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Abstract. New finite element methods based on Cartesian triangulations are presented for two dimensional elliptic

interface problems involving discontinuities in the coefficients. The triangulations in these methods do not need to fit the

interfaces. The basis functions in these methods are constructed to satisfy the interface jump conditions either exactly or

approximately. Both non-conforming and conforming finite element spaces are considered. Corresponding interpolation

functions are proved to be second order accurate in the maximum norm. The conforming finite element method has been

shown to be convergent. With Cartesian triangulations, these new methods can be used as finite difference methods.

Numerical examples are provided to support the methods and the theoretical analysis.
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1. Introduction. In this paper, we develop finite-element immersed interface methods using Carte-

sian grids for differential equations with discontinuities in the coefficients across one or several arbitrary

interfaces in the solution domain. These problems are referred to as interface problems in this paper. A

model problem is

−∇ · (β∇u) = f, (x, y) ∈ Ω,

u|∂Ω = 0,
(1.1)

defined in a domain Ω with an immersed interface Γ, see Fig. 1.1 for an illustration. A vast collection

of applications involve solving such an equation, for example, the projection method for solving Navier-

Stokes equations involving two phase flow [4, 8, 21, 44], the Hele-Shaw flow [19, 20] and many others. If a

problem of interest involving two different materials, such as water and air, solid and liquid in solidification

problems, the coefficient β will typically have a jump across the interface between two materials. In some

cases, the jump can be very big, for example, the ratio of the density of the air and water is about 1:1000

in the magnitude.

Our methods can also be applied to those models whose source term f in (1.1) have a delta function

singularity, for example

f(x) = fc(x) −
∫

Γ

Q(X(s)) δ(x − X(s)) ds(1.2)

where fc is a bounded function, δ is the two dimensional Dirac-delta function, X(s) is the arc-length

parameterization of the interface Γ, and Q(X(s)) is the source strength on the interface. The expression

above can also be written as

f = fc − Q δΓ.(1.3)
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Such a source function is one of the most important features of Peskin’s immersed boundary method

(IBM) [40, 41], which has been used for many problems in mathematical biology and computational fluid

mechanics, see for example, [5, 13, 14, 16, 43] and many others.

When β ∈ C2 in Ω− ∪ Ω+ excluding the interface Γ, see Fig.1.1, then u(x, y) ∈ H1, see [6]. From

equation (1.1) and (1.2), it is easy to obtained the jump conditions

[u]Γ = u(x, y)+ − u(x, y)− = 0, continuity condition,(1.4)
[

β
∂u

∂n

]

Γ

= β+ ∂u+

∂n
− β− ∂u−

∂n
= Q(s), net flux across the interface,(1.5)

where the jump is defined as the difference of the limiting values from the outside of the interface to the

inside, and ∂u+

∂n
is the normal derivative of the solution. Therefore, the model interface problem can be

written in an equivalent form:

−∇ · (β∇u) = fc, (x, y) ∈ Ω − Γ, fc ∈ L2(Ω),

[u]Γ = 0,

[

β
∂u

∂n

]

Γ

= Q(s), u|∂Ω = 0.
(1.6)

In this paper, we will use the two known jump conditions (1.4)-(1.5) to develop new finite element methods

to solve the interface problem above.
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Fig. 1.1. A rectangular domain Ω = Ω+ ∪ Ω− with an immersed interface Γ. The coefficients β(x) may have a jump

across the interface.

A related problem is the parabolic equation

ut + c · ∇u = ∇ · (β∇u) + f(x, t),(1.7)

in which the interface may be fixed or moving with time t, and the coefficient c and β may have different

values across the interface. An efficient discretization for (1.1) is essential to the numerical solution of

this parabolic type equation.

Solving the Poisson equation (1.1) with discontinuous coefficients and/or singular source terms, usu-

ally is not only the slowest part of the entire simulation for many applications, but also leads to the loss

in accuracy. Solving interface problems efficiently and accurately is still a challenge because of many

irregularities associated with them. Many numerical methods have been developed, and below is a brief

review on those closely related to this paper.

1.1. Body fitting grid methods based on finite element discretization. It is well known

that a second order accurate approximation to the solution of an interface problem can be generated by
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the Galerkin finite element method with the standard linear basis functions if the triangulation is aligned

with the interface (body fitting grid), [2, 6, 7, 18, 47]. One advantage of the finite element formulation

is that the resulting linear system of equation is symmetric positive definite for a self-adjoint elliptic

operator which ensures the stability of the algorithm. Applications of such methods can be found in [38]

and many others.

However, it is difficult and time consuming to generate a body fitting grid for an interface problem in

which the interface separates the solution domain into pieces or problems with complicated geometries.

Such a difficulty becomes even more severe for moving interface problems because a new grid has to be

generated at each time step. Few publications can be found on using body fitting grids to solve moving

interface problems with topological changes such as merging and splitting.

Domain decomposition methods can also be used for solving interface problems, for example, [11].

On each sub-domain, one needs to solve the differential equation defined on an irregular domain. The

information then is transfered between the different domains.

1.2. Cartesian grid methods based on finite difference discretization. Using Cartesian or

adaptive Cartesian grids for interface problems has the following merits:

• There is almost no cost in the grid generation. This is very significant for moving bound-

ary/interface problems.

• There are many efficient and popular packages/solvers and numerical methods which are written

for Cartesian grids, for examples, fast Poisson solvers such as fishpack, Navier-Stokes equation

solvers in two and three dimensions on a rectangular square or a box, Clawpack [24] for con-

servation laws, and FFT packages etc. It is relatively easier to incorporate new methods using

existing packages/solvers based on the same grid.

• Recently, the level set method, first proposed in [39], has been successfully used to treat a number

of moving interface/boundary problems, especially for problems with topological changes, and

for problems in three dimensions. The level set method works best with Cartesian grids.

• It is easier to generate super convergent approximations to important physical quantities such as

fluxes using Cartesian grids.

It is true that numerical methods based on Cartesian grids may have some difficulties to adjust

and may lose accuracy for curved interfaces/boundaries. Due to non-smoothness of the solutions, many

standard finite difference algorithms and analysis do not apply for interface problems. A lot of efforts

have been made in this regard for various problems. Below we just review some methods in the literature

which are related to this paper.

The smoothing method for discontinuous coefficients. A simple approach is to smooth out the

coefficient, see for example [44]. The level set expression of interfaces makes the smoothing method much

easier for two and three dimensional problems. However, solutions are also smeared out by the smoothing

method. Another commonly used and sophisticated method is the harmonic averaging technique [3, 42].

While this method is second order accurate for certain one dimensional problems, usually it is not for

two and three dimensional problems.

Peskin’s immersed boundary method. If there is only a singular source term and the coefficient

is continuous, a very simple and first order method is Peskin’s immersed boundary method (IBM) using

a discrete delta function [40, 41].

Fast solvers based on boundary integral equations. Based on integral equations, some fast

solvers are available for Poisson equations with piecewise constant coefficients and other problems [17, 35,
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36, 37]. In these methods, an integral equation is set up at some points on the interface and the boundary

for unknown source strength, and the solution then can be found using a fast boundary integral technique.

Non-homogeneous source terms can be decomposed as two homogeneous problems.

Immersed interface methods. The original motivation of the immersed interface method (IIM)

[25, 28] is to develop a second order finite difference scheme for very general second order elliptic and

parabolic linear PDEs in which an integral equation may not be available, for example, (1.1) with variable

coefficient β. In this regard, the method is successful and has been applied to problems ranging from

one, two, and three dimensional problems [29]; elliptic, parabolic [46], hyperbolic [27], and mixed type

equations [34]; fixed and moving interfaces [30], and many applications [19, 26, 32, 33]. However, with

variable piecewise coefficients, the resulting linear system of equation from IIM is not symmetric positive

definite. While it is stable for one dimensional problems and certain problems in two dimensions [22], the

stability of the algorithm may depend on the choice of one or more additional grid points in addition to the

standard finite difference scheme [15]. In this regard, the method is not very robust. Various attempts,

such as the multigrid method by L. Adams [1] and the explicit jump immersed interface method (EJIIM)

[45], to mention just a few, have been made to improve the stability and to speed up the method.

It is the purpose of this paper to combine the advantages of simple structure of Cartesian grids and

the finite element formulation to develop accurate, stable numerical methods for interface problems. More

precisely, we want to develop new methods that are accurate at all grid points including those near or on

the interface; stable with nice algebraic structure (the resulting linear system of equation is symmetric

positive definite for self-adjoint elliptic equations) even with discontinuous coefficients. We also hope

the methods developed here can be built into other Cartesian grids based methods such as LeVeque’s

Clawpack and Berger’s AMR (adaptive mesh refinement) and other packages. The error analysis presented

in this paper requires the interface Γ to be smooth; the solution to be piecewisely twice differentiable1.

The algorithms proposed in this paper, however, do not have any particular restrictions compared with

standard finite element methods.

