, S2 defined
above contains a 2l-regular subsequence of length at least 	|E′|/(8l)
.

The proof of Lemma 9 can be copied almost verbatim from the proof of Lemma
5 in [19]. Indeed, the only fact about the sequences S1 and S2 it uses is that the
edges ej1 , ej1+1, . . . , ej2 are spanned by the vertices pj1 , . . . , pj2 and qj1 , . . . , qj2 ,
for any j1 < j2.

For the rest of this section, we set l = 2k
2+2k andm to be such that (log(4l)t+1 m)/

22l = 3 · 2k − 4.

Lemma 10. Neither of the sequences S1 and S2 has a subsequence of type
up(2l,m).
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Proof. By symmetry, it suffices to show that S1 does not contain a subsequence
of type up(2l,m). We will prove that the existence of such a subsequence would
imply that G has k pairwise crossing edges. Let

S = (s1,1, . . . , s2l,1, s1,2, . . . , s2l,2, . . . , s1,m, . . . , s2l,m)

be a subsequence of S1 of type up(2l,m) such that the first 2l terms are pairwise
distinct and si,1 = · · · = si,m = vi for 1 ≤ i ≤ 2l. For 1 ≤ j ≤ m, let ai,j be the
subcurve of the edge corresponding to the entry si,j in S1 between the vertex vi
and the main intersection point with e0. Let Ci = {ai,1, . . . , ai,m} for 1 ≤ i ≤ 2l.
Hence C1, . . . , C2l are 2l fans with apices v1, . . . , v2l respectively. Clearly, there is
a partition e0 = γ1∪· · · ∪γm such that C1, . . . , C2l are simultaneously grounded
by γ1 ∪ · · · ∪ γm.

We apply Lemma 8 to the fans C1, . . . , C2l that are simultaneously grounded
by γ1 ∪ · · · ∪ γm to obtain indices i1 < · · · < il and j1 < · · · < jr with r =
(log(4l)t+1 m)/22l = 3 · 2k − 4 and a subcurve γ∗ = γ∗

1 ∪ · · · ∪ γ∗
r ⊂ e0 such that

(i) the subfans C′
iw

= {aiw,j1 , . . . , aiw,jr} ⊂ Ciw for 1 ≤ w ≤ l are simultane-
ously well-grounded by γ∗

1 ∪ · · · ∪ γ∗
r ,

(ii) γ∗
z ⊃ γjz for 1 ≤ z ≤ r,

(iii) the subfans C′
i1
, . . . , C′

il
are all left-sided or all right-sided.

We will only consider the case that C′
i1
, . . . , C′

il
are left-sided, the other case

being symmetric.
Now for 1 ≤ w ≤ l and 1 ≤ z ≤ r, we define the subcurve a∗w,z ⊂ aiw ,jz whose

endpoints are viw and the first point from aiw,jz ∩ γ∗ as moving from viw along
aiw,jz . Hence the interior of a∗w,z is disjoint from γ∗. Let A∗

w = {a∗w,1, . . . , a
∗
w,r}

for 1 ≤ w ≤ l. Note that any two curves in A∗
w do not cross by construction,

and all curves in A∗
w enter γ∗ from the same side. For simplicity, we will call

this the left side of γ∗ and we will relabel the apices of the fans A∗
1, . . . , A

∗
l from

vi1 , . . . , vil to v1, . . . , vl. To finally reach a contradiction, we prove the following.

Claim 1. For l = 2k
2+2k and r = 3 · 2k − 4, among the l fans A∗

1, . . . , A
∗
l with

the properties above, there are k pairwise crossing curves.

The proof follows the argument of Lemma 4.3 in [8]. We proceed by induction
on k. The base case k = 1 is trivial. For the inductive step, assume the statement
holds up to k − 1. For simplicity, we let a∗i,j = a∗i,j′ for all j ∈ Z, where j′ ∈
{1, . . . , r} is such that j ≡ j′ (mod r). Consider the fan A∗

1, which is of size r.
By construction of A∗

1, the arrangement A∗
1 ∪ {γ∗} partitions the plane into r

regions. By the pigeonhole principle, there is a subset V ′ ⊂ {v1, . . . , vl} of size

|V ′| = l− 1

r
=

2k
2+2k − 1

3 · 2k − 4
,

such that all the vertices in V ′ lie in the same region. Let j0 ∈ {1, . . . , r} be an
integer such that V ′ lies in the region bounded by a∗1,j0 , a

∗
1,j0+1, and γ∗.

