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With the application of sensor technology in the �eld of healthcare, online data sharing in healthcare industry attracts more
and more attention since it has many advantages, such as high e	ciency, low latency, breaking the geographical location, and
time constraints. However, due to the direct involvement of patient health information, the privacy and integrity of medical
data have become a matter of much concern to the healthcare industry. To retain data privacy and integrity, a number of digital
signature schemes have been introduced in recent years. Unfortunately, most of them su
er serious security attacks and do not
perform well in terms of computation overhead and communication overhead. Very recently, Pankaj Kumar et al. proposed a
certi�cateless aggregate signature scheme for healthcare wireless sensor network.�ey claimed that their signature schemewas able
to withstand a variety of attacks. However, in this paper, we �nd that their scheme fails to achieve its purpose since it is vulnerable
to signature forgery attack and give the detailed attack process. �en, we propose a new certi�cateless aggregate signature scheme
to �x the security �aws and formally prove that our proposed scheme is secure under the computationally hard Di	e-Hellman
assumption. Security analysis and performance evaluation demonstrate that the security of our proposal is improvedwhile reducing
the computation cost. Compared with Pankaj Kumar et al.'s scheme, our proposed scheme is more e	cient and suitable for the
healthcare wireless sensor networks (HWSNs) to maintain security at various levels.

1. Introduction

Wireless sensor network (WSN) has been widely used in
many �elds such as retail, entertainment, medicine, tourism,
industry, and emergency management [1], and it provides
many newopportunities for traditional applications, of which
healthcare is one of them. Researchers have invented many
sensor-based miniature medical devices to replace the tradi-
tional thousands of wires connected to hospital equipment
and to increase the mobility of devices. �e combination of
computer network technology and medical �eld makes the
healthcare industry have more broad prospects for develop-
ment [2].

�e application of wireless sensor network technology
is mainly divided into two categories: medical applications

and nonmedical applications [3]. �ere are two main types
of devices used in medical applications: wearable devices and
implanted devices.�e �rst category refers tomedical devices
that are used on or near the surface of a human body, and the
human body canmove with the wearable devices.�e second
category refers tomedical devices injected in/with the human
body.

As shown in Figure 1, there is a general healthcarewireless
sensor network (HWSN) architecture, which consists of the
following �ve components [4]: sensor, central control unit,
patient, cloud based network, and healthcare professional.
�e medical sensor node implanted on the patient’s body,
using air as a transmission medium, can transmit patient’s
health data to a remote central control unit (CCU) for further
processing, then the health data is sent to the healthcare
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Figure 1: A general healthcare wireless sensor network architecture.

professional by CCU via Internet, and the patient’s medical
report is further generated.

In the HWSN, information is transmitted from medical
sensor devices to the healthcare professional who analyzes the
medical information and further provides a suitable solution.
If the attacker modi�es the medical message halfway, the
healthcare professional could make a wrong diagnosis based
on the modi�ed message, which can be very dangerous to
human life. Because of the direct involvement of patient
health information, it is of crucial importance to address the
issue of privacy and integrity of personal health data [5–7].

Motivatedwith the above scenario,many digital signature
schemes are proposed for healthcare wireless sensor network
(HWSN) to protect the privacy and integrity of patient medi-
cal information. In this paper, we �rst review Pankaj Kumaret
al.’s certi�cateless aggregate signature (CL-AS) scheme [8]
and point out a previously undiscovered security �aw in the
scheme; that is, we reveal that their proposed scheme su
ers
the signature forgery attack. We then propose a new CL-AS
scheme for the issues of security and privacy in HWSN.

1.1. Our Research Contributions. In this paper, we propose a
new CL-AS scheme which could better protect the integrity
and privacy of data in HMSN.�emain contributions of this
paper are summarized as below:

(i) Firstly, we identify a security weakness against Pankaj
Kumar et al.’s CL-AS scheme for HWSN.

(ii) Secondly, we rede�ne the architecture of a HWSN,
which is more close to the actual application environ-
ment.

(iii) �irdly, we propose a CL-AS scheme for HWSN to
mend this security �aw, and our new scheme can
satisfy the security requirements.

(iv) Finally, we prove the security of our proposed CL-
AS scheme and show that it can improve the security

while reducing the computation cost compared with
Pankaj Kumar et al.’s CL-AS scheme.

1.2. Organization of the Paper. �e remainder of this paper
is organized as below. Section 2 introduces the related work.
Section 3 presents the problem statements associated with
this paper and then brie�y reviews the CL-AS scheme for
HWSN in Section 4. In Section 5, we demonstrate an attack
against Pankaj Kumar et al.’s CL-AS scheme for the HWSN.
Furthermore, we present details of the proposed CL-AS
scheme in Section 6. In Sections 7 and 8, the security proof
and performance analysis of our scheme are described later.
Finally, we give a summary of this paper in the last section.

2. Related Work

In the traditional PKI-based public key cryptography (PKC),
as the number of users increases, PKC will face a variety
of certi�cate management issues such as certi�cate distri-
bution, storage, revocation, and high computational cost
[11].

Although identity-based public key cryptography (IBC)
[12, 13] can solve the problem of certi�cate management
existing in PKC, it has inherent key escrow issue. �is
is because the user’s private key is generated by the key
generation center (KGC) based on the user’s identity; that is,
KGC can access any user’s private key in IBC.

To solve the above problems, Al-Riyami et al. pro-
posed certi�cateless public key cryptosystem (CL-PKC) [14].
Because it does not use certi�cates and the private key is
generated both by KGC and by the user himself, it can solve
certi�cate management issue in PKC and the key escrow
issue in IBC. Since Al-Riyami et al. introduced the notion
of CL-PKC [14], it has attracted more and more research
attention, and many certi�cateless signature (CLS) schemes
[15–21] have been introduced by researchers.
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Huang et al. [15] proved that the CLS scheme proposed
in [14] is vulnerable to the public key replacement attack
and further proposed an improved certi�cateless signature
scheme to solve this weakness. Similarly, Li et al. [16] also
proposed a new CLS scheme to improve the security of the
scheme proposed in [17], which is subject to the public key
replacement attack as well. For a malicious KGC attack that
exists in some certi�cateless signature schemes, Au et al. [18]
proposed an enhanced security model that allows malicious
KGC to generate key pairs in any way. Nevertheless, the
certi�cateless encryption and signature schemes proposed in
[19–21] have been found to be insecure against malicious
KGC attack.