We now take a look at the weak formulation of the interface problem. Assuming f(x, y) in (1.1) has

the form of (1.2), we multiply a test function v(x, y) ∈ H1
0 (Ω) to both sides of the first equation in (1.6)

and integrate over the domain Ω+ and Ω−, respectively. Since fc ∈ L2(Ω), we have

∫ ∫

Ω

fc v dxdy =

∫ ∫

Ω+

fc v dxdy +

∫ ∫

Ω−

fc v dxdy.(1.8)

Applying the Green’s theorem in the domain Ω+, the outside of the closed interface Γ, we get

−
∫

∂Ω

βv
∂u

∂n
ds −

∫

Γ

β+v+ ∂u+

∂n+
ds +

∫ ∫

Ω+

β∇u · ∇v dxdy =

∫ ∫

Ω+

fc v dxdy,(1.9)

where n+ and n− = n are the unit normal directions of the interface Γ pointing inward and outward

respectively. Similarly there is the following relation from the inside of the interface Ω−:

−
∫

Γ

β−v− ∂u−

∂n−
ds +

∫ ∫

Ω−

β∇u · ∇v dxdy =

∫ ∫

Ω−

fc v dxdy.(1.10)

Since

−
∫

Γ

β+v+ ∂u+

∂n+
ds =

∫

Γ

β+v+ ∂u+

∂n−
ds =

∫

Γ

β+v+ ∂u+

∂n
ds,

1Such a solution is usually in H1 but not in H2.
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by applying the zero boundary condition v|∂Ω = 0 and adding the (1.9) and (1.10) together, we get:

∫

Γ

β+v+ ∂u+

∂n
ds −

∫

Γ

β−v− ∂u−

∂n
ds +

∫ ∫

Ω

β∇u · ∇v dxdy =

∫ ∫

Ω

fc v dxdy.

Using the flux jump condition (1.5), we obtain the weak form for the interface problem

∫ ∫

Ω

β(x, y)∇u · ∇v dxdy =

∫ ∫

Ω

fc v dxdy −
∫

Γ

vQds, ∀v(x) ∈ H1
0 (Ω).(1.11)

The weak form does allow discontinuities in the coefficient and the derivatives of the solution. The

existence of the weak solution is discussed in [6, 7]. Theoretically, the weak form is the same as those

discussed in many standard finite element method text books, see [6, 7, 23] for example, and will be used

to derive related finite element methods later in this paper.

This paper is organized as follows. In Sec. 2, a non-conforming finite element space is introduced.

The related basis functions satisfy the homogeneous jump conditions (1.4)-(1.5) with Q(s) ≡ 0 either

exactly or approximately. The interpolation function in the new finite element space is constructed and

analyzed. A non-trivial numerical example using the Galerkin finite element method is also given. Similar

discussions are carried out for a conforming finite element space in Sec. 3. The key idea is to extend

the support of the basis function if necessary. The Galerkin finite element method has been shown to be

convergent in the H1 norm for certain interface problems. Our discussion leads to another finite element

method that uses Cartesian triangulation away from the interface, but introduces a few additional nodal

points near the interface according to certain rules. The standard linear basis functions then can be

defined on the new triangulation. The comparison of the two conforming finite elements are discussed

and supported by a numerical example.

It is worthwhile to point out that although the discussions in this paper are based on Cartesian grids,

the methods and the analysis can be easily extended to other grids that are not necessarily aligned with

the interfaces.

2. A non-conforming immersed finite element space and analysis. In this section, we in-

troduce a finite element space whose basis are piecewise linear functions satisfying the homogeneous

jump conditions either exactly or approximately. Without loss of generality, we assume that the do-

main Ω is a rectangle which is separated by an interface Γ into two sub-domains Ω+ and Ω− such that

Ω = Ω+ ∪Ω−∪Γ, see Fig. 1.1. Also, without loss of generality, we assume that Q = 0, and the coefficient

β in the boundary value problem (1.6) has two pieces separated by the interface Γ

β(x) =

{

β+, if x ∈ Ω+,

β−, if x ∈ Ω−,

with β(x) ≥ β0 > 0 for any x ∈ Ω.

A Cartesian grid is then used to form a uniform triangular partition Th with step size h on Ω such

that each element T ∈ Th is a triangle constructed by the two legs and one of the diagonals in a sub-

rectangle. The discussions and results of this paper can obviously be extended to other grids that are

not necessarily aligned with the interface.

We call an element T ∈ Th an interface element if the interface Γ passes through the interior of T , see

Fig. 2.1 for a typical geometric configuration; otherwise we call T a non-interface element. We assume

that the interface meets the edges of an interface element at no more than two intersections2. Such an

2If one of edges is part of the interface, then the element is a non-interface element.
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assumption is reasonable if h is small and guaranteed if the interface is expressed in terms of the zero

level set of the signed distance function (or approximately) of the interface. As in the common practice,

we approximate the interface in T by a line segment connecting the intersections of the interface and the

edges of the triangles, for example, the line segment DE in Fig. 2.1. The line segment divides T into two

parts T+ and T− with T = T+ ∪ T− ∪ DE. There is a small region in T

Tr = T − Ω+ ∩ T+ − Ω− ∩ T−(2.1)

whose area is of order O(h3). This indicates that the interface is perturbed in a magnitude of O(h2).

From [7] and the discussions later in this section, such a perturbation will only affect the solution, and

the interpolation function to an order of h2. In this paper, T , T+, T−, and Tr are all defined as closed

sets.

As usual, we want to construct local basis functions on each element T of the partition Th. For a

non-interface element T ∈ Th, we simply use the standard linear shape functions on T , and use Sh(T ) to

denote the linear spaces spanned by the three nodal basis functions on T . Attention is needed only for

interface elements, and we will discuss it in the following sub-section.

2.1. Local basis functions on an interface element. We assume that β is piecewise constant.

Without loss of generality, we consider a reference interface element T whose geometric configuration is

given in Fig. 2.1 in which the curve between points D and E is a part of the interface. The basis function

in a general interface element can then be defined through the usual affine transformation. We assume

that the coordinates at A, B, C, D, and E are

(0, h), (0, 0), (h, 0), (0, y1), (h − y2, y2),(2.2)

with the restriction

0 ≤ y1 ≤ h, 0 ≤ y2 < h.(2.3)

Once the values at vertices A, B, and C of the element T are specified, we construct the following

piecewise linear function:

u(x) =

{

u+(x) = a0 + a1x + a2(y − h), if x = (x, y) ∈ T+,

u−(x) = b0 + b1x + b2y, if x = (x, y) ∈ T−,
(2.4)

u+(D) = u−(D), u+(E) = u−(E), β+ ∂u

∂n

+

= β− ∂u

∂n

−

,(2.5)

where n is the unit normal direction of the line segment DE. This is a piecewise linear function in T

that satisfies the homogeneous jump conditions along DE. Intuitively, there are six constraints and six

parameters, so we can expect the solution exists and is unique as confirmed in the following theorem.

Theorem 2.1. Given a right triangle ABC as indicated in Fig. 2.1. The piecewise linear function

u(x, y) defined by (2.4) and (2.5) is uniquely determined by u(A), u(B) and u(C).

Proof: Let x = (x, y)T . Because u+ and u− are linear functions, we have

u(x) =











u+(x, y) = u(A) + a1x + a2(y − h), x ∈ T+,

u−(x, y) = u(B) +
u(C) − u(B)

h
x + b2y, x ∈ T−.

(2.6)

From the continuity condition at D and E, we have two equations

a2(y1 − h) − b2y1 = u(B) − u(A),(2.7)

a1(h − y2) + a2(y2 − h) − b2y2 = u(B) − u(A) + b1(h − y2),(2.8)



Finite Element IIM 7

A

B C

E

D

(h, 0)

(h − y2, y2)

(0, 0)

(0, y1)

(0, h)

β+

β−

T+

T−

M

Fig. 2.1. A typical triangle element with an interface cutting through. The curve between D and E is part of the

interface curve Γ which is approximated by the line segment DE. In this picture, T is the triangle △ABC, T+ = △ADE,

T− = T − T+, and Tr is the region enclosed by the DE and the arc DME.

where

b1 =
u(C) − u(B)

h
.(2.9)

The third equation is from the flux jump condition:

a1α − a2 + ρb2 = ραb1,(2.10)

where ρ = β−/β+, and we have used the fact that the normal direction of the line segment is (α, −1)

with α = (y2 − y1)/(h− y2). The coefficient matrix of the linear system for the unknowns a1, a2, and b2

is

A =











0 y1 − h −y1

h − y2 y2 − h −y2

α −1 ρ











.(2.11)

Evaluating the determinant of the matrix above, using the relation of h− y1 = (h− y2)(1+α), we obtain

the following after some manipulations

det(A) = −(y1 − h)y2α + (h − y2)y1 + α(y2 − h)y1 − ρ(h − y2)(y1 − h)

= (h − y2)y2α(1 + α) + (h − y2)y1 − α(h − y2) (y2 − α(h − y2))

+ ρ(h − y2)
2(1 + α)

= (h − y2)
(

y1 + hα2 + ρ(h − y2)(1 + α)
)

> 0.(2.12)

Thus from the theory of linear algebra, there is a unique solution to the linear system (2.7), (2.8) and

(2.10). ✷

We now introduce a local finite element space on each element T of the partition Th as follows:

Sh(T ) =

{

{u(x) | u(x) is linear on T} , if T is a non-interface element,

{u(x) | u(x) is defined by (2.4)-(2.5)} , if T is an interface element.