Let vi ∈ V ′ and 1 < j1 < r, and consider the curve a∗i,j0+j1 . Recall that a
∗
i,j0+j1

is disjoint from γ∗
j0 ∪ γ∗

j0+1 and thus intersects a∗1,j0 ∪ a∗1,j0+1. Let a ⊂ a∗i,j0+j1
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be the maximal subcurve with an endpoint on γ∗ whose interior is disjoint from
a∗1,j0∪a∗1,j0+1. If a intersects a∗1,j0+1 (i.e. the second endpoint of a lies on a∗1,j0+1),
then vi and the left side of γ∗

j0+2 ∪ · · · ∪ γ∗
j0+j1−1 lie in different connected

components of R2 \ (a∗1,j0+1 ∪ γ∗ ∪ a). Likewise, if a intersects a∗1,j0 , then vi and
the left-side of γ∗

j0+j1+1 ∪ · · · ∪ γ∗
j0+r−1 lie in different connected components of

R
2 \ (a∗1,j0 ∪ γ∗ ∪ a).
If a intersects a∗1,j0+1, then all curves a∗i,j0+2, . . . , a

∗
i,j0+j1−1 must also cross

a∗1,j0+1. Indeed, they connect vi with the left-side of γ∗
j0+2 ∪ · · · ∪ γ∗

j0+j1−1, but
their interiors are disjoint from γ∗ and a∗i,j0+j1 . Likewise, if a intersects a∗1,j0 ,
then all curves a∗i,j0+j1+1, . . . , a

∗
i,j0+r−1 must also cross a∗1,j0 . Therefore, we have

the following.

Claim 2. For half of the vertices vi ∈ V ′, the curves emanating from vi satisfy
one of the following:

(i) a∗i,j0+2, a
∗
i,j0+3, . . . , a

∗
i,j0+r/2 all cross a∗1,j0+1,

(ii) a∗i,j0+r/2+1, a
∗
i,j0+r/2+2, . . . , a

∗
i,j0+r−1 all cross a∗1,j0 .

We keep all curves satisfying Claim 2, and discard all other curves. Since r/2−2 =
3 · 2k−1 − 4 and

|V ′|
2

≥ l− 1

2r
=

2k
2+2k − 1

6 · 2k − 8
≥ 2(k−1)2+2(k−1),

by Claim 2, we can apply the induction hypothesis on these remaining curves
which all cross a∗1,j0+1 or a∗1,j0 . Hence we have found k pairwise crossing edges,
and this completes the proof of Claim 1 and thus Lemma 10. ��

We are now ready to prove Theorem 1.

Proof (Theorem 1). By Lemma 9 we know that, say, S1 contains a 2l-regular sub-
sequence of length 	|E′|/(8l)
. By Theorem 3 and Lemma 10, this subsequence
has length at most

n · 2l · 2(2lm−3) · (20l)10α(n)2lm .

Therefore, we have

⌈ |E′|
8l

⌉
≤ n · 2l · 2(2lm−3) · (20l)10α(n)2lm ,

which implies

|E′| ≤ 8n · 2l2 · 2(2lm−3) · (20l)10α(n)2lm .

Since l = 2k
2+2k and m depends only on k and t, for sufficiently large c (depend-

ing only on k and t) and α(n) ≥ 2, we have

|E(G)| < 2(k − 1)4|E′|+ 2n ≤ 2α(n)
c

n,

which completes the proof of Theorem 1. ��
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6 Proof of Theorem 2

A family of curves in the plane is simple if any two of them share at most one
point. A family C of curves is Kk-free if the intersection graph of C is Kk-free,
that is, no k curves in C pairwise intersect. By χ(C) we denote the chromatic
number of the intersection graph of C, that is, the minimum number of colors
that suffice to color the curves in C so that no two intersecting curves receive
the same color.

Let � be a horizontal line in the plane. Our proof of Theorem 2 is based on
the following result, proved in [10] in a more general setting, for simple Kk-free
families of compact arc-connected sets in the plane whose intersections with a
line � are non-empty segments.

Theorem 4 (Lasoń, Micek, Pawlik, Walczak [10]). Every simple Kk-free
family of curves C all intersecting � at exactly one point satisfies χ(C) ≤ ak,
where ak depends only on k.

Special cases of Theorem 4 have been proved by McGuinness [11] for k = 3 and
by Suk [18] for y-monotone curves and any k. We will also use the following
graph-theoretical result.

Lemma 11 (McGuinness [12]). Let G be a graph, ≺ be a total ordering of
V (G), and a, b ≥ 0. For u, v ∈ V (G), let G(u, v) denote the subgraph of G
induced by the vertices strictly between u and v in ≺. If χ(G) > 2a+b+1, then
there is an induced subgraph H of G such that χ(H) > 2a and χ(G(u, v)) ≥ 2b

for any uv ∈ E(H).

Let β be a segment in �. We will consider curves crossing β at exactly one
point, always assuming that this intersection point is distinct from the endpoints
of β. Any such curve γ is partitioned by β into two subcurves: γ+ that enters
β from above and γ− that enters β from below, both including the intersection
point of β and γ.

Lemma 12. Let C be a simple Kk-free family of curves all crossing β at exactly
one point. If γ+

1 ∩ γ+
2 = ∅ and γ−

1 ∩ γ−
2 = ∅ for any γ1, γ2 ∈ C, then χ(C) ≤

23k−6.