Boneh et al. proposed the concept of aggregate signature
[22] in Eurocrypt 2003. �e aggregator can aggregate � dif-
ferent signatures with respect to � messages from � users into
a single short signature, which can reduce the bandwidth
and computational e
ort of tiny devices used in HWSN.
�erefore, the aggregate signature is a more suitable choice in
resource-constrained HWSN.

Combining certi�cateless public key cryptography with
aggregate signature, Gong et al. [9] proposed the �rst CL-AS
scheme, but they did not give a formal security proof to the
scheme. A�er pioneer work [9], many CL-AS schemes [10,
23–28] have been proposed for various practical applications.
Zhang and Zhang [23] rede�ned the concept and security
model for CL-AS. Furthermore, they put forward a new CL-
AS scheme, but their scheme need clock synchronized while
generating the aggregate signature, and, more seriously, the
scheme has been proved that it cannot resist malicious KGC
attack. Xiong et al. [24] presented a CL-AS scheme, but
He et al. [25] showed that their scheme was forgeable and
further proposed a new CL-AS scheme. �e CL-AS scheme
proposed in [10] has been found to be insecure against
the malicious-but-passive KGC attack by the researchers in
[26–28].

Recently, He and Zeadally [29] present an authentication
scheme for the Ambient Assisted Living (AAL) system,
which provides technical support for medical monitoring
and telehealth services. He et al. [30] put forward an e	-
cient certi�cateless public auditing scheme for cloud-assisted
wireless body area networks. Very recently, Pankaj Kumar et
al. proposed a CL-AS scheme for secure communication in
HWSN [8], which is claimed to be able to achieve the mes-
sage authentication and integrity audit functions while also
achieving nonrepudiation and con�dentiality. Unfortunately,
we �nd that their CL-AS scheme is insecure and vulnerable
to signature forgery attack from a malicious-but-passive
KGC.

3. Problem Statement

Bilinear map and related hard problems are �rst described
and then system model of our proposed CL-AS scheme is
presented in this section. A�er that, system components of
CL-AS scheme are also described.

3.1. Bilinear Map. Suppose that �1 and �2 are two cyclic
groups with the same prime order �, where �1 is an additive

cyclic group with a generator � and �2 is a multiplicative
cyclic group. � : �1 × �1 → �2 is a bilinear map. For all�, �, 	 ∈ �1, �, � ∈ ∗� , and � should satisfy the properties as

follows:

(1) Bilinearity: �(�, � + 	) = �(�, �)�(�, 	) and �(��,��) = �(���, �) = �(�, ���).
(2) Nondegeneracy: there exists � ∈ �1 such that �(�,�) ̸= 1.
(3) Computability: there exists e	cient algorithm to

calculate �(�, �).
3.2. Complexity Assumption

(1) Computational Di	e-Hellman (CDH) Problem:Given
a generator � of an additive cyclic group �1 with the
order � and a random instance (��, ��), it is di	cult
to compute ���, where � and � are unknown.

(2) Computational Di	e-Hellman (CDH) Assumption:
�ere does not exist adversary �, can solve the��� problem in probabilistic polynomial time with
a nonnegligible probability �, where � > 0 is a very
small number.

3.3. SystemModel. �earchitecture of our healthcarewireless
sensor network is shown in Figure 2. �ere are �ve entities
in the framework of a healthcare wireless sensor network:
medical sensor node (MSN),medical server (MS), authorized
healthcare professional (AHP), signature aggregator (SA),
and aggregate signature veri�er (ASV). Each entity is specif-
ically de�ned as follows:

(1) Medical sensor node. Medical sensor node is a
resource-limited medical small device on patient’s
body belonging to the Care-District. Let ��� denote
the identity and (���, ���) denote the key pair of the
sensor node. Each sensor node can use its private key
to generate a signature for the relevant message and
send the signature to the signature aggregator.

(2) Medical server.Medical server is a device with strong
computing power and plenty of storage space, which
can handle a large amount of data received from
sensors. It transmits the processed patient’s medical
information to the AHP. In addition, it is responsible
for generating systemparameters������, its ownkey
pair (�, �����), and the partial private key ���� for
each sensor node corresponding to its identity and
then secretly sends ���� to the sensor node.

(3) Healthcare professional.Healthcare professional refers
to an authorized medical personnel who provides
patients with appropriate prescriptions by analyzing
the data information sensed by the sensors.

(4) Aggregator. Aggregator refers to a certain computing
power of device. It is responsible for collecting a single
signature from Care-District and then generating an
aggregate signature and sending it to theMS. Suppose
that each Care-District contains one aggregator and
many sensors.
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Figure 2: �e architecture of our healthcare wireless sensor network.

(5) Aggregate signature veri
er. Aggregate signature veri-
�er refers to a certain computing power of equipment.
It is responsible for verifying an aggregate signature
from di
erent Care-District and then outputting a
veri�cation result.

3.4. System Components. Our CL-AS scheme is a collection
of the following seven polynomial time algorithms as below:

(1) Setup(1�) → (������, �, �����) is a probabilistic
algorithm executed by the MS, where � is a security
parameter, ������ is the system parameters, (�,�����) is the key pair of MS, that is, � is the master
secret key, and ����� is the master public key.

(2) Partial-Private-Key-Gen (������, �, ��������) →���� is a probabilistic algorithm executed by the MS,
where ������ is the system parameters, (�, �����)
is the key pair of MS, ��� ∈ {0, 1}∗ is a MSN’s identity,
and ���� is the partial private key corresponding to
the identity ��� of the MSN.