It is well known that the dimension of Sh(T ) is three if T is a non-interface element. When T is an

interface element, Sh(T ) contains three basis functions whose value at one of the vertices of T is unity,

and zero at the other two vertices. Furthermore, Theorem 2.1 tells us that any function in Sh(T ) is a

linear combination of these three basis functions. Therefore the dimension of Sh(T ) is also three even if

T is an interface element.
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2.2. The non-conforming finite element space. To describe the finite element space on the

whole domain Ω, we let Ω′ be the union of all the interface elements. Then we define the immersed finite

element space Sh(Ω) as a set of functions such that

Sh(Ω) =
{

φ(x) | ∀ T ∈ Th, φ|T ∈ Sh(T ), φ|Ω\Ω′ ∈ H1(Ω\Ω′)
}

.(2.13)

It is worthwhile to point out again that this finite element space is formed by piecewise linear functions

defined according to the partition Th and the interface, but the partition does not have to align along

with the interface. Part of the interface can be immersed in some elements of Th, and this is the reason

we call Sh(Ω) an immersed finite element (IFE) space. On the other hand, the IFE space is rather

similar to the usual linear finite element (FE) space defined by the partition Th. First, they are exactly

the same on every non-interface element. Secondly, they have the same dimension. Fig 2.2 shows a

typical basis function of Sh(Ω) with an interface cutting through its non-zero support region. Finally, if

β(x) has no discontinuity, then the IFE space becomes the usual linear finite element space. However,

for a discontinuous β(x), the IFE space is more sophisticated than the usual FE space since the jump

conditions across the interface are satisfied to certain extent. In this case, the IFE space is similar to a

non-conforming FE space in the way that the basis functions may not be continuous across the edges of

elements in Th. Hence the IFE space introduced here is generally a non-conforming FE space.

The dimension of the non-conforming IFE space is the number of interior points for the Dirichlet

problem. The basis function centered at a node is defined as:

φi(xj) =







1 if i = j

0 otherwise,

[

β
∂φi

∂n

]∣

∣

∣

∣

Γ̄

= 0, φi|∂Ω = 0,(2.14)

and φi is continuous in each element T except some edges if xi is a vertex of one or several interface

triangles, see Fig. 2.2. We use Γ̄ to denote the union of the line segment that is used to approximate the

interface.

(a)
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Fig. 2.2. (a) : A standard domain of six triangles with an interface cutting through. (b) : A global basis function on

its support in the non-conforming immersed finite element space. The basis function has small jump across some edges.

2.3. Approximation capability of the non-conforming IFE space. Given a function u(x)

which is continuous on the entire domain and satisfies the flux jump condition, we define its interpolant

in the IFE space Sh(Ω) as the function uI(x) ∈ Sh(Ω) such that

uI(x) = u(x), if x is a node of Th.
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We would like to know how well uI(x) can approximate u(x). Since uI(x) is the usual linear function on

each non-interface element, we have the following standard error estimate [9]

‖uI − u‖0,T + h ‖Ihu − u‖1,T ≤ C1h
2 ‖u‖2,T ,

where ‖·‖s,A is the norm of the Sobolev space Hs(A) defined in a set A, and C1 is a constant3. Similar

error estimates can also be given in the norm of the space W s,p(A). When T is an interface element,

each partial derivative of uI on T is a piecewise constant function consisting of two values, ∂u+
I /∂x and

∂u−
I /∂x, or ∂u+

I /∂y and ∂u−
I /∂y, where ui

I are the restrictions of uI on T i, i = +,−. The following

theorem provides the error estimates on them.

Theorem 2.2. Let T ∈ Th be an interface element, and let u(x, y) be a continuous function such

that its restriction ui = u|T i on T i, i = +,− are twice differentiable in each sub-domain Ω+ ∩ T and

Ω− ∩ T , and satisfies the homogeneous jump conditions (1.4)-(1.5). Then we have the following error

estimates
∥

∥

∥

∥

∂uI

∂x
− ∂u

∂x

∥

∥

∥

∥

∞,T\Tr

≤
(

22 ρ2
cond + 1

)

||D2u||∞,T h,(2.15)

∥

∥

∥

∥

∂uI

∂y
− ∂u

∂y

∥

∥

∥

∥

∞,T\Tr

≤
(

22 ρ2
cond + 1

)

||D2u||∞,T h,(2.16)

where

ρcond =
ρmax

ρmin

, ρmax = max
x∈Ω

{

ρ,
1

ρ

}

, ρmin = min
x∈Ω

{

ρ,
1

ρ

}

.(2.17)

and

||D2u||∞,T = max
i=+,−

{ ||ui
xx||∞,T∩Ωi + 2 ||ui

xy||∞,T∩Ωi + ||ui
yy||∞,T∩Ωi}.(2.18)

Proof: Again, we assume that the interface element T has the configuration given in Fig. 2.1. Since

u(x, y) is twice differentiable in Ω+ and Ω−, it is also twice differentiable in T i\Tr. First we choose a

point M on the interface such that the tangential line of the interface at M is parallel to the line segment

DE whose slope is:

α =
y2 − y1

h − y2
, −1 < α < +∞.(2.19)

Notice that y2 = (y1 + αh)/(1 + α). Plugging this into (2.12) and re-arranging terms we get

|det(A)| = (h − y2)

(

y1 + hα2 + ρ(h − y1 + αh

1 + α
)(1 + α)

)

= (h − y2)
(

y1 + hα2 + ρ(h − y1)
)

≥ ρmin(h − y2)
(

hα2 + h
)

,

where A is the matrix given in (2.11).

Now consider the following Taylor expansions of u(x, y) at A and B

u+(x, y) = u(A) +
∂u+(A)

∂x
x +

∂u+(A)

∂y
(y − h) + . . . ,(2.20)

u−(x, y) = u(B) +
∂u−(B)

∂x
x +

∂u−(B)

∂y
y + . . . .(2.21)

3We use C1 instead of C because we have already used C in Fig. 2.1.
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At point D, u+(D) = u−(D), so we can write

∂u+(A)

∂y
(y1 − h) − ∂u−(B)

∂y
y1 = u(B) − u(A) + e1,(2.22)

where e1 is the error terms from the two Taylor expansions, therefore |e1| ≤ 2
∥

∥D2u
∥

∥

∞,T
h2. Similarly at

point E, we have the relation

∂u+(A)

∂x
(h − y2) +

∂u+(A)

∂y
(y2 − h) − ∂u−(B)

∂y
y2 =

u(B) − u(A) +
∂u−(B)

∂x
(h − y2) + ẽ2,

(2.23)

where ẽ2 is the error terms from the two Taylor expansions. Notice that

b1 =
u(C) − u(B)

h
=

∂u−(B)

∂x
+

∂2u−(R)

∂x2
h,(2.24)

where R is some point between B and C. Therefore we can write

∂u+(A)

∂x
(h − y2) +

∂u+(A)

∂y
(y2 − h) − ∂u−(B)

∂y
y2 =

u(B) − u(A) + b1(h − y2) + e2,

(2.25)

where e2 ≤ 2||D2u||∞,T h2 after the term ∂2u−(R)/∂x2 is absorbed into other second order derivative

terms. Using (2.20) and (2.21), and from the flux jump relation of u at M , we have the third equation

∂u+(A)

∂x
α − ∂u+(A)

∂y
+ ρ

∂u−(B)

∂y
= ρα

∂u−(B)

∂x
+ ẽ3

= ραb1 + e3,

(2.26)

where e3 is the accumulation of errors from the Taylor expansions. Hence,

|e3| ≤ (max { |α|, 1 } + ρmax(|α| + 1)) ||D2u||∞,T h.(2.27)

Equations (2.22), (2.25), and (2.26) are the same as those in (2.7), (2.8) and (2.10) with perturbation to

the right hand sides. By subtracting (2.7), (2.8), and (2.10), from (2.22), (2.25), and (2.26) respectively,

we get a linear system of equations for the errors of the first order of partial derivatives. The solution of

the error ∂u−(B)/∂y − ∂u−
I /∂y is

∂u−(B)

∂y
− ∂u−

I

∂y
=

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 y1 − h e1

h − y2 y2 − h e2

α −1 e3

∣

∣

∣

∣

∣

∣

∣

∣

∣

/det(A)

=
e2(y1 − h)α − e1(h − y2) − e1α(y2 − h) − e3(h − y2)(y1 − h)

det(A)

=
−e2(h − y2)(1 + α)α − e1(h − y2) + e1α(h − y2) − e3(h − y2)

2(1 + α)

det(A)

=
(h − y2) [−α(1 + α)e2 + (α − 1)e1 + (h − y2)(1 + α)e3 ]

det(A)
,

where we have used the relation y1 = y2 − α(h − y2) again. Now it is easy to derive an upper bound of

the error

∣

∣

∣

∣

∂u−(B)

∂y
− ∂u−

I

∂y

∣

∣

∣

∣

≤
α2 + 2|α| + 1 +

(1 + |α|)(max{ |α|, 1} + ρmax(1 + |α|)
2

ρmin(α2 + 1)
2||D2u||∞,T h.
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If |α| ≤ 1, then

α2 + 2|α| + 1 + (1 + |α|)(max{ |α|, 1} + ρmax(1 + |α|))/2

ρmin(α2 + 1)
≤ ρcond

3
2α2 + 7

2 |α| + 2

α2 + 1

≤ ρcond

5α2 + 5 − 7
2α2 + 7

2 |α| − 3

α2 + 1

≤ ρcond

5α2 + 5

α2 + 1

= 5ρcond.

