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Grayscale and color textures can have spectral informative content. �is spectral information coexists with the grayscale or
chromatic spatial pattern that characterizes the texture. �is informative and nontextural spectral content can be a source of
confusion for rigorous evaluations of the intrinsic textural performance of texture methods. In this paper, we used basic image
processing tools to develop a new class of textures in which texture information is the only source of discrimination. Spectral
information in this new class of textures contributes only to form texture. �e textures are grouped into two databases. �e �rst
is the Normalized Brodatz Texture database (NBT) which is a collection of grayscale images. �e second is the Multiband Texture
(MBT) database which is a collection of color texture images. �us, this new class of textures is ideal for rigorous comparisons
between texture analysis methods based only on their intrinsic performance on texture characterization.

1. Introduction

It has long been argued that texture plays a key role in
computer-based pattern recognition. Texture can be the only
e
ective way to discriminate between di
erent surfaces that
have similar spectral characteristics [1–6].

Texture was early recognized as mainly a spatial distri-
bution of tonal variations in the same band [7]. Di
erent
grayscale texture methods have been proposed based on
di
erent techniques [7–12]. For an objective and rigorous
comparison between di
erent texture analysis methods, it is
important to use standard databases [13, 14]. �e standard
Brodatz grayscale texture album [15] has been widely used as
a validation dataset [16, 17]. It is composed of 112 grayscale
images representing a large variety of natural grayscale
textures. �is database has been used with di
erent levels of
complexity in texture classi�cation [18], texture segmentation
[19], and image retrieval [20]. A rotation invariant version
of the Brodatz database was also proposed [21] and used for
texture classi�cation and retrieval [22, 23].

Recently, we have seen a growing interest in color texture
[24]. �is is a natural evolution of the �eld of texture, from

grayscale to color texture. �e use of color in texture analysis
showed several bene�ts [25–27]. In color texture, e
orts have
been made to �nd e�cient methods to combine color and
texture features [24]. Consequently, the evaluation of color
texture methods requires images in which color and texture
information are both sources of discriminative information.
Many color texture databases have been proposed for the
evaluation of color texture methods. �e VisTex database
from the MIT Media Lab, the Corel Stock Photo Library, the
color Outex database [21], and the CUReT database [28] are
the most widely used. Images from these databases have rich
textural and chromatic content and are ideal for color texture
methods.

In this paper, we examine the validation of texture
methods from a di
erent point of view. We start from
a simple observation: an image has spectral and textural
information, and both can be used in image description
[7]. �e spectral information can a
ect the performance
of texture characterization due to the di
erences in the
mathematical concept of these methods. A good example
is the cooccurrence matrices method [7] and the texture
spectrum method [8]. �e �rst is more sensitive to spectral
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information because it uses the spectral values as they appear
in the imageswhile the seconduses the relative spectral values
[29]. A rigorous evaluation of texture methods, without
the in�uence of spectral information, requires images with
texture as the only source of discrimination. �e use of such
images will guarantee that texture methods are compared on
the same basis of textural performance.

Here, we propose a new texture database in which
images do not have discriminative spectral information. �e
aim is to provide the pattern recognition community new
images that allow validation of texture analysis methods
based only on texture information. To do so, we used basic
yet e�cient image processing techniques to produce texture
images without any pure spectral informative content. �e
�rst database is the Normalized Brodatz Texture (NBT)
database, which is a collection of grayscale textures derived
from the Brodatz album. Images from the NBT database have
the rich textural content of the original Brodatz textures. At
the same time, their spectral content is uninformative. �e
second database is the Multiband Texture (MBT) database.
�is database is a collection of color images. �e color of
these images contributes only to form texture and does not
have any discriminative value if used as pure spectral infor-
mation. Images from these databases have di
erent levels of
complexity in terms of their intraband and interband spatial
distributions.�is allows developing texture characterization
problems with various degrees of di�culty. �e proposed
databases along with the existing databases form a more
complete dataset for the evaluation of texture methods.