(3) User-Key-pair-Gen(������, ����) → (���, ���) is a
randomized algorithm executed by the MSN with
identity ���, where ������ is the system parameters,(�, �����) is the key pair of MS, and (���, ���) is the
key pair of the MSN with the identity ���.

(4) Sign(������, (���, ���), Δ, ���, ��) → �� is a random-
ized algorithm executed by the signer, where ������
is the system parameters, (���, ���) is the key pair of
the signer,Δ is the state information, ��� is the signer’s
identity, �� is the message, and �� is the signature on
the message ��.

(5) Verify(������, Δ, ���, ��, ���, ��) → {“0”, “1”} is a
probabilistic algorithm executed by the veri�er, where������ is the system parameters, ��� is the signer’s
identity, ��� is the public key of the signer, �� is the
message, and �� is the signature on the message ��, 1
or 0 as outputs to indicate whether the signature �� is
validated.

(6) Aggregate(������, ���, ��, ���, ��)1≤�≤
 → � is a
deterministic algorithm executed by the aggregator,
where ������ is the system parameters, ��� is the
signer’s identity, ��� is the public key of the signer, ��
is the message, �� is the signature on the message ��,
and �� is the signature on the message ��.

(7) Aggregate-Verify (������, Δ, ���, ��, ���, �)1≤�≤
 →{“0”, “1”} is a deterministic algorithm executed by
the aggregate veri�er, where ������ is the system
parameters and � is the aggregate signature of the
message �� on the identity ��� with public key ���.
1 or 0 act as outputs to indicate whether aggregate
signature � is validated.

3.5. Attack Model. In the attack model, we introduce an
adversary � ∈ {�1, �2} in our model. A’s ultimate goal is
to successfully forge the user’s signature on the message. �
possesses with the following capabilities:

(1) � can access any hash oracle and corresponding
queries in the security model.

(2) �1 simulates an outsider attacker, who cannot obtain
the master key but can replace any user’s public key
with a value of his choice.

(3) �2 simulates an honest-but-curious MS, who is an
insider attacker and has no power to replace any user’s
public key but can access the system master key.

4. Review of Pankaj Kumar et al.’s Scheme

Pankaj Kumar et al.’s CL-AS scheme is composed of seven
algorithms, i.e., �����,���� �!−�� V���−"�#−���,�� V���−"�#−���, � $�,%�� &#,�$$��$���, and�$$��$���−%�� &#.
�e scheme details are described as below.

4.1. Setup. By executing the following operations, a�er enter-
ing the security parameter �, the MS generates the system
parameter ������.
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(1) Generates two cyclic groups �1 and �2 with the same
order �, where � is a prime. � being a generator of �1.� : �1 × �1 → �2 being a bilinear pairing.

(2) Randomly selects a number ' ∈ ∗� , computes����� = '�, and sets ' as the master key and �����
as the public key of ��

(3) De�nes three hash functions: �1 : {0, 1} → �1, �2 :{0, 1} → �1, �3 : {0, 1} → ∗�
(4) Keeps ' secret and ������ = (�1, �2, �, �, �, �����,�1, �2, �3) public.

4.2. Partial-Private-Key-Gen. By executing the following
operations, MS generates the user’s partial private key:

(1) Given ��� as the identity of a MS, it computes ���� =�(���) and ������ = '.���� and sets ������ as the
user’s partial private key.

(2) It secretly sends ������ to the corresponding MSN.

4.3. Private-Key-Gen. By executing the following operations,
a sensor with the identity ��� generates its private key and
public key:

(1) Selects a random number *� as the secret value.
(2) Sets {������ , *�} as its private key.
(3) Computes �"��� = *�� as its public key.

4.4. Sign. By executing the following operations, a signer
with the identity ��� generates a signature �� on the message��:

(1) Inputs system parameters ������, private key������ , secret key *�, state information Δ, and
private-public key pair (*�, �"���)

(2) Selects �� ∈ ∗� randomly and then computes -� = ���
(3) Computes / = �2(Δ) and ℎ� = �3(��, ���, �"��� ,-�)
(4) Computes %� = ������ + ��/ + ℎ�*������
(5) Outputs (-�, %�) as the signature of message ��.

4.5. Verify. By executing the following operations, the veri�er
veri�es the signature �� = (-�, %�) of message �� on identity���:

(1) Inputs the state information Δ
(2) Computes ���� = �1(���), / = �2(Δ) and ℎ� =�3(��, ���, �"��� , -�)
(3) Veri�es

� (%�, �) = � (���� + ℎ��"��� , �����) � (-�, /) . (1)

(4) If (1) holds, emits 1 and the veri�er accepts the
signature ��; otherwise emits 0 and rejects.

4.6. Aggregate. By executing the following operations, an
aggregator generates the aggregate signature � from user-
message-public key-signature pairs (���, ��, �"�, ��)1≤�≤
:

(1) Inputs � tuples (���, ��, �"�, ��), where 1 ≤  ≤ �
(2) Computes % = ∑
�=1 %�
(3) Outputs � = (-, %) as the aggregate signature, where- = {-1, -1, . . . , -
}.

4.7. Aggregate-Verify. By executing the following operations,
the aggregate veri�er veri�es the validity of the aggregate
signature � = (-, %):

(1) Inputs the state information Δ, the tuples (���,��, �"�, ��)1≤�≤
, and the aggregate signature � = (-,%)
(2) For 1 ≤  ≤ �, computes ���� = �1(���), / = �2(Δ),

and ℎ� = �3(��, ���, �"��� , -�)
(3) Veri�es

� (%, �)
= � ( 
∑
�=1

(���� + ℎ��"���) , �����) � ( 
∑
�=1

-�, /) . (2)

(4) If (2) holds, emits 1 and the veri�er accepts the
aggregate signature �; otherwise emits 0 and rejects.