Note that we have used the fact that f(x) = − 7
2x2 + 7

2x − 3 < 0 when 0 ≤ x ≤ 1 in the proof above.

If |α| > 1, then

α2 + 2|α| + 1 + (1 + |α|)(max{ |α|, 1} + ρmax(1 + |α|))/2

ρmin(α2 + 1)
≤ ρcond

2α2 + 7
2 |α| + 3

2

α2 + 1

≤ ρcond

5α2 + 5 − 3|α|2 + 7
2 |α| − 7

2

α2 + 1

≤ 5ρcond.

In the proof above, we have used the fact that f(x) = −3x2 + 7
2x − 7

2 ≤ 0 when x ≥ 1.

In either case, |α| ≤ 1 or |α| > 1, we have an upper bound, not optimal though, which is

∣

∣

∣

∣

∂u−(B)

∂y
− ∂u−

I

∂y

∣

∣

∣

∣

≤ 10 ρcond ||D2u||∞,T h.(2.28)

We continue to proceed with the following derivation

∣

∣

∣

∣

∂u−
I

∂y
− ∂u−(M)

∂y

∣

∣

∣

∣

≤
∣

∣

∣

∣

∂u−
I

∂y
− ∂u−(B)

∂y

∣

∣

∣

∣

+

∣

∣

∣

∣

∂u−(B)

∂y
− ∂u−(M)

∂y

∣

∣

∣

∣

≤ 10 ρcond ||D2u||∞,T h + ||D2u||∞,T h

≤ 11 ρcond ||D2u||∞,T h,

(2.29)

where the derivative of ∂u−(M)/∂y is the following limit

∂u−(M)

∂y
= lim

x∈Ω−,x→M

∂u(x)

∂y
,

and
∣

∣

∣

∣

∂u−
I

∂x
− ∂u−(M)

∂x

∣

∣

∣

∣

=

∣

∣

∣

∣

u(C) − u(B)

h
− ∂u−(M)

∂x

∣

∣

∣

∣

≤ ||D2u||∞,T h.(2.30)

which give estimates in (2.15) and (2.16) for the case when i = −.

However, applying the same approach to ∂u+(A)
∂x

− ∂u
+

I

∂x
and ∂u+(A)

∂y
− ∂u

+

I

∂y
fails to generate the desired

conclusion for the case when i = +. We now use the interface relations to prove the error estimates. Since

u is continuous, the directional derivative along the tangential direction of the interface is continuous at

M

−∂u+(M)

∂x
ny +

∂u+(M)

∂y
nx = −∂u−(M)

∂x
ny +

∂u−(M)

∂y
nx,(2.31)
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where (nx, ny) = (α, −1)/
√

α2 + 1 is the unit normal direction of the interface Γ at M . The flux jump

condition at M produces another equation

∂u+(M)

∂x
nx +

∂u+(M)

∂y
ny = ρ

(

∂u−(M)

∂x
nx +

∂u−(M)

∂y
ny

)

.(2.32)

Solving ∂u+(M)/∂x and ∂u+(M)/∂y from (2.31) and (2.32) in terms of ∂u−(M)/∂x and ∂u−(M)/∂y,

we get









∂u+(M)

∂x

∂u+(M)

∂y









=





n2
y + ρn2

x −nynx + ρnynx

−nynx + ρnynx n2
x + ρn2

y













∂u−(M)

∂x

∂u−(M)

∂y









.(2.33)

Notice that the maximum norm of the matrix in the expression above is bounded by 2ρmax, see (2.17).

From the definition of uI(x, y), equations (2.31) and (2.32) also hold when the function u is replaced by

uI(x, y). Therefore we have

∥

∥

∥

∥

∥

∥

∥

∥









∂u+
I

∂x
− ∂u+(M)

∂x

∂u+
I

∂y
− ∂u+(M)

∂y









∥

∥

∥

∥

∥

∥

∥

∥

∞

≤ 2 ρmax

∥

∥

∥

∥

∥

∥

∥

∥









∂u−
I

∂x
− ∂u−(M)

∂x

∂u−
I

∂y
− ∂u−(M)

∂y









∥

∥

∥

∥

∥

∥

∥

∥

∞

≤ 22 ρ2
cond ||D2u||∞,T h,

(2.34)

because of the error estimates established for u−
I . Finally we use the following triangle inequality

∥

∥

∥

∥

∥

∥

∥

∥









∂ui
I

∂x
− ∂ui(x)

∂x

∂ui
I

∂y
− ∂ui(x)

∂y









∥

∥

∥

∥

∥

∥

∥

∥

∞,T i\Tr

≤

∥

∥

∥

∥

∥

∥

∥

∥









∂ui
I

∂x
− ∂ui(M)

∂x

∂ui
I

∂y
− ∂ui(M)

∂y









∥

∥

∥

∥

∥

∥

∥

∥

∞

+

∥

∥

∥

∥

∥

∥

∥

∥









∂ui(M)

∂x
− ∂ui(x)

∂x

∂ui(M)

∂y
− ∂ui(x)

∂y









∥

∥

∥

∥

∥

∥

∥

∥

∞,T i\Tr

≤
(

22 ρ2
cond + 1

)

||D2u||∞,T h,

from (2.29) and (2.30) if i = −, or from (2.34) if i = +, and from a Taylor expansion for the second term

above. Thus the proof of the theorem is completed. ✷

Furthermore, we can easily use the estimates in Theorem 2.2 and the Taylor expansion to generate

an error estimate for uI itself given in the following theorem.

Theorem 2.3. Let T ∈ Th be an interface element, and let u(x, y) be a continuous function such

that its restriction ui = u|T i on T i, i = +,− are twice differentiable in each sub-domain Ω+ ∩ T and

Ω−∩T , and satisfies the homogeneous jump conditions (1.4)-(1.5). Then we have the following inequality:

|u(x) − uI(x)| ≤







C1h̃ h, if x ∈ T\Tr,

C2h
2, if x ∈ Tr,

(2.35)

where h̃ is the shortest distance between x and the vertices of T which are on the same side of the interface

as x, and

C1 ≤
(

1 + 44 ρ2
cond

)

||D2u||∞,T ,(2.36)

and C2 is some constant.
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Proof: Without loss of generality, we still use Fig.2.1 to illustrate our proof and assume that the

point B is the vertex closest to x. If x ∈ T−\Tr, then we have

u−
I (x) = uI(B) +

∂uI

∂x

−

(x − xB) +
∂uI

∂y

−

(y − yB)

= u(B) +
∂u−

∂x
(M)(x − xB) +

∂u−

∂y
(M)(y − yB) + R1

= u(x) + R1 + R2,

where xB, yB are the coordinates of point B,

|R1| ≤ 2max

{∣

∣

∣

∣

∂u−
I

∂x
− ∂u−(M)

∂x

∣

∣

∣

∣

,

∣

∣

∣

∣

∂u−
I

∂y
− ∂u−(M)

∂y

∣

∣

∣

∣

}

h

≤ 44 ρ2
cond ||D2u||∞,T h̃ h,

from (2.34), and

|R2| ≤ ||D2u||∞,T h̃ h,

from the Taylor expansion. Similar result holds for x ∈ T+\Tr.

If x ∈ Tr, say x ∈ T ∩ T−, but x ∈ Ω+, for example. We take the closest point R ∈ T to x from the

line segment. We know that ‖x − R‖ ≈ h2. Using the triangle inequality we obtain

|uI(x) − u(x)| ≤ |u−
I (x) − u−

I (R)| + |u+
I (R) − u(x)|

≤ ||D2u||∞,T ‖x − R‖ + |u+
I (R) − u+(R)| + |u+(R) − u+(x)|

≤ ||D2u||∞,T ‖x − R‖ + C1h̃ h + ||D2u||∞,T ‖x − R‖
≈ h2.