�e paper is organized as follows. In Section 2, we
present the normalized grayscale Brodatz textures. Section 3
presents a comprehensive analysis of the chromatic and
textural content of some color texture images from theVisTex
database. Section 4 illustrates the concept of multiband tex-
ture using astronomical and remote sensing satellite images.
In Section 5, a new multiband texture database is presented
and analyzed. Section 6 presents experiments on multiband
texture database. Conclusions are drawn in Section 7.

2. Normalized Grayscale Textures

�is section presents the �rst texture category: grayscale
texture. A good example of this type of texture is the 112
texture images of the Brodatz album. �is album provides a
very useful natural texture database, which has been widely
used to evaluate texture discrimination methods [30–33].
Texture from this album can be digitized into di
erent gray-
level intervals resulting in di
erent background intensities. In
Figure 1 we give an example of six di
erent Brodatz textures
organized into two sets: D32, D28, and D10 (top row); and
D64, D95, and D75 (bottom row). For example, D32 has a
black background while D28 and D10 have gray and white
backgrounds, respectively.�is background e
ect introduces
discriminative information to these images, in addition to
their initial texture content. Indeed, as shown in Figure 2,
these textures have localized modes, and it is possible to
discriminate between them with signi�cant accuracy using

D32 D28 D10

D64 D95 D75

Figure 1: Samples of Brodatz grayscale textures.

only their histograms (i.e., background intensity, without
using texture information).

It would be interesting to compare all texture analysis
methods using images with the same gray-level interval so
that the background intensity does not interfere in the texture
discrimination process. Various simple, and yet e�cient,
techniques can be used to perform this task. In this paper we
used linear stretching [34], histogram equalization [35], and
contrast limited adaptive histogram equalization [34].

We removed the background e
ect of the Brodatz textures
by normalizing them to the same eight-bit (256 gray levels)
intensity interval. A good normalization algorithm needs to
preserve the visual appearance of the texture of the original
image, while redistributing the image gray levels in order
to occupy the whole 256 intensity interval. To do so, the
histograms of all the 112 Brodatz images were generated and
visually analyzed. �en, di
erent normalization techniques
were tested on each image, and the one that redistributed
the images’ gray values with the least visual alteration of
the texture was selected. Figures 3 and 4 show the normal-
ized images in Figure 1 and their corresponding histograms,
respectively. Unlike the original images, the gray values of
the normalized images occupy the whole 256 gray-level
range and, consequently, it is not possible to discriminate
between them using only �rst-order statistics. �e use of
texture information is necessary to discriminate between
these normalized texture images.

We produced a new database called the Normalized
Brodatz Texture (NBT) database, which is available online
(http://pages.usherbrooke.ca/asa�a/mbt/) to allow the vali-
dation of texture analysis methods based only on texture
information.

3. Colored Textures

�is section presents the second texture category referred to
as colored texture. A representative example of this category
is the VisTex database. It can be seen as a generalization of
the Brodatz database from grayscale to color texture. In this
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Figure 2: Histograms of the six texture images shown in Figure 1.

D32 D28 D10

D64 D95 D75

Figure 3: Normalized textures in Figure 1.

section we will analyze the chromatic and textural content of
some images from this database.

3.1. Chromatic Content Analysis. Figure 5 presents three typi-
cal natural color texture images (i.e., Fabric.0001,Wood.0002,
and Water.0005; each image is 512 by 512 pixels) from the
VisTex database. From a chromatic viewpoint, each texture
image in Figure 5 has a predominantly monotone color:
brown, brown-gray, and blue-green (from le� to right). �is
monotone color is the result of the gray-level distribution
of each of the three RGB (red, green, blue) channels shown
in Figure 6. �e histograms of these channels show well-
localized peaks, and the di
erences between the three his-
tograms of each texture are mainly attributed to shi�s in the
pixel intensities along the x-axis without a signi�cant change
in the histogram shape. �e well-localized peaks produce
the same background as for Brodatz images (Section 2). On
the other hand, the correlation coe�cients between the three
RGB channels in each texture image show that they were
strongly correlated (� > 0.909, see Table 1).

Table 1: Correlation coe�cients between the three RGB channels of
three images from the VisTex database.

�(R,G) �(R,B) �(G,B)
Fabric.0001 0.998 0.923 0.953

Wood.0002 0.964 0.909 0.972

Water.0005 0.979 0.932 0.914

Table 2: Correlation coe�cients for the textural content of the three
channels of the Fabric.0001 image.