5. Attack on Pankaj Kumar et al.’s
CL-AS Scheme

As we know that the signature of �� = (-�, %�) of message ��
on identity ��� should be unforgeable. However, a malicious
MS or an outside attacker may try to forge the signature.
Once the MS or the outside attacker successfully forges the
signature directly or indirectly, he/she �nishes the signature
forgery attack.

In this section, we mainly consider the type 2 adversary�2 and �rst make a security analysis for Pankaj Kumar et al.’s
CL-AS scheme, and then we demonstrate that it is vulnerable
to the signature forgery attack, the attack details are described
as follows.

Setup. �e challenger executes the ����� algorithm to gen-
erate system parameters ������ and master key '. �en it
returns ������ and ' to the adversary �2.
Queries. �e adversary �2 could get the signature � on the
message � signed by �� with the identity ��� via signature
queries, where

� = {{{
- = ��
% = ������ + �/ + ℎ*������ (3)

Forgery. In order to forge the signature �∗� on�� signed by ��
with the identity ���, the adversary �2 implements its attack
as follows:
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(1) Lets -∗� = �∗�� = - = ��
(2) Computes ℎ∗� = �3(��, ���, �"��� , -∗� )

Verify. It is easy to verify the validity of the forged signature�∗� . �e veri�er calculates ���� = �1(���) and / =�2(Δ). Furthermore, the veri�er calculates ℎ∗� = �3(��,���, �"��� , -∗� ). �en we use the forged signature �∗� to verify
(1) and the concrete process is as follows:

� (%∗� , �) = � (������ + �/ + ℎ∗�'�"��� , �)
= � ('���� , �) � (�/, �) � (ℎ∗�'�K��� , �)
= � (���� , �����) � (��, /) � (ℎ∗��"��� , �����)
= � (���� + ℎ∗��"��� , �����) � (-∗� , /)

(4)

Aggregate-Verify. It is easy to verify the validity of the forged
signature �∗. For 1 ≤  ≤ �, the veri�er calculates ���� =�1(���) and ℎ∗� = �3(��, ���, �"��� , -∗� ). Furthermore, the
veri�er calculates / = �2(Δ). �en we use the forged
signature to verify (2); the concrete process is as follows:

� (%∗, �) = � ( 
∑
�=1

(������ + �∗�/ + ℎ∗�'�"���) , �)

= � ( 
∑
�=1

('���� + ℎ∗�'�"���) , �) � ( 
∑
�=1

�/, �)

= � ( 
∑
�=1

(��� + ℎ∗��"���), �����) � ( 
∑
�=1

�/, �)

= � ( 
∑
�=1

(���� + ℎ∗��"���) , �����) � ( 
∑
�=1

-∗� , /)

(5)

We can �nd that the signature veri�cations (1) and (2)
hold. �at is, the forged signature pass veri�cation and the
malicious KGC can forge the signature successfully; Pankaj
Kumar et al.’s CL-AS scheme is insecure.

6. Our Proposed CL-AS Scheme

To overcome the security �aw of the original scheme, we
propose a new CL-AS scheme. Our CL-AS scheme includes
seven phases: �����, ���� �!−�� V���−"�#−���, �� V���−"�#−���, � $�,%�� &#,�$$��$���, and�$$��$�t�−%�� &#.
�e scheme details are described as below.

6.1. Setup. By executing the following operations, MS gener-
ates the system parameters a�er taking a security parameter�:

(1) Generates two cyclic groups �1 and �2 with the same
order �, where � is a prime. � being a generator of �1.� : �1 × �1 → �2 being a bilinear pairing.

(2) Randomly selects a number � ∈ ∗� as the master key

of MS and calculates ����� = �� as the public key of��

(3) Chooses four hash functions: �1 : {0, 1} → �1, �2 :{0, 1} → �1, ℎ1 : {0, 1} → ∗� , and ℎ2 : {0, 1} → ∗�
(4) Keeps the master key � secret and the system param-

eters ������ = (�1, �2, �, �, �, �����, �1, �2, ℎ1, ℎ2)
public.

6.2. Partial-Private-Key-Gen. By executing the following

operations, MS generates the MSN’s partial private key:

(1) Given ��� as aMSN’s identity, MS �rst computes�� =�1(���) and then computes the MSN’s partial private
key ���� = �.��.

(2) It secretly sends ���� to the corresponding MSN.

6.3. Private-Key-Gen. By executing the following operations,
a MSN with the identity ��� generates its private key and
public key:

(1) Selects a random number *� as the secret value.
(2) Sets ��� = {����, *�} as its private key.
(3) Computes ��� = *�� as its public key.

6.4. Sign. By executing the following operations, a signer
with the identity ��� generates a signature �� on the message��:

(1) Inputs system parameters ������, state informationΔ, and private-public key pair (���, ���)
(2) Selects �� ∈ ∗� randomly and then calculates -� = ���
(3) Computes '� = ℎ1(���, ���, -�), B� = ℎ2(��, ���, ���,-�), and C = �2(Δ)
(4) Computes %� = '����� + ������� + B�*�C
(5) Outputs �� = (-�, %�) as the signature of message ��.

6.5. Verify. By executing the following operations, the veri�er
veri�es the signature �� = (-�, %�) of message �� on identity���:

(1) Inputs the state information Δ.
(2) Computes '� = ℎ1(���, ���, -�), B� = ℎ2(��, ���, ���,-�), �� = �1(���), and C = �2(Δ)
(3) Veri�es

� (%�, �) = � ('��� + -�, �����) � (B����, C) (6)

(4) If (6) holds, emits 1 and the veri�er accepts the
signature ��; otherwise emits 0 and rejects.