Proof. We proceed by induction on k. The base case k = 2 is trivial. For the
induction step, assume k ≥ 3 and the statement holds up to k−1. Assume for the
sake of contradiction that χ(C) > 23k−6. Let ≺ be the ordering of C according
to the left-to-right order of the intersection points with β. Apply Lemma 11 with
a = 0 and b = 3k− 7. It follows that there are two intersecting curves δ1, δ2 ∈ C
such that χ(C(δ1, δ2)) ≥ 23k−7, where C(δ1, δ2) = {γ ∈ C : δ1 ≺ γ ≺ δ2}. The
curves β, δ1 and δ2 together partition the plane into two regions R+ and R− so
that for γ ∈ C(δ1, δ2), γ

+ enters β from the side of R+, while γ− enters β from
the side of R−. Take any γ1, γ2 ∈ C(δ1, δ2) that intersect at a point p. It follows
from the assumptions of the lemma that p ∈ γ+

1 ∩ γ−
2 or p ∈ γ−

1 ∩ γ+
2 . If p ∈ R+,

then one of γ−
1 , γ−

2 (whichever contains p) must intersect δ1 or δ2. Similarly,
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if p ∈ R−, then one of γ+
1 , γ+

2 must intersect δ1 or δ2. In both cases, one of
γ1, γ2 intersects δ1 or δ2. Let C1 and C2 consist of those members of C(δ1, δ2)
that intersect δ1 and δ2, respectively. Clearly, both C1 and C2 are Kk−1-free,
and thus the induction hypothesis yields χ(C1) ≤ 23k−9 and χ(C2) ≤ 23k−9.
Moreover, χ

(
C(δ1, δ2)\ (C1 ∪C2)

) ≤ 1 as C(δ1, δ2)\ (C1∪C2) is independent by

the assumption γ+
1 ∩ γ+

2 = ∅ and γ−
1 ∩ γ−

2 = ∅ for any γ1, γ2 ∈ C. To conclude,
χ(C(δ1, δ2)) ≤ 2 · 23k−9 + 1 < 23k−7, which is a contradiction. ��

Now we prove the following theorem, which can also be generalized to simple
Kk-free families of compact arc-connected sets in the plane whose intersections
with a segment β are non-empty subsegments.

Theorem 5. Every simple Kk-free family of curves C all crossing β at exactly
one point satisfies χ(C) ≤ bk, where bk depends only on k.

Proof. Assume without loss of generality that no curve in C passes through the
endpoints of β. One can transform the family C+ = {γ+ : γ ∈ C} into a family
C̃+ = {γ̃+ : γ ∈ C} so that

• C̃+ is simple,
• each γ̃+ is entirely contained in the upper half-plane delimited by �,
• γ̃+

1 and γ̃+
2 intersect if and only if γ+

1 and γ+
2 intersect.

Similarly, one can transform the family C− = {γ− : γ ∈ C} into a family C̃− =
{γ̃− : γ ∈ C} so that

• C̃− is simple,
• each γ̃− is entirely contained in the lower half-plane delimited by �,
• γ̃−

1 and γ̃−
2 intersect if and only if γ−

1 and γ−
2 intersect.

The curves γ̃+ and γ̃− are respectively the upper and lower parts of the curve
γ̃ = γ̃+ ∪ γ̃− intersecting � at exactly one point. The family C̃ = {γ̃ : γ ∈ C} is
clearly simple and Kk-free. Therefore, by Theorem 4, χ(C̃) ≤ ak. Fix a proper
ak-coloring φ of C̃ and consider the set Ci consisting of those γ ∈ C for which
φ(γ̃) = i. It follows that γ+

1 ∩ γ+
2 = ∅ and γ−

1 ∩ γ−
2 = ∅ for any γ1, γ2 ∈ Ci.

Therefore, by Lemma 12, χ(Ci) ≤ 23k−6. Summing up over all colors used by φ
we obtain χ(C) ≤ 23k−6ak. ��

Proof (Theorem 2). By Lemma 2, it is enough to prove that every k-quasi-planar
simple topological graph on n vertices that contains an edge intersecting every
other edge has at most ckn edges, where ck depends only on k.

Let G be a k-quasi-planar simple topological graph on n vertices, and let pq be
an edge that intersects every other edge. Remove all edges with an endpoint at p
or q except the edge pq. Shorten each curve representing a remaining edge by a
tiny bit at both endpoints, so that curves sharing an endpoint become disjoint,
while all crossings are preserved. The resulting set of curves C is simple and Kk-
free and contains a curve γ crossing every other curve in C. Therefore, C \ {γ}
is Kk−1-free and |C \ {γ}| > |E(G)| − 2n. Since C can be transformed into an
equivalent set of curves so that γ becomes the horizontal segment β, Theorem 5
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yields χ(C \ {γ}) ≤ bk−1. Consequently, C \ {γ} contains an independent set S
of size

|S| ≥ |C \ {γ}|
bk−1

>
|E(G)| − 2n

bk−1
.

The edges of G corresponding to the curves in S form a planar subgraph of G,
which implies |S| < 3n. The two inequalities give |E(G)| < (3bk−1 + 2)n. ��
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