In the proof, we have used the facts that u+
I (R) = u−

I (R), the continuity condition for uI and u(x), and

the first error estimate of (2.35) of this theorem which has been already proved. ✷

Notice that the intersections of the interface and the edges of the triangles are not in Tr so they

satisfy the first inequality in (2.35), a fact that we need to use in the next section.

Remark 2.1. Although we have the error estimate for the interpolation functions for the non-

conforming finite element method. The convergence analysis for the finite element solution is not straight-

forward for the particular non-conforming IFE space. Such error estimate is currently under investiga-

tion.

2.4. A non-conforming IFE method. It is obvious that the finite element space Sh(Ω) introduced

in the last section is not in the space to which the solution of the interface problem belongs. A function

φ of Sh(Ω) is continuous in the union of non-interface triangles but may be discontinuous on edges of

interface triangles. Therefore the finite element method based on Sh(Ω) is non-conforming. For the

interface problem, we now define its non-conforming IFE solution as a function uh ∈ Sh0(Ω) satisfying

ah(uh, vh) =

∫

Ω

fvhdxdy, for all vh ∈ Sh0(Ω),(2.37)

where Sh0(Ω) = {φ ∈ Sh(Ω) | φ|∂Ω = 0}, and

ah(u, v) =
∑

T∈Th

∫

T∈Th

β∇u · ∇v dxdy.(2.38)
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Remark 2.2. If the flux jump is not homogeneous in (1.6), the non-conforming IFE solution uh ∈
Sh0(Ω) then satisfies

ah(uh, vh) =

∫

Ω

fvhdxdy −
∫

Γ

vhQds.(2.39)

2.5. A numerical example for the non-conforming IFE method. We present a non-trivial

example here to show the performance of the standard Galerkin finite element method using the non-

conforming IFE space. In this example, we consider the boundary value problem defined by (1.1) with

a Dirichlet boundary condition. The computational domain is the rectangle −1 ≤ x, y ≤ 1, and the

interface is a circle centered at the origin with radius r0. The boundary condition and the source term

fc are determined from the exact solution

u(x, y) =



















rα

β−
, if r ≤ r0,

rα

β+
+

(

1

β−
− 1

β+

)

rα
0 , otherwise,

(2.40)

where r =
√

x2 + y2 and α = 3. Notice that the exact solution satisfies the homogeneous jump conditions

(1.4)-(1.5).

The error estimates for the interpolation functions obtained in sub-section 2.3 indicate that the finite

element solution in the IFE space may have a second order approximation capability. Hence we naturally

expect the IFE solutions are second order accurate in the L2 norm. Since the large errors occur near or at

the interface which is one-dimensional lower than the solution domain, we only present the errors in the

maximum norm in Fig. 2.3, in which the IFE solutions uh are found with various grid size h. The involved

linear algebraic system has a structure similar to that in the Galerkin method with the usual linear finite

element space. The jump in the coefficient of these tests is taken as ρ = 1 : 1000 or ρ = 1000 : 1, a

quite large ratio. As discussed in [31], the errors in the numerical solutions generally do not decrease

monotonously for interface problems. Therefore we need to use the linear regression or the least squares

fitting to find the asymptotic convergence rate. In this way, we notice the second order convergence for

one ratio, ‖u − uh‖∞ ∼ h2, and super-linear convergence for the other, ‖u − uh‖∞ ∼ h1.565, where u is

the exact solution of the boundary value problem. Similar behavior are observed for other ratios as well.

The magnitude of the errors with 160 by 160 grid is about 10−4 for both ratios.

The non-conforming IFE method presented here is simple, easy to implement, and has an algebraic

system similar to that of the Galerkin finite element method based on the standard finite element space.

In particular, the partition of the IFE space does not have to be restricted by the geometry of the

interface. The basis functions of the IFE space satisfy the jump conditions, which enables us to obtain

sharp solutions near the interface. The same idea can be applied to treat three dimensional problems.

3. A conforming immersed finite element space and analysis. In this section, we develop

a conforming IFE space to further improve accuracy of the finite element method based on the non-

conforming IFE space described in the previous section. While the non-conforming IFE method performs

better than the standard finite element method for interface problems, it does not seem to be second

order in the infinite norm. Note that, for regular boundary value problems, the standard conforming

finite element method using the piecewise linear has second order convergence in the infinite norm. We

hope this is also true for the finite element method using a conforming IFE space with second order

approximation capability. However, the requirements of the continuity and the jump relations (1.4)-(1.5)
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Fig. 2.3. The errors of the finite element solutions obtained in the non-conforming IFE space in the maximum norm

versus the mesh size h in log− log scale with r0 = π/6.28, α = 3. (a): β− = 1, β+ = 1000. The linear regression

analysis gives ||u − uh||∞ ≈ 0.64657h1.56459; (b): β− = 1000, β+ = 1. The linear regression analysis gives ||u − uh||∞ ≈

2.79434h1.94833.

turn out to be rather difficult to satisfy simultaneously even with high order elements. One of the key

ideas of our approach is to enlarge the support of some basis functions in the non-conforming finite

element space so that the continuity condition can be maintained.

Let us examine the IFE space again to see why we need to enlarge the support of some basis functions.

The non-conforming basis functions have the same compact support as the standard linear basis function.

However, if we want the basis functions to have the same compactness, to be linear, and to satisfy

φi(xj) =







1, if i = j,

0, otherwise,
(3.1)

in a conforming IFE space, then for a given function u(x, y) that satisfies the jump conditions (1.4)-(1.5),

we may not be able to construct a linear interpolation function that approximates u(x, y) to second order

in the maximum norm. To see this, let us consider an interface element ∆ABC as sketched in Fig. 3.1 (b)

in which the line DE is part of the interface. Let u(x, y) be a function satisfying the jump conditions

[u] = 0,

[

β
∂u

∂n

]

= 0,

on the interface, and have the following values

u(C) = h, u(A) = u(B) = 0.

It is very likely that u(D) ∼ h for an interface problem. The interpolation function has the form of

uI(x, y) =
∑

ujφj(x),

where φj are conforming basis functions. Then we must have uI(D) = φC(D) = 0 since u(A) = u(B) = 0

and all the basis functions that are not centered at A and B are zero on the entire line segment AB.

Hence |uI(D) − u(D)| = O(h) and the approximation is only first order accurate. Therefore, to achieve

second order accuracy for the interpolation function, we need to either develop new non-conforming finite

element methods, or extend the support of the basis functions. We will focus on the second approach and

still use piecewise linear functions. High order elements shall be considered in the future.

Intuitively, it is not very difficulty to approximate any piecewise twice differentiable function to second

order by piecewise polynomials. The challenge is how to maintain continuity along the edges and the
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jump conditions along the interface simultaneously. Our idea is to average the values of non-conforming

basis functions with the same values at nodal points to keep the continuity. The details are described in

the following subsections.

(a) (b)
A

B C

E

D

F

G

I

H

Fig. 3.1. (a) : An extended region of support of the conforming basis function. (b) : Diagram for constructing the

basis function on △ABC.

3.1. Conforming local basis functions on an interface element. The basis functions in the

non-conforming IFE space introduced in Section 2 can maintain the jump conditions well, but they may

have a small jump along the common edge of two adjacent interface elements within their supports. For

example, see Fig. 3.1 (b), the basis function in the non-conforming IFE centered at point B usually is

discontinuous at point D where the interface meets with the common edge AB. Therefore, we would like

to find a way to modify the non-conforming local basis functions in interface elements so that the new

local basis functions can be pieced together continuously along the common edge of any two interface

elements. In addition, the basis functions should still satisfy the jump conditions up to certain accuracy

to get sharp solutions for interface problems.

Following the considerations above, we now describe a procedure to construct basis functions in a

typical interface element ∆ABC sketched in Fig. 3.1 (b) such that they can be used to form a conforming

IFE space. We assume that the interface meets edges of this element at D and E. The key idea is to

make sure that some of the local basis functions in two adjacent interface elements, such as ∆ABC and

∆AFB, can take the same value at the interface point on their common edge, such as point D. On the

other hand, for a Lagrange type element, the values of a basis function in this element has already had

three freedoms at the vertices A, B, and C. Since we need to form the basis functions together with

those in the adjacent interface elements ∆AFB and ∆ACI to guarantee the continuity, a basis function

in a typical interface element ∆ABC should have two more freedoms due to the vertices F and I.

We use the standard five dimensional Euclidean vector ei (whose i-th entry is unity while the other

entries are zero) to assign values of a local basis function ψi(x, y) at the vertices A,B,C, F and I, and

this basis function is piecewisely constructed as follows:

P1. Use the values at the vertices A, B, C, F and I to form the three non-conforming IFE functions

defined on the elements ∆ABC, ∆AFB and ∆ACI respectively.

P2. Assign a value to the point D as the average (or a certain weighted average) of the values at this

point of the non-conforming IFE functions defined on the elements ∆ABC and ∆AFB formed

in P1.