6.6. Aggregate. By executing the following operations, an
aggregator generates the aggregate signature � from user-
message-public key-signature pairs (���, ��, ���, ��)1≤�≤
:

(1) Inputs � tuples (���, ��, ���, ��), where 1 ≤  ≤ �
(2) Computes % = ∑
�=1 %�
(3) Outputs � = (-, %) as the aggregate signature, where- = {-1, -1, . . . , -
}.
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6.7. Aggregate-Verify. By executing the following operations,
the aggregate veri�er veri�es the validity of the aggregate
signature � = (-, %):

(1) Inputs the state information Δ, the tuples (���,��, ���, ��)1≤�≤
, and the aggregate signature � =(-, %)
(2) Computes C = �2(Δ), furthermore, for 1 ≤  ≤ �,

computes �� = �1(���), '� = ℎ1(���, ���, -�) andB� = ℎ2(��, ���, ���, -�)
(3) Veri�es

� (%, �)
= � ( 
∑
�=1

('��� + -�) , �����) � ( 
∑
�=1

B����, C) . (7)

(4) If (7) holds, emits 1 and the veri�er accepts the
aggregate signature �; otherwise emits 0 and rejects.

7. Security Analysis

A certi�cateless aggregate signature scheme should satisfy the
following requirements: correctness and unforgeability.

7.1. Correctness

�eorem 1. �e proposed certi
cateless aggregate scheme is
correct, if and only if the single signature and aggregate
signature generated by our scheme make (1) and (2) hold. �e
correctness of the protocol is elaborated as follows:

� (%�, �) = � ('����� + ������� + B�*�C, �)
= � ('�����, �) � (�������, �) � (B�*�C, �)
= � ('���, ��) � (���, �����) � (B�*��, C)
= � ('���, �����) � (���, �����) � (B�*��, C)
= � ('��� + -�, �����) � (B����, C)

(8)

and

� (%, �) = � ( 
∑
�=1

'����� + ������� + B�*�C, �)

= � ( 
∑
�=1

'�����, �) � ( 
∑
�=1

�������, �)

⋅ � ( 
∑
�=1

B�*�C, �) = � ( 
∑
�=1

'���, ��)

⋅ � ( 
∑
�=1

���, �����) � ( 
∑
�=1

B�*��, C)

= � ( 
∑
�=1

'���, �����) � ( 
∑
�=1

���, �����)

⋅ � ( 
∑
�=1

B�*��, C) = � ( 
∑
�=1

('��� + -�) , �����)

⋅ � ( 
∑
�=1

B����, C)
(9)

7.2. Unforgeability. In this subsection, we �rst give the secu-
rity model of CL-AS scheme and then give the security proof
to show that the proposal is secure under the security model.

Security Model. �ere are two types of adversaries in the
CL-AS security model: �1 and �2. �1 simulates an outsider
attacker, who cannot obtain the master key but can replace
any user’s public key with a value of his choice, while �2
simulates an honest-but-curious KGC, who is an insider
attacker and has no power to replace any user’s public key but
can access the system master key.

De
nition 2. �e security model of a CL-AS scheme is
de�ned by two games (denoted by Game1 and Game2)
played between an adversary � ∈ {�1, �2} and a challenger�; more details are de�ned below.

�e adversary � can access the following random oracle
machines in the scheme:

Hashqueries:� can access any hash oracle in the scheme,
including �1, �2, ℎ1, and ℎ2.

Setup: � performs the ����� algorithm to generate the
master key � and the system parameter list ������. �en� gives the corresponding response for di
erent types of
adversary.

Reveal-Partial-private-key: While � submits a partial
private key query on the identity ��� to challenger�, it checks
if there is a record that corresponds to the identity ��� in
the E��� list and, if found, sends ���� to �; otherwise, if��� = ���� it aborts; otherwise, it generates the partial private
key ����, sends it to �, and stores it in the list E���.

Reveal-Secret-key:While � submits a secret value query
on the identity ��� to challenger�, it checks if there is a record
that corresponds to the identity ��� in the listE� and, if found,
sends *� to �; otherwise, if ��� = ���� it aborts; otherwise, it
generates the secret value *� and sends it to � and stores it in
the list E�.

Reveal-Public-Key:When adversary � submits a public
key query on the identity ��� to challenger�, it checks if there
is a record that corresponds to the identity ��� in the list E��,
if found, sends ��� to �; otherwise it generates the public key���, sends it to � and stores it in the list E��.

Replace-Public-key: While � submits a query that
replaces the public key on the identity ��� with ��� choice
of public key ��∗� to challenger �, � checks if there is
a record that corresponds to the identity ��� in the listE�� and, if found, then it updates the corresponding item
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(���, *�, ���, ����) to (���, *�, ��∗� , ����) in the list E��;
otherwise it aborts.

Sign:While � submits a signature query on the message�� with the signer’s identity ��� to challenger �, � executes
one of the following operations:

(1) If the target user ��� has not been created, it aborts.

(2) If the target user ��� has been created and the related
user public key ��� has not been replaced, then it
returns a valid signature ��.

(3) If the target user ��� has been created and the
corresponding user public key ��� has been replaced
with ��∗� , then it returns a signature �∗� .�

We, respectively, de�ne two games to describe two di
erent
types of attackers in the CLS, as shown below.

Game1: �e challenger � interacts with adversary �1 as
follows:

(1) Inputting � as a security parameter, � performs the����� algorithm to generate the master key � and the
system parameter list ������. �en � sends ������
to �1 and keeps � secret.

(2) �1 is capable of accessing any hash oracle in the
scheme and-�V��!−���� �!−�� V���−"�#,-�V��!−��F��� − "�#, -�V��! − ���! F − "�#, -��!�F� −���! F − "�#, and � $� queries at any stage during
the simulation in polynomial bound.

Forgery: �1 outputs an aggregate signature �∗ with
respect to � user-message-public key-signature pairs (��∗� ,�∗� , ��∗� , �∗� ), where 1 ≤  ≤ �. We say that �1 wins ����1 if
and only if the following conditions are met:

(1) �∗ is a valid aggregate signature with respect to
user-message-public key-signature pairs (��∗� , �∗� ,��∗� , �∗� ), where 1 ≤  ≤ �.

(2) �e targeted identity ��∗� has not been submitted
during the -�V��! − ���� �! − �� V��� − "�# query.

(3) (��∗� , �∗� ) has not been submitted during the � $�
query.