�(R,G) �(R,B) �(G,B)
Contrast 0.997 0.960 0.975

Dissimilarity 0.998 0.972 0.982

3.2. Textural Content Analysis. In Figure 7 the three RGB
channels of the Fabric.0001 texture image are presented
separately. �ese three channels contain the same texture
with di
erent dominant gray-level intensities. In order to
provide quantitative measurements of the texture similarity
of these three RGB channels, cooccurrence matrix features
(contrast and dissimilarity) were estimated separately for
each channel using a moving window of �ve by �ve pixels
and a displacement vector of one pixel in the horizontal
direction (0∘). Six textural channels (i.e., two features for
each of the three channels) were generated and organized
into two triplets (i.e., one triplet for each texture feature).
�e correlation coe�cient (�) was then calculated for the
three textural channels of each triplet in order to analyze the
variation of texture between the three channels. As shown in
Table 2, the texture features of the same image were highly
correlated with � ≥ 0.960.

In order to provide more detailed evaluation measures,
these correlations were also estimated between the rows of
the three channels. �e results are summarized in Figure 8.
For a �xed texture feature, this �gure gives the correlation
coe�cient (y-axis) between the �th row (� is the index in
the x-axis) of this texture feature image estimated in a �xed
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Figure 4: Histograms of the six textures shown in Figure 3.

Fabric.0001 Wood.0002 Water.0005

Figure 5: Examples of color texture images from the VisTex
database.

channel and the �th row of the same texture feature image
estimated in a di
erent channel.�is �gure can be interpreted
as correlation pro�les along the row dimension of the texture
feature images.

As shown in Figure 8, an important correlation exists
between the texture information for the three channels of the
Fabric.0001 texture. For both texture features (i.e., contrast
and dissimilarity), the maximum correlation was recorded
between the R and G channels (� close to 1). For the six
correlation pro�les, the minimum recorded correlation was
0.881, con�rming that, just as for the chromatic content, the
texture content of the three Fabric.0001 channels was highly
correlated. Similar results were obtained for other VisTex
images.�is high similarity explains whymethods using only
one band to estimate texture are successful.

3.3. Colored Brodatz Texture Database. Given the strong
chromatic content and the high textural similarity of VisTex
images, it was possible to transform grayscale Brodatz images
to color images similar to VisTex images. To do so, for each
Brodatz image, two additional channels were generated to
form pseudo-RGB color texture images by a simple gray-level
shi�. �is produced color Brodatz texture images (Figure 9)
with richly textured content (the same as the original Brodatz
textures) and high informative color content similar toVisTex
images. �is process produced a gradient of colors (e.g., D44
and D95) that gave these images a natural appearance, while

preserving the original Brodatz texture. �e entire grayscale
Brodatz album (112 images) was generalized from grayscale
to color texture by random histogram shi�ing. We call this
database the Colored Brodatz Texture (CBT) database, and it
is available online (http://pages.usherbrooke.ca/asa�a/mbt/).

4. Multiband Texture

�is section presents the third category of texture referred
to as multiband texture. A good example of this category
is astronomical and remote sensing images. �is section
presents an analysis of the chromatic and textural content of
some of these images.

4.1. Chromatic Content Analysis. Figure 10 presents three
images where the �rst two are astronomical images from the
Spitzer and Hubble NASA telescopes, and the third is from a
remote sensing earth satellite. �ese images were taken with
instruments having relatively high spatial resolutions (e.g.,
∼1.8m for WorldView-2). �is produces contrasting bands
because it is possible to detect small details in the observed
object. Indeed, as shown in Figure 11, the histograms of these
images covered the whole 256 gray-level range. �is is in
contrast with images in Figure 6. On the other hand, the
wavelengths depicted in each of the three-color composites
are very di
erent: for example, for the Tarantula Nebula
image, emission at 775 nm is depicted in green and 0.826 nm
in blue. �is produces RGB bands that are less correlated
compared with images with closer wavelengths, such as
natural images taken in the visible spectrum domain. As
shown in Table 3, the correlation coe�cients between their
RGB channels are relatively small compared with those of
VisTex images given in Table 2 (e.g., � = −0.108 and � = 0.390
between the red and blue bands of the WorldView-2 and
Tarantula Nebula images, resp.). �ese two characteristics
related to the spatial resolution and thewavelength contribute
to the formation of images with rich color content.
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Figure 6: RGB histograms of two of the texture images in Figure 5.