P3. Similarly, assign a value to the point E as the average (or a certain weighted average) of values

at this point of the non-conforming IFE functions defined on the elements ∆ABC and ∆ACI

formed in P1.
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P4. Partition the element ∆ABC into three sub-triangles by an auxiliary line, say line segment BE,

or DC such that at least one of acute angles, or the supplementary angle if an angle is bigger

than π/2, of the triangle formed by the auxiliary line is bigger than or equal to π/4.

P5. Define the basis function ψi to be the piecewise linear function in the three sub-triangles deter-

mined by the values at the points A,B,C,D and E.

As in Sec. 2, we define a local finite element space on each element T of the partition Th as follows:

Sh(T ) =

{

{u(x) | u(x) is linear on T} , if T is a non-interface element,

span {ψi(x), 1 ≤ i ≤ 5 | ψi(x) is defined by P1-P5} , otherwise.

As usual, when T is not an interface element, the dimension of Sh(T ) is three. However, the dimension

of Sh(T ) is five if T is an interface element, two more freedom are added at the interface points on its

edges. We would like to point out that if T is an interface element adjacent to the boundary of Ω, then

the dimension of Sh(T ) becomes four.

Remark 3.1. Actually Sh(T ), the local space of shape functions for an interface element is just the

five dimensional space of continuous piecewise linear functions on the three subtriangles. The procedure

P1-P5 described above defines an interpolation operator from C0(Ω) to the space spanned by the local

shape functions and Sh(Ω) is the image of this interpolation operator.

3.2. A conforming IFE space. For the i-th vertex in the partition Th, we let φi(x) be the con-

tinuous piecewise linear function that satisfies (3.1) and φi|T ∈ Sh(T ) for any element T ∈ Th. Then we

let our new IFE space Sh(Ω) be a set of functions such that

Sh(Ω) = span
{

φi(x)
}

.(3.2)

Because of the continuity of its basis functions, this IFE space Sh(Ω) is conforming. Also, this conforming

IFE space has the same dimension as the non-conforming IFE space and the standard linear finite element

space defined on the partition Th.

The basis function φi of Sh(Ω) centered at the i-th node has a non-zero support on the six surrounding

triangles if the interface does not cut through any of these triangles. This leads to a standard five point

stencil4. If the coefficient is continuous, i.e. ρ ≡ 1, these basis functions become the standard linear

basis functions. If the interface cuts through any of the surrounding triangles, then, by the definition

of Sh(Ω), the support of this basis function is extended to two more triangles along the direction of the

interface, see Fig 3.1 (a), where the support of the basis function includes the triangles marked by dashed

lines. As a consequence, the corresponding finite difference scheme will generally have a non-standard

nine point stencil. It is worth to point out that the total degree of the freedom of the conforming finite

element space is the same as the non-conforming finite element space, and is the same as the standard

finite element space using the hat functions.

3.3. Approximation capability of the conforming IFE space. Given a piecewise smooth

function u(x, y) that satisfies the jump conditions (1.4)-(1.5) along a smooth interface, we will show that

its interpolation function uI(x, y) in the conforming IFE space using the values of u(x, y) at vertices can

approximate u(x, y) to second order, and its first derivatives can approximate those of u(x, y) to first

order in the maximum norm almost everywhere. We assume that the values of the basis functions at

intersections, for example, points D and E in Fig 3.1 (b), are simple averages of the non-conforming

interpolation functions in the two neighborhood triangles. From this point of view, the conforming

4Actually the computation involves a seven point stencil, two of the coefficients are zero due to cancellations.
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interpolation function is obtained by perturbing the values of the non-conforming interpolation functions

at intersections. From Theorem 2.3, such perturbations are bounded by C1h̃h, where h̃ is the shortest

distance from the intersection points, such as D and E, to the vertices in interface element, such as B

and A, in Fig. 3.1 (b). The following lemma shows that the perturbations in the first derivatives between

two interpolation functions are of order h.

Lemma 3.1. Assume: (i) T ∈ Th is an interface element; (ii) u(x, y) is a continuous function

that its restriction ui = u|T i on T i, i = +,−, is twice differentiable in each sub-domain Ω+ ∩ T and

Ω− ∩ T , and satisfies the homogeneous jump conditions (1.4)-(1.5); (iii) ūI and uI are the interpolation

functions of u in the non-conforming and conforming IFE spaces, respectively, then

∥

∥

∥

∥

∂uI

∂x
− ∂ūI

∂x

∥

∥

∥

∥

∞,T

≤ (4 +
√

2)C1h,(3.3)

∥

∥

∥

∥

∂uI

∂y
− ∂ūI

∂y

∥

∥

∥

∥

∞,T

≤ (4 +
√

2)C1h,(3.4)

where C1 is given in Theorem 2.2.

Proof: The results are trivial in every non-interface element. In each interface element, the dif-

ference between the two linear interpolation functions are caused by the perturbations of the values at

intersections, e.g., points D and E in Fig. 3.1 (b). Since both interpolation functions are linear, we can

consider the rate of changes of the first derivatives with respect to the changes in the function values at

intersections. We just need to consider one of the sub-triangles within the interface element △ ABC, see

Fig. 3.1 (b), and we distinguish the following cases:

Case 1: The triangle contains one of the angles from the master triangle. In this case, the

angle can be π/4, as in △ADE and △BCE, or π/2, as in △DBC if the auxiliary line segment is DC

instead of EB. We will only consider the case where the angle is π/4 and will use the local coordinates

to simplify the proof.

π/4

(0, 0)

u2

u3

A
u1

(x2, y2)
E

D(x1, 0)

Fig. 3.2. A sub-triangle contains one of angles of the master triangle.

Consider a typical geometry in Fig 3.2, where point A is a vertex, and points D and E are intersections

of the interface and the edges of a interface element. The linear function defined in ∆ADE is

uI(x, y) = u1 + (u2 − u1)
x

x1
+

(

u3 − u1

x2
− u2 − u1

x1

)

y.(3.5)

Note that x2 = y2. The partial derivatives with respect to x and y are

∂uI

∂x
=

u2 − u1

x1
,

∂uI

∂y
=

u3 − u1

x2
− u2 − u1

x1
,(3.6)
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where u1, u2, and u3 are the interpolation values at points A, D, and E respectively. The partial

derivatives with respect to u2 and u3 above are

∂

∂u2

(

∂uI

∂x

)

=
1

x1
;

∂

∂u3

(

∂uI

∂x

)

= 0,(3.7)

∂

∂u2

(

∂uI

∂y

)

= − 1

x1
;

∂

∂u3

(

∂uI

∂y

)

=
1

x2
.(3.8)

Thus
∣

∣

∣

∣

∂uI

∂x
− ∂ūI

∂x

∣

∣

∣

∣

=

∣

∣

∣

∣

∂

∂u2

(

∂uI

∂x

)

(uI(D) − ūI(D)) +
∂

∂u3

(

∂uI

∂x

)

(uI(E) − ūI(E))

∣

∣

∣

∣

≤ 1

|x1|
|uI(D) − ūI(D)|

≤ C1h.

The inequality is true within the triangle without second order derivative terms because both uI and ūI

are linear. Similarly
∣

∣

∣

∣

∂uI

∂y
− ∂ūI

∂y

∣

∣

∣

∣

≤ 1

|x1|
|uI(D) − ūI(D)| + 1

|x2|
|uI(E) − ūI(E)|

≤ C1

(

1 +
√

2
)

h < 3C1h.

Note that in the proof above we have used the fact that

|uI(D) − ūI(D)| ≤ C1hh̃ ≤ h|x1|,
|uI(E) − ūI(E)| ≤ C1hh̃ ≤ h

√
2 |x2|.

Therefore the lemma is true for this case.

If a sub-triangle contains a right angle π/2 from the master interface triangle, the proof is similar

and we omit the proof to save some space.

Case 2: The interface cuts two right legs of the master triangle. Now we consider a sub-

triangle in which none of its three angles is from the interface element, for example, △ADE in Fig. 3.3

when α ≥ π/4. We always choose the triangle that at least one of three acute angles, or the supplementary

angle if one is an obtuse, is greater than or equal to π/4. If α < π/4, then α′ ≥ π/4 and we would choose

the triangle △BED, which is covered in Case 1. We proceed with the perturbation analysis on the

△ADE for the interpolation function

uI(x, y) = u1 + (u2 − u1)
y

y2
+

(

u3 − u1

x3
− (u2 − u1)h

y2 x3

)

x.(3.9)

Again u1, u2, and u3 are the interpolation values at A, D, and E. The partial derivatives with respect

to x and y are

∂uI

∂x
=

u3 − u1

x3
− (u2 − u1)h

y2 x3
;

∂uI

∂y
=

u2 − u1

y2
.(3.10)

The partial derivatives with respect to u2 and u3 above are

∂

∂u2

(

∂uI

∂x

)

= − h

y2 x3
;

∂

∂u3

(

∂uI

∂x

)

=
1

x3
,(3.11)

∂

∂u2

(

∂uI

∂y

)

=
1

y2
;

∂

∂u3

(

∂uI

∂y

)

= 0.(3.12)
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α

α′

(0, 0)

(0, y2)

(x3, h)

u1

u3

A

u2

B

D

E

Fig. 3.3. A sub-triangle contains none of the angles of the master triangle, and the interface intersects the two right

legs of the master triangle.