Game2: �e challenger � interacts with adversary �2 as
follows:

(1) Inputting � as a security parameter, � performs the����� algorithm to generate the master key � and the
system parameter list ������. �en � sends ������
and � to �2.

(2) �2 is capable of accessing any hash oracle in the
scheme and-�V��!−���� �!−�� V���−"�#,-�V��!−���! F−"�#, and � $� queries at any stage during the
simulation in polynomial bound.

Forgery: �2 outputs an aggregate signature �∗ with
respect to � user-message-public key-signature pairs (��∗� ,�∗� , ��∗� , �∗� ), where 1 ≤  ≤ �. We say that �2 wins ����2 if
and only if the following conditions are met:

(1) �∗ is a valid aggregate signature with respect to
user-message-public key-signature pairs (��∗� , �∗� ,��∗� , �∗� ), where 1 ≤  ≤ �.

(2) �e targeted identity ��∗� has not been submitted
during the -�V��! − ��F��� − "�# query.

(3) (��∗� , �∗� ) has not been submitted during the � $�
query.

Provable Security. In this section, we demonstrate that the
new CL-AS scheme is secure under the security model
described in the previous subsection. Our security proof
consists of two parts.

In this section, we prove that our proposedCL-AS scheme
is secure under the security model present in the previous
section, and the speci�c process is described in the following
two parts: (1) the CL-AS is unforgeable to type 1 adversary�1
and (2) the CL-AS scheme is unforgeable to type 2 adversary�2.
�eorem 3. �e proposed CL-AS scheme is existentially
unforgeable against type 1 adversary �1, if the CDH problem is
di	cult to solve in �1.
Proof. We can prove the unforgeability of our CL-AS scheme
against type 1 adversary with Game1 that involves �1 and an
algorithm called simulator �.

Given a random instance of the CDH problem (�, �1 =��, �2 = ��), where � is a generator of �1, our ultimate goal
is to �nd the result of ��� by solving the CDH problem.

(i) Setup: � randomly chooses ���� as the target identity
of sensor challenged, sets����� = �1 = ��, and gen-
erates and returns system parameter ������ = {�1,�2, �, �, �, �����, �1, �2, ℎ1, ℎ2} to �1. �1 performs
the inquiries as follows:

(ii) �1 query: � maintains a list denoted E�1 , and the

structure of E�1 is (���, H�, I�, ��); all the elements

in E�1 are initialized to null. When �1 performs the
query with the identity ���, � checks whether a tuple(���, H�, I�, ��) exists in E�1 ; if it exists, it returns ��
to �1; otherwise, � randomly selects I� ∈ {0, 1} andH� ∈ ∗� . If I� = 0, set �� = H��; otherwise, if I� = 1, set�� = H��2 = H���. It returns�� to�1 and stores (���,H�, I�, ��) to E�1 .

(iii) �2 query: � maintains a list denoted E�2 , and the

structure of E�2 is (�����, J, C), all the elements

in E�2 are initialized to null. When �1 executes the
query with �����, � checks if a tuple (�����, J, C)
exists in E�2 ; if it exists, it returns C to �1; otherwise,� randomly selects J ∈ ∗� and computes C = J�. It
returns C to �1 and stores (�����, J, C) to E�2 .

(iv) ℎ1 query: � maintains a list denoted Eℎ1 , and the

structure of Eℎ1 is (���, ���, -�, '�), all the elements inEℎ1 are initialized to null.When�1 executes the query
with the tuple (���, ���, -�), � check whether a tuple
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(���, ���, -�, '�) exists in Eℎ1 ; if it exists, it returns '�
to �1; otherwise, � randomly selects '�. It returns '�
to �1 and stores (���, ���, -�, '�) to Eℎ1 .

(v) ℎ2 query:�maintains a list denotedEℎ2 , and the struc-
ture of Eℎ2 is (��, ���, ���, -�, B�), all the elements inEℎ2 are initialized to null.When�1 executes the query
with the tuple (��, ���, ���, -�), � checks if a tuple(��, ���, ���, -�, B�) exists in Eℎ2 ; if it exists, it returnsB� to �1; otherwise, � randomly selects B�. It returnsB� to �1 and stores (��, ���, ���, -�, B�) to Eℎ2 .

(vi) Reveal-Partial-Private-Key queries: � maintains a list

denoted E���, and the structure of E��� is (���, ����),
all the elements in E��� are initialized to null. When�1 executes the querywith ���,��rst checkswhether��� = ����; if it holds, output ⊥; otherwise, �
checks whether a tuple (���, ����) exists in E���; if
it exists, it returns ���� to �1; otherwise, � recalls the

corresponding tuple (���, H�, I�, ��) from the list E�1
and computes���� = H������ = �H��. It returns����
to �1 and stores (���, ����) to E���.

(vii) Reveal-Secret-Key-queries: � maintains a list denotedE�, and the structure of E� is (���, *�), all the ele-
ments in E� are initialized to null. When�1 performs
the query with the identity ���, � �rst checks if��� = ����; if it holds, output ⊥; otherwise, � checks
whether a tuple exists in (���, *�); if it exists, it returns*� to �1; otherwise, � randomly selects *�. It returns*� to �1 and stores *� to (���, *�).

(viii) Reveal-Public-Key queries: � maintains a list denotedE��, and the structure of E�� is (���, ���), all the
elements in E�� are initialized to null. When �1
performs the query with the identity ���, � checks

whether a tuple (���, ���) exists in E��; if it exists���,
it returns ��� to �1; otherwise, it accesses E� to get*� and computes ��� = *��. It returns ��� to �1 and
stores (���, ���) to E��.

(ix) Replace-Public-Key queries: When �1 executes the
query with the identity (���, ��∗� ), in response, �
replaces the real public key��� of ��� with��∗� chosen
by �1 in the list E��.