R G B

Figure 7: RGB channels of the Fabric.0001 texture image.

Table 3: Correlation coe�cients between the three RGB channels
for the images in Figure 10.

�(R,G) �(R,B) �(G,B)
Galaxy IC-342 0.842 0.766 0.751

Tarantula Nebula 0.869 0.390 0.710

WorldView-2 0.606 −0.108 0.643

Quantitative measures of the color distribution of images
in Figure 10 were carried out based on the histogram of the

hue component of the HSI transform [36]. Figures 12(a) and
12(b) give the results obtained for the two images: Galaxy
IC-342 and the portion of the WorldView-2 image showing
a quarry. �e x-axis represents colors ranging from hue =
0∘ to hue = 360∘ and the y-axis is the frequency of the
corresponding color. �ese two �gures show that the images
in Figure 10 have a large color range instead of a speci�c
localized color range, as was the case for VisTex images
(Figures 12(c) and 12(d)). In these images, there is no color
background; consequently, it is not possible to discriminate
between these images based only on their color.

4.2. Textural Content Analysis. Cooccurrence-matrix-based
features (contrast and dissimilarity) were estimated and
analyzed (as described in Section 3) for two images in
Figure 10 (Galaxy IC-342 andWorldView-2).�e correlation
coe�cient (�) was then calculated between the three textural
channels of these two images as described in Section 3.
Results are summarized in Table 4. Overall, the comparison
with Table 2 showed that images from this category of texture
have less correlated textural content than images from the
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Figure 8: Per-row correlation coe�cient pro�le of the cooccurrence matrix features of the Fabric.0001 image.

D28 D101 D17 D64 D14

D95 D111 D44 D109 D32

D99 D75 D71 D112 D104

Figure 9: Texture samples from the Colored Texture Brodatz (CBT) database.

colored texture category (Table 2). �e textural content of
Galaxy IC-342 bands is less correlated than that of the
WorldView-2 image. �e textural content of some bands in
WorldView-2 showed a very small correlation. �is was the
case, for example, for the dissimilarity of the red and blue
channels (� = 0.087).

For a detailed analysis of the textural content of images
in Figure 13, per-row correlation coe�cient (�) pro�les were
also estimated as described in Section 3. Except for two
correlation pro�les estimated between the red and the green
bands of the WorldView-2 image, the ten other pro�les
showed small correlations.�ismeans that the bands of these

two images possess di
erent textural content, which was in
contrast with the VisTex images (Figure 8).

Given the low informative value of the chromatic content
of these images, and the low correlation between the textural
content of their spectral bands, we can conclude that, for
these images, the most discriminative information is texture.
�is includes intraband and interband texture information. It
would be useful to have a standard database in which images
have the same characteristics as those studied in this section.
A standard database would be useful for the validation of
methods focusing only on the texture of color images because
the color information has low informative content.
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Table 4: Correlation coe�cients for the textural content of the three channels of the images in Figure 10.

Galaxy IC-342 WorldView-2

�(R,G) �(R,B) �(G,B) �(R,G) �(R,B) �(G,B)
Contrast 0.544 0.402 0.494 0.768 0.431 0.728

Dissimilarity 0.634 0.502 0.540 0.794 0.087 0.365

Galaxy IC-342 WorldView-2Tarantula Nebula

Figure 10: �ree multiband textures. Galaxy IC-342: NASA Spitzer
Space Telescope. Red = 24.0 �m, green = 5.8�m and 8.0 �m,
and blue = 3.6 �m and 4.5 �m. Tarantula Nebula: red = 4.5 �m,
5.8 �m, and 8.0�m (all from Spitzer IRAC), green = 775 nm from
Hubble ACS Telescope and fromHubbleWFC3 Telescope, and blue
= 0.826 nm from Chandra Telescope ACIS. WorldView-2: red =
427 nm, green = 724 nm, and blue = 949 nm.