Since α ≥ π/4, we have x3 ≥ h − y2 and

h

y2 x3
≤ h

y2(h − y2)
.

Therefore
∣

∣

∣

∣

∂uI

∂x
− ∂ūI

∂x

∣

∣

∣

∣

≤ h

y2(h − y2)
|uI(D) − ūI(D)| + 1

x3
|uI(E) − ūI(E)|

≤ C1h
2

y2(h − y2)
min{y2, h − y2} + C1h

≤ 2C1h + C1h

≤ 3C1h.

And
∣

∣

∣

∣

∂uI

∂y
− ∂ū

∂y

∣

∣

∣

∣

≤ 1

y2
|uI(D) − ūI(D)|

≤ C1h.

Once again we have proved the lemma.

Case 3: The interface cuts one of the right legs and the hypotenuse of a master interface

element. A typical picture is shown in Fig. 3.4. One of the angles, 6 ADE, 6 EDC, and 6 DBC, has to

be greater than or equal to π/4. Without loss of generality, we assume that α = 6 ADE ≥ π/4 and the

auxiliary line segment is DE. For other cases, the discussion is similar and is not going to be repeated.

We perform the perturbation analysis on the sub-triangle EDB. Given the values (u1, u2, u3) at B, D,

and E, the interpolation function is:

uI(x, y) = u1 + (u2 − u1)
y

y2
+

(

u3 − u1

x3
− (u2 − u1)(h − x3)/y2

x3

)

x.(3.13)

The partial derivatives with respect to x and y are

∂uI

∂x
=

u3 − u1

x3
− (u2 − u1)(h − x3)/y2

x3
;

∂uI

∂y
=

u2 − u1

y2
.(3.14)
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B

α

(0, y2)

E

A

u3

(x3, h − x3)

C(0, 0)
u1

D
u2

h − y2

Fig. 3.4. A sub-triangle contains none of the angles of the master triangle, and the interface intersects one of the

right legs and the hypotenuse of the master triangle.

The partial derivatives with respect to u2 and u3 above are

∂

∂u2

(

∂uI

∂x

)

= −h − x3

y2 x3
;

∂

∂u3

(

∂uI

∂x

)

=
1

x3
,(3.15)

∂

∂u2

(

∂uI

∂y

)

=
1

y2
;

∂

∂u3

(

∂uI

∂y

)

= 0.(3.16)

Since α ≥ π/4, it is easy to see that (h − y2)/2 ≤ x3 and therefore
∣

∣

∣

∣

∂

∂u2

(

∂uI

∂x

)∣

∣

∣

∣

≤ h − x3

y2 x3
≤ 2h

y2 (h − y2)
.

We can see that

x3 =
|AE |√

2

and
∣

∣

∣

∣

∂

∂u3

(

∂uI

∂x

)∣

∣

∣

∣

≤ 1

x3
=

√
2

|AE |
.

From the inequalities above, we conclude
∣

∣

∣

∣

∂uI

∂x
− ∂ūI

∂x

∣

∣

∣

∣

≤ 2h

y2 (h − y2)
|uI(D) − ūI(D)| + 1

x3
|uI(E) − ūI(E)|

≤ 4C1h +

√
2

|AE |
|uI(E) − ūI(E)|

≤ C1

(

4 +
√

2
)

h.

Finally
∣

∣

∣

∣

∂uI

∂y
− ∂ūI

∂y

∣

∣

∣

∣

≤ 1

y2
|uI(D) − ūI(D)|

≤ C1h.

Therefore we have proved the inequalities (3.3)-(3.4) are always true. ✷

From the Lemma above, we get the following error estimates for the interpolation function in the

conforming IFE space.
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Theorem 3.2. Let T ∈ Th be an interface element, and let u(x, y) be a continuous function whose

restriction ui = u|T i on T i, i = +,−, is twice differentiable in each sub-domain Ω+ ∩ T and Ω− ∩ T ,

and satisfies the homogeneous jump conditions (1.4)-(1.5). Then we have the following error estimates

∥

∥

∥

∥

∂uI

∂x
− ∂u

∂x

∥

∥

∥

∥

∞,T\Tr

≤ C2h,(3.17)

∥

∥

∥

∥

∂uI

∂y
− ∂u

∂y

∥

∥

∥

∥

∞,T\Tr

≤ C2h,(3.18)

where

C2 ≤ C1(4 +
√

2) +
(

22 ρ2
cond + 1

)

||D2u||∞,T

≤ 7C1.

Proof: Denote again the interpolation function using the non-conforming IFE space as ūI , then

∥

∥

∥

∥

∂uI

∂x
− ∂u

∂x

∥

∥

∥

∥

∞,T\Tr

≤
∥

∥

∥

∥

∂uI

∂x
− ∂ūI

∂x

∥

∥

∥

∥

∞,T\Tr

+

∥

∥

∥

∥

∂ūI

∂x
− ∂u

∂x

∥

∥

∥

∥

∞,T\Tr

≤ C1(4 +
√

2)h +
(

22 ρ2
cond + 1

)

||D2u||∞,T h,

from Lemma 3.1 and Theorem 2.2, respectively. Similar proof can be carry out for ∂uI/∂y. ✷

From this theorem and the proof of Theorem 2.3, we have the following theorem for the error estimate

of the interpolation function.

Theorem 3.3. Assume: (i) T ∈ Th is an interface element; (ii) u(x, y) is a continuous function

that its restriction ui = u|T i on T i, i = +,−, is twice differentiable in each sub-domain Ω+ ∩ T and

Ω− ∩ T , and satisfies the homogeneous jump conditions (1.4)-(1.5); (iii) uI is the interpolation function

of u in the conforming IFE spaces. Then the following inequality holds

|u(x) − uI(x)| ≤







C3h̃ h, if x ∈ T\Tr

C4h
2, if x ∈ Tr,

(3.19)

where C4 is a constant, h̃ is the shortest distance between x and the vertices of T that are on the same

side of the interface as x, and

C3 ≤ C2 + ||D2u||∞,T .(3.20)

Remark 3.2.

• The interpolation errors actually depend on the jump in the coefficient, the spatial step size h, and

the geometry. The error generally is not a monotonous function of h because the error depends

on the relative position of the interface and the underlying grid, see [31].

• One may try to set the intersections between the interface and edges as new nodal points and

then to use the standard piecewise linear finite element space. The problem is that there may be

skinny triangles that will deteriorate the convergence rate. However, we know that the solution to

the interface problem is not independent across the interface. In our approach, we can use one

of the nice triangles to approximate the partial derivatives, and then pass the information to the

skinny ones, if there are any, using the jump conditions as in the proof process for Lemma 3.1.
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We now define the conforming IFE solution to the interface problem as a function uh ∈ Sh0(Ω) such

that
∫ ∫

Ω

β(x, y)∇uh∇vh dxdy =

∫ ∫

Ω

f vh dxdy, for all vh ∈ Sh0(Ω),

and again, we let Sh0(Ω) = {φ ∈ Sh(Ω) | φ|∂Ω = 0}. For a non-homogeneous flux condition, the

contribution again is a line integral in the weak form.

For this conforming IFE solution, we can obtain an error estimate in the energy norm given in the

following theorem.

Theorem 3.4. Let u be the solution of (1.6) with Q ≡ 0, and uh be the conforming IFE solution. If

u is in H1
0 (Ω) and is piecewise twice differentiable on each sub-domain Ωi, i = + and i = −, then we

have the following error estimate:

‖u − uh‖1,Ω ≤ C5h.(3.21)

where C5 is a constant independent of h.

Proof: Since u, uh, and the IFE finite dimensional space, all belong to H1
0 (Ω). From the standard

FEM theory, uh is the best solution in the IFE space in the H1 norm. Therefore we have

‖u − uh‖1,Ω ≤ C̃ ‖u − uI‖1,Ω

≤ C̃(‖u − uI‖1,
∑

T\Tr
+ ‖u − uI‖1,

∑

Tr
),

where uI ∈ H1 is the interpolation function of u in the conforming IFE space.
∑

T\Tr is the union of

the mis-matched region of the line segments and the interface as shown in Fig. 2.1. From Theorem 3.2,

we know that u− uI and its first derivatives are of O(h2) and O(h), respectively, in the maximum norm

on T\Tr of an element T , therefore, u − uI should be of O(h) in the H1 norm on the unions of these

regions as well. On each Tr, u − uI and its first derivatives are of order O(h2) and O(1). However, with

the interface being approximated by the line segment on each element, the area of each Tr is order of

O(h3). Since the interface is one dimensional lower than the solution domain, we also conclude that

‖u − uI‖1,
∑

Tr
≈ h,

which leads to the result of this theorem. ✷

Remark 3.3.