(x) Sign queries: When �1 performs the query with the
user identity ��� and public key ���, message ��, �
accesses E�1 , E�2 , Eℎ1 , and Eℎ2 to get I�, ��, C, '�,
and B�, respectively. Furthermore, � randomly selects�� and computes -� = ���; if I� = 0, � computes%� = H�'������+�������+B�J���; otherwise, if I� = 1,� computes %� = H�'������� + ������� + B�J���.
It returns �� = (-�, %�) to �1 as the signature of the
message �� on the user identity ��� with the public
key ���.

(xi) Forgery: Finally,�1 outputs a forged aggregate signa-
ture �∗ = (-∗, %∗) from message-identity-public key
pairs (�∗� , ��∗� , ��∗� ), where 1 ≤  ≤ �. If all I� = 0
hold, �1 aborts; otherwise, without loss of generality,

let ���� = ��1; that is, I1 = 1, I� = 0 (2 ≤  ≤ �), and
then the forged signature should make the following
hold:

� (%∗, �)
= � ( 
∑
�=1

('∗� �∗� + -∗� ) , �����) � ( 
∑
�=1

B∗� ��∗� , C) (10)

where �∗� = H∗� � (2 ≤  ≤ �), �∗1 = H∗1 ��, C = J�,%∗ = ∑
�=1 %∗� , and -∗ = {-∗1 , -∗2 , . . . , -∗
 }.
Furthermore, the derivation process is shown as follows:

� (%∗, �) = � ( 
∑
�=1

('∗� �∗� + -∗� ) , �����)

⋅ � ( 
∑
�=1

B∗� ��∗� , C)

L⇒ � (%∗, �) = � (-∗1 + 
∑
�=2

('∗� �∗� + -∗� ) , �����)

⋅ � ('∗1�∗1 , �����) � ( 
∑
�=1

B∗� ��∗� , J�)
L⇒ � ('∗1�∗1 , �����) = � (%∗, �)

⋅ [� (-∗1 + 
∑
�=2

('∗� �∗� + -∗� ) , �����)

⋅ � ( 
∑
�=1

B∗� ��∗� , J�)]
−1

L⇒ � (H∗1'∗1 ���, �) = � (%∗, �)
⋅ [� (-∗1 + 
∑

�=2
('∗� �∗� + -∗� ) , �����)

⋅ � ( 
∑
�=1

B∗� ��∗� , J�)]
−1

L⇒ H∗1'∗1 ��� = %∗ − [(�∗1 + 
∑
�=2

(H∗� + �∗� )) �����
+ 
∑
�=1

B∗� *∗� J]

L⇒ ��� = (%∗ − (�∗1 + 
∑
�=2

(H∗� + �∗� )) �����
− 
∑
�=1

B∗� *∗� J) (H∗1'∗1 )−1

(11)

However, this contradicts the CDH assumption; thus the
single signature and aggregate signature generated by the new
scheme are unforgeable.
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�eorem 4. �e proposed certi
cateless aggregate scheme is
existentially unforgeable against type 2 adversary �2, if the
CDH problem is di	cult to solve in �1.
Proof. We can prove the unforgeability of our CL-AS scheme
against type 2 adversary withGame2 that involves �2 and an
algorithm called simulator �.

Given a random instance of the CDH problem (�, �1 =��, �2 = ��), where � is a generator of �1, our ultimate goal
is to �nd the result of ��� by solving the CDH problem.

(i) Setup: � randomly chooses ���� as the target identity
of sensor challenged, sets ����� = P�, and returns
master key P and system parameter ������ ={�1, �2, �, �, �, �����, �1, �2, ℎ1, ℎ2} to �2. �2 per-
forms the inquiries as follows.

(ii) ℎ1, ℎ2, and Reveal-Secret-Value queries are the same
as the corresponding queries in �eorem 3. Since�2 can access the master key, there is no need to
the Reveal-Partial-Private-Key queries and Replace-
Public-Key queries.

(iii) �1 query: � maintains a list denoted E�1 , and the

structure ofE�1 is (���, H�, ��), all the elements inE�1
are initialized to null. When �2 performs the query

with the identity ���, � checks whether a tuple E�1
is (���, H�, ��) exists in E�1 ; if it exists, it returns ��
to�2; otherwise,� randomly selects H� and computes�� = H��. It returns �� to �2 and stores (���, H�, ��)
to E�1 .

(iv) �2 query: � maintains a list denoted E�2 , and the

structure of E�2 is (�����, J, ), all the elements

in E�2 are initialized to null. When �2 executes the
query with �����, � checks whether a tuple (�����,J, ) exists in E�2 ; if it exists, it returns C to �2; oth-
erwise, � randomly selects J ∈ ∗� and computes C =J�1 = J��. It returns C to �2 and stores (�����,J, C) to E�2 .

(v) Reveal-Public-Key queries: � maintains a list denotedE��, and the structure of E�� is (���, Q�, ���), all
the elements in E�� are initialized to null. When �2
performs the query with the identity ���, � checks

whether a tuple (���, Q�, ���) exists in E��; if it exists���, it returns ��� to �2; otherwise, � randomly
selectsQ� ∈ {0, 1}; ifQ� = 0,� accesses E� to get *� and
computes ��� = *��; otherwise, ifQ� = 1,� randomly
selects *� ∈ ∗� and computes ��� = *��2 = *���. It
returns ��� to �2 and stores (���, Q�, ���) to E��.