5. Developing the Multiband Texture
(MBT) Database

We developed a new texture database for the validation of
methods focusing on intraband and interband texture. It
is referred to as the Multiband Texture (MBT) database.
�e key concept was to combine three di
erent grayscale
textures to form a new three-channel color texture. �ese
grayscale textures were taken from the proposed NBT
database (Section 2). As NBT textures do not have pure
spectral discriminative information, the chromatic content
of the resulting three-channel texture images do not have
discriminative value. In addition, as each image in the NBT
has rich texture content, the resulting color textures from the
MBT have important intraband and interband discriminative
textural content.

To have a clear idea of the visual appearance of images
from this new database, Figure 14 presents a set of 15 images.
�e names of the three original NBT textures that form
each multiband texture are indicated at the bottom of each
image. For example, the D28D92D111 multiband texture
indicates that the D28 Brodatz texture was used for the
red channel, D92 for the green, and D111 for the blue. �is
�gure shows that multiband textures have a wide variety
of textures, including coarse and �ne textures, such as
D31D99D108 and D4D16D17, respectively; in addition, they
have directional and random textures, such as D51D83D85
and D109D110D112, respectively.

We analyzed the chromatic and textural content of some
images from the MTB database, exactly as was done in the
previous sections. As shown in Figure 15, MBT images have
rich color content with an almost �at hue histogram (Figures
15(a) and 15(b)). In addition, the correlation coe�cients
between the three RGB channels of these multiband textures
were very small (� ≤ 0.183). �is demonstrates that the
chromatic information has no discriminative value.

�e per-row correlation of the textural content of multi-
band images showed a very low correlation (Figures 15(c)
and 15(d)). �e average of the 9 × 640 per-row correlation
measures was 0.36 with a standard deviation of 0.088,
whereas it was 0.99 with a standard deviation of 0.018 for the
VisTex images.

�e chromatic and textural content of the MBT images is
similar to that of the astronomical and remote sensing images.
However, some improvement over these latter images was
found as the color distribution of the MBT images is richer
(almost uniform color distribution) and their textural content
is less correlated.

When we focus on studying only the textural con-
tent (intraband and interband spatial interactions) of color
images, without being in�uenced by pure color information,
MTB images are ideal.�e color ofMBT images is an intrinsic
part of the texture itself. �is color is the result of texture
variations within and between the di
erent spectral channels.
�e complete characterization of MBT images can only be
achieved by the simultaneous analysis of the texture of its
three channels.

�e proposed MTB database can be seen as a gener-
alization of the study of Rosenfeld et al. [37] in which
the authors worked on a single multiband texture image
generated arti�cially by introducing a spatial shi� between
the di
erent bands. �e spatial shi� was used to amplify the
di
erences between textures of the di
erent bands.�eMBT
database shows more diversity in the visual appearance of
texture and it has di
erent complexity levels. �e MBT is
not totally new to the image processing community because
it was developed from the well-documented Brodatz album.
Previously acquired knowledge from the analysis of texture
in the Brodatz album can therefore be useful for the analysis
of MBT images.

Textures are usually classi�ed as arti�cial for computer-
generated textures and genuine for textures found in human
surroundings [38]. Textures from theMBThave both aspects.
�e three channels of each multiband texture are real
textures from the Brodatz album. At the same time, as
the three channels of each multiband texture do not come
from the same surface, multiband images are also arti�cial.
Here we propose a new category of texture called hybrid
texture—textures from the MBT database are from this
new category. �e visual appearance of the 154 textures
composing this new database is very diverse: �ne, medium,
coarse, random and directional, and so forth. In addition,
the texture of the three bands of each color image from
the MBT database has di
erent levels of similarity. �is
provides di
erent levels of di�culty for characterizing inter-
band texture information. �is database is available online
(http://pages.usherbrooke.ca/asa�a/mbt/).
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Figure 11: RGB histograms of the three texture images in Figure 10.