• The finite element solution u(x) in the conforming IFE space belongs to H1(Ω) but generally is

not in H2(Ω) if β(x, y) has a discontinuity across the interface, see Fig. 3.5. This is the main

reason that the standard finite element does not work well.

• For many practical interface problems, the solutions are indeed piecewise smooth. Generally, if

the source term f(x, y) ∈ L2(Ω) is also γth-Hölder piecewise continuous for γ > 0, then the

solution u(x, y) is piecewise twice differentiable, see [12].

• We believe that piecewise smooth requirement of the solution in the theorem can be relaxed to

piecewise H2(Ωi) by developing corresponding interpolation theory in the Sobolev space. Such

investigation is not straightforward and is under way. Once such theory is established, we believe

that the second order or nearly second order accuracy in the maximum norm can also be proved.

3.4. A numerical example for the conforming IFE method. We present some numerical

results for the same boundary value problem as in Sec. 2.5. We also report the error of the interpolation
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Fig. 3.5. Plot of the computed solution with M = 64, α = 3, β+ = 50, β− = 1. The parameters are chosen to illustrate

the fact that the solution u(x, y) belongs to H1
0
(Ω) but is not in H2

0
(Ω). However, the solution is piecewise smooth.
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Fig. 3.6. The interpolation errors in the maximum norm versus the mesh size h for conforming basis functions

in log− log scale with r0 = π/6.28, β− = 1, and β+ = 1000. (a): The linear regression analysis gives ||u − uI ||∞ ≈

3.22816h2.06743; (b): The error in the partial derivative ∂u/∂x excluding the region
∑

Tr. The linear regression analysis

gives ||(u − uI)x||∞,
∑

T\Tr

≈ 2.89806h0.96056.

function that is very important for the finite element theory, and is useful in deriving the error estimate

for the maximum norm.

Fig. 3.6 (a) plots the errors between the exact solution and its interpolation functions in the conform-

ing IFE space Sh(Ω) with the jump ratio ρ = β−/β+ = 1 : 1000 and various partition size h. Fig. 3.6 (b)

is the plot of the error in the x partial derivative of the interpolation function. We obtained similar

result with other ratios and partial derivatives. Thus, this example confirmed our error analysis for the

interpolation function. Note that the magnitude of the interpolation error is about 10−4 for the solution

and 10−2 for the x partial derivate in a typical 160 by 160 grid.

Fig. 3.7 plots the errors in the maximum norm of the conforming IFE solutions uh from Sh(Ω) with

various h for two different ratios. The linear regression analysis shows that data in Fig. 3.7 obey

||u − uh||∞ ≈ 6.85126h2.01002, ρ = 1 : 1000,
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Fig. 3.7. Errors of finite element solutions obtained from the conforming basis function in the maximum norm versus

the mesh size h in log− log scale with r0 = π/6.28. (a): β− = 1, β+ = 1000. The linear regression analysis gives

||u−uh||∞ ≈ 6.85126h2.01002; (b): β− = 1000, β− = 1. The linear regression analysis gives ||u−uh||∞ ≈ 5.65703h2.01542.

||u − uh||∞ ≈ 5.65703h2.01542, ρ = 1000 : 1,

which suggest that the conforming IFE finite element solution has a second order convergence rate in the

maximum norm.

3.4.1. A comparison with the FEM method with added nodes. As suggested by several

colleagues and other investigators (including one of the referee of this paper), we have tested a slightly

different method. We consider the finite element method based on a triangulation in which most of the

triangles are uniform right triangles from a Cartesian grid. In the neighborhood of the interface, we add

some new nodal points at the intersections of the interface and the edges of the uniform Cartesian right

triangles. Specifically, this triangulation is generated as follows:

1. We first generate a Cartesian triangulation composed of the right triangles over Ω.

2. We keep all the elements over the non-interface triangles unchanged.

3. For each interface triangle, we break it into three small triangles in the same way as we did

in step P4 in Section 3.1, see also Fig.3.1. Therefore the break-up satisfies the same maximum

angle condition as we did earlier for our conforming IFE method.

The standard Galerkin finite element method with the usual linear basis functions is then applied to this

triangulation. We will call this method the finite element method using a Cartesian grid with added

nodes, or FEMCGAN, for short. The computational complexity of this approach is about the same as

our conforming finite element method. Both methods are new, some futures of them are summarized

below:

• The convergence result of Theorem 3.4 is also valid for the FEMCGAN method. However, this

is guaranteed only with the choice of the maximum angles proposed in this paper.

• In the FEMCGAN approach, all the intersections between the interface and the edges of Carte-

sian triangles are the added nodal points. However, in our IFE methods, either non-conforming

or conforming, those intersections are not part of the nodal points. Therefore, the linear sys-

tem of equation from our approach will be order O(1/h) smaller compared with that from the

FEMCGAN approach. More importantly, many linear solvers based on Cartesian grids such as

MGD9V [10] can be applied to our non-conforming or conforming IFE methods but not to the

FEMCGAN approach. In many applications, we are only interested in the solution at the grid

points, there is no need to recover the solution at the points of the intersections. The Cartesian
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grid methods of this paper are developed for this purpose.

• The FEMCGAN space contains the IFE space, so we can expect the energy norm of the error is

smaller than that obtained from the IFE method, see Table 3.1.

• The FEMCGAN method is a little bit easier to implement compared with the conforming IFE

method.

In Table 3.1, we show the results of the errors in L2(Ω) and energy norms of the FEMCGAN approach

and the IFE method. The problem set-up is the same as the example in Section 2.5 and in Section 3.4.

The ratio in the table is the ratio of two consecutive errors. If the error is proportional to h, then the ratio

should approach number two. If the error is proportional to h2, then the ratio should approach number

four. We can see clearly from the table that the two new methods are comparable. Both methods give

second order accurate results in the L2(Ω) norm, first order accuracy in the energy norm.

The FEMCGAN method

h e0(h) ratio ea(h) ratio

1/20 5.5479 × 10−4 3.0085 × 10−2

1/40 1.4040 × 10−4 3.9516 1.5376 × 10−2 1.9566

1/80 3.5525 × 10−5 3.9520 7.7803 × 10−3 1.9762

1/160 9.1518 × 10−6 3.8817 3.9160 × 10−3 1.9868

The conforming IFE method

1/20 7.7184 × 10−4 3.4742 × 10−2

1/40 1.9050 × 10−4 4.0516 1.7136 × 10−2 2.0275

1/80 4.5729 × 10−5 4.1659 8.4975 × 10−3 2.0165

1/160 1.0596 × 10−5 4.3158 4.1195 × 10−3 2.0627

Table 3.1

Comparisons of errors of the FEMCGAN and the IFE methods, where e0(h) and ea(h) are errors of a numerical

solution in the L2(Ω) and energy norms respectively. The example is the same as the example in Section 2.5 for the case

when β− = 1, β+ = 1000.

The grid refinement analysis from a few selected grids does not provide a good indication for the

convergence in the L∞ norm because the errors in the L∞ norm computed from both methods oscillate

as explained in [31]. Therefore, we use the linear regression analysis to present the convergence in L∞

norm for both methods with 10 grid increment. For the FEMCGAN method, we have following results:

error in L2 norm ≈ 0.20822 h1.98032,

error in H1 norm ≈ 0.58835 h0.99016,

error in energy norm ≈ 0.60372 h0.99231,

error in L∞ norm ≈ 0.14247 h1.85615,

and for the conforming IFE method, the results are

error in L2 norm ≈ 0.77413 h2.21055,

error in H1 norm ≈ 0.66915 h1.01420,
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error in energy norm ≈ 0.92382 h1.06659,

error in L∞ norm ≈ 1.70096 h2.01002.

Again, these numerical results indicate that these two methods perform comparably.

4. Conclusions. In this paper, we have developed two immersed finite element (IFE) spaces for

interface problems using Cartesian grids. Error estimates are obtained for the interpolation functions

in both conforming and non-conforming new finite element spaces. The non-conforming IFE method

behaviors better than that of the standard linear finite element solutions because the method produces

sharp solutions near or on the interfaces. In addition, this method is very simple, and can be extended

to three dimensions easily. By extending the support of some basis functions, we are able to construct

a conforming IFE space. The Galerkin finite element method based on the conforming IFE space has

been proved to be convergent for piecewise solutions that may not be in H2(Ω). A modification to the

conforming finite elements with added nodes near the interface is also discussed and tested.

The ideas of this paper can be modified for almost any arbitrary grids that are not necessarily aligned

with interfaces. The methods based on the Cartesian grids can be easily used as finite difference methods.

Thus they can be incorporated into other Cartesian grids based methods and packages, for examples,

LeVeque’s Clawpack and Berger’s AMR package, to solve interface problems.
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