(vi) Sign queries: When �2 performs the query with
user’s identity ��� and public key ���, message ��, �
accesses E�1 , E�2 , Eℎ1 , Eℎ2 , and E�� to get ��, C, '�, B�,
andQ�, respectively. Furthermore,� randomly selects�� and computes -� = ���; if Q� = 0, � computes %� =H�'������ + ������� + B�J���; otherwise, if Q� = 1,� computes %� = H�'������ + ������� + B�J����.
It returns �� = (-�, %�) to �2 as the signature of the

message �� on user’s identity ��� with the public key���.
(vii) Forgery: Finally,�2 outputs a forged aggregate signa-

ture �∗ = (-∗, %∗) from message-identity-public key
pairs (�∗� , ��∗� , ��∗� ), where 1 ≤  ≤ �. If all Q� = 0
hold, �2 aborts; otherwise, without loss of generality,
let ���� = ��1; that is, Q1 = 1, Q� = 0 (2 ≤  ≤ �), and
then the forged aggregate signature should satisfy:

� (%∗, �)
= � ( 
∑
�=1

'∗� �∗� + -∗� ) , �����)� ( 
∑
�=1

B∗� ��∗� , C) (12)

where �∗� = H∗� �, ��∗1 = *∗1 ��, ��∗� = *∗� � (2 ≤ ≤ �), C = J��, %∗ = ∑
�=1 %∗� , and -∗ = {-∗1 , -∗2 ,. . . , -∗
 }.
Furthermore, the derivation process is shown as below:

� (%∗, �) = � ( 
∑
�=1

('∗� �∗� + -∗� ) , �����)

⋅ � ( 
∑
�=1

B∗� ��∗� , C)

L⇒ � (%∗, �) = � ( 
∑
�=1

('∗� �∗� + -∗� ) , �����)

⋅ � ('∗1��∗1 , C) � ( 
∑
�=2

B∗� ��∗� , C)
L⇒ � (B∗1��∗1 , C) = � (%∗, �)

⋅ [� ( 
∑
�=1

('∗� �∗� + -∗� ) , �����)

⋅ � ( 
∑
�=2

B∗� ��∗� , C)]
−1

L⇒ � (B∗1 J���, �) = � (%∗, �)
⋅ [� ( 
∑

�=1
('∗� �∗� + -∗� ) , �����)

⋅ � ( 
∑
�=2

B∗� ��∗� , C)]
−1

(13)

L⇒ B∗1 J��� = %∗ − [( 
∑
�=1

(H∗� '∗� + �∗� )) �����

+ 
∑
�=1

B∗� *∗� J]
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Table 1: Security comparisons.

R11 R12 R13 �� R21 R22 R23 ��
Gong’s Scheme [9] ST U�� ST E U�� ST ST E
liu’s Scheme [10] U�� U�� U�� � ST ST ST E
kumar’s Scheme [8] U�� U�� U�� � ST ST ST E
Our proposed Scheme U�� U�� U�� � U�� U�� U�� �

Table 2: symbol-operation-execution time.

Symbol Operation Time (��)
	��� �e time of performing a general hash operation in ∗� 0.0002

	��� �e time of performing a map-to-point operation in �1 9.773

	���−�� �e time of performing a point addition operation in �1 0.022

	���−�� �e time of performing a point multiplication operation in �1 3.740

	�� �e time of performing a bilinear pairing operation 11.515

L⇒ ��� = (%∗ − ( 
∑
�=1

(H∗� '∗� + �∗� )) �����
− 
∑
�=1

B∗� *∗� J) (B∗1 J)−1
(14)

However, this contradicts the CDH assumption; thus the
single signature and aggregate signature generated by the new
scheme are unforgeable.

8. Security Comparisons and
Performance Analysis

In this section, we �rst compare the security of the newly
proposed CL-AS schemewith the other three CL-AS schemes
and further analyze the performance of the new CL-AS
scheme by evaluating the computation overhead.

8.1. Security Comparisons. In this subsection, we compare
the security of the newly proposed CL-AS scheme with
the other three CL-AS schemes [8–10]. For the convenience
of description, let �1 and �2 denote the type1 and the
type2 adversaries, respectively. Furthermore, the two types
of adversaries are divided into three levels [31], where R�1
denotes general adversary, R�2 denotes strong adversary, R�3
denotes super adversary, respectively, and  ∈ {1, 2}; the
value of  corresponds to the type  adversary. U�� denotes
that it can satisfy the corresponding security requirement
and ST denotes that it cannot satisfy the corresponding
security requirement. E denotes the weaker security and �
denotes the stronger security under the corresponding attack
types. �� denotes the security performance. �e security
comparisons of the various schemes are listed in Table 1.

As shown in Table 1, we can �nd that the �rst three
schemes (i.e., Gong’s scheme [9], liu’s scheme [10], and
kumar’s scheme [8]) cannot satisfy all the security require-
ments. Especially for Gong’s two CL-AS schemes [9], under
the attacks of the type1 and the type2 adversaries, none of

them can meet the security levels of R3. liu and kumar’s
schemes cannot resist the malicious KGC attack (R3 level).
In contrast, our CL-AS scheme can meet all the security
requirements. Hence, our proposed CL-AS scheme has better
security than that of the other three schemes.

8.2. Performance Analysis. In this section, we analyze the
performance of our CL-AS scheme by evaluating the compu-
tation overhead. Comparedwith that of kumar et al.’s scheme,
our implementation shows that the new proposal can satisfy
the security requirement and provide an improved security
while reducing the computation cost.

In order to achieve a credible security level, we choose �
and � as 160-bits prime number and 512-bits prime number,
respectively. A ate pairing � : �1 × �1 → �2 is used in our
experiments, where�1 and�2 are cyclic groupswith the same
order �, de�ned on the super singular elliptic curve V(W�) :#2 = *3 + 1.

We have implemented kumar et al.’s scheme and the
newly proposed scheme with the MIRACL library [32]
on a personal computer (Lenovo with Intel I5-3470 3.20G
Hz processor, 4G bytes memory and Window 7 operating
system). For the sake of simplicity, we �rstly de�ne the
corresponding relations related symbol-operation-execution
time as shown in Table 2.

Because Setup, Partial-Private-Key-Gen, and Private-Key-
Gen phases are executed by MS or user and all of them are
one-time operation, we laid stress on the comparisons of the
computation cost in Sign, Verify, Aggregate, and Aggregate-
Verify phases.

In � $n phase, the user in kumar et al.’s scheme needs to
perform one general hash operation in∗� , one map-to-point

hash operation in �1, two-point addition operations in �1
and three-point multiplication operations in �1. �erefore,
the running time of the � $� phase is 	��� + 	��� + 2	