Based on our results, multiband texture can be de�ned
by extending the de�nition proposed by Haralick et al. [7]
for grayscale texture: the texture of color (or, in general,
multiband) images is formed by the spatial distribution of the
tonal variations in the same band plus the spatial distribution
of the tonal variations across di
erent bands. �e �rst
distribution in the proposed de�nition de�nes the grayscale
texture, de�ned by Haralick in [7]. �e second one de�nes
the part of texture resulting from interband spatial variation.
�ese two types of distributions de�ne multiband texture.
Both spatial distributions contribute in di
erent amounts to
form the whole texture of the color or multiband image.

An important aspect of this de�nition is that it clearly
identi�es a certain part of color as an intrinsic part of
the texture. Indeed, gray-level variation across the di
erent
bands produces color and, when this variation is the result
of interband texture di
erences, it is identi�ed as part of
texture. Consequently, this de�nition introduces a distinction
between this chromatic part of texture and the pure chromatic
image content that does not possess texture values.

6. Experiments on MBT Database

Section 5 showed that images from the MBT database have
almost the same chromatic content and also have important
intraband and interband spatial variations. �is has two
important implications. �e �rst is that it is not possible
to discriminate between MBT images using only chromatic
information. �e second is that it is not possible to dis-
criminate betweenMBT images using only intraband texture
characterization as it is usually the case for existing color
texture databases. In this section we tested the validity of
these two observations in the context of texture classi�cation.
For that, we carry out two independent classi�cations. �e
�rst used only spectral information (RGB values) and the
second used only intraband texture information. We used a
mosaic of eight textures (Figure 16) from the MBT database.
Figures 17(a) and 17(b) indicate the names of the MBT
images according to their relative positions in the mosaic
and the three textures from the Normalized Brodatz Texture
(Section 2) that were used to generate each MBT image.
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Figure 12: Color content comparison between multiband textures (a and b) and VisTex color textures (c and d). �e well-localized peaks in
Fabric.0001 and Water.0005 (bottom row) indicate the presence of a dominant color tone, whereas the �at histograms in Galaxy IC 342 and
WorldView-2 (top row) indicate a wide range of color content.

6.1. Spectral Classi�cation. �e mosaic in Figure 16 was
classi�ed using several benchmark spectral-based algorithms
including K-means [39], Isodata [39], maximum likelihood
[35], and mean-shi� [40]. �e results for all of the tested
algorithms showed that none of themwere able to identify the
eight textures. For the �rst three classi�cation algorithms, for
example, the results showed that all eight textureswere almost
evenly distributed over the entire area of the mosaic. �is
supported the observation in Section 5 related to the quasi-
uniform distribution of the color content inMTB images. For
themean-shi� segmentation algorithm, the boundaries of the
detected regions were totally di
erent from those of the eight
textures.�is result provides clear evidence that color texture
images from theMBTdatabase donot possess pure chromatic
informative content.�e highest overall classi�cation rate for
the spectral classi�cations was 12.5%.

6.2. Textural Extraction and Classi�cation. Among the exist-
ing texture analysis methods, we selected the wavelet trans-
form [35].�is transform is a powerful technique for the anal-
ysis and decomposition of images at multiple resolutions and
di
erent frequencies [35]. �is property makes it especially
suitable for the segmentation and classi�cation of texture
[9, 41, 42].Weused as texture feature the local energymeasure

of each wavelet subband [9] which has proven to be e�cient
in texture classi�cation [9, 43, 44]:

� = 1	2∑
R

�(�, 
)2, (1)

where � is the energy estimated using a neighborhood R of
size	,� is the wavelet coe�cient, and (�, 
) gives the spatial
position.

�e resulting output for a transformed single band at
a �xed level is one approximate subband and three detail
subbands (i.e., horizontal, vertical, and diagonal). For texture
analysis, only the detail subbands were used [45]. As a result,
the energy feature was estimated using only the three detail
subbands separately. �e choice of the wavelet function is a
crucial step in texture analysis [46]. It is beyond the scope
of this paper to present a detailed study of the e
ect of
wavelet function characteristics on multiband texture dis-
crimination. For the purposes of this study, di
erent wavelet
functions were tested. �e best combination of wavelet
function and moving window for energy feature calculation
was the biorthogonal spline function and a moving window
of 33 by 33. �is was �xed empirically based on the overall
classi�cation accuracy of the mosaic in Figure 16.

We used one-level wavelet decomposition because more
decomposition levels did not bring signi�cant improvement.
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Figure 13: Per-row correlation coe�cient pro�le of the cooccurrence matrix for the Galaxy IC-342 (a and b) and WorldView-2 (c and d)
images.

Consequently, the classi�cation process used three texture
feature images as input in the case of the intensity band and
nine in the case of the three-band analysis.

Many classi�cation processes have been proposed by the
pattern recognition community in the literature. For our
experiments, a simple minimum distance classi�er scheme
based on the Euclidean distance was used in order to test
the discrimination power of texture features using a basic
classi�er. Training samples of 50 by 50 pixels each were
selected from the center of each of the eight textures in
Figure 16 to serve as reference data. �e size of 50 by 50
pixels was �rst determined by evaluating the accuracy of the
classi�er with di
erent sample sizes ranging from 10 × 10 to
100 × 100 pixels.

In color images, texture is usually extracted either in the
intensity image component [47–50] or in each of the three
RGB bands separately [51–53]. Both of the two strategies were
tested in two di
erent classi�cations. �e �rst classi�cation
related to the �rst strategy used three texture bands (3 details
subbands).�e second one used nine texture bands (3 details
bands × 3 spectral bands).

Table 5: Classi�cation results for the three texture analysis methods
comparing one-band and three-band texture analysis.

Intensity �ree band

Overall classi�cation rate 22.6 46.8

�e classi�cation results are summarized in Table 5. We
can notice that that the intensity component did not preserve
multiband texture. It only provided an overall classi�cation
rate of 22.6%.�e three-band strategy provided better results
with an overall classi�cation rate of 46.8%.�ismeans that for
MBT images, the analysis of each band separately preserves
better texture than the use of the intensity image component.
However, none of the two strategies was able to achieve
satisfactory classi�cation rate of theMBTmosaic.�ismeans
that texture of this mosaic cannot be simpli�ed into three
independent texture plans or as one intensity component.
Texture ofMBT should be analyzed as a whole by considering
the intraband and the interband spatial interactions.
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Figure 15: Color and texture content of some images from the multiband texture (MBT) database.
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Figure 16: Mosaic of eight textures from the MBT database.

7. Conclusion

�is paper examined various fundamental issues of texture
information in grayscale, color, and multiband images.

For grayscale texture, we showed that pure spectral
information can have a discriminative role. To make texture
the main discriminative source of information, we presented
an improvement over the Brodatz texture database by nor-
malizing it, in order to eliminate the grayscale background
e
ect. �is new database is referred to as the Normalized
Brodatz Texture (NBT) database.

For color images, we introduced the concept of colored
texture to identify the category of textures in which color
is a background with important informative value that is
dissociated from texture. Based on this concept, we proposed
the Colored Brodatz Texture (CBT) database, which is an
extension of the Brodatz texture database. �is new database

Dz87 Dz107
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Dz105 Dz153

(a)

D33D54D57D19D54D93

D1D83D104D67D80D103
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Figure 17: (a) Names and position of the eight MBT images in
Figure 16. (b) Names of the three textures from the NBT database
(Section 2) used to form each texture MBT in (a).

has the advantage of both preserving the rich textural content
of the original Brodatz images and also having a wide variety
of color content.

We introduced the concept of multiband texture to
describe texture resulting from the combined e
ects of intra-
band and interband spatial variations. We showed that this
type of texture exists in images with high spatial resolution
and/or images with spectral channels having very di
erent
wavelengths. To study multiband textures, we proposed a
new database referred to as the Multiband Texture (MBT)
database. Images from this database have two important
characteristics. First, their chromatic content—even if it is
rich—does not have discriminative value, yet it contributes to
form texture. Second, their textural content is characterized
by high intraband and interband variation. �ese two char-
acteristics make this database ideal for the texture analysis
of color images without the in�uence of color information.
It �lls the gap for databases suitable for the analysis of
generalized spatial interactions in multiband space. �e
classi�cation results of the eight textures from the MBT
database con�rmed that this database can be used to develop
intraband and interband texture-based analysis methods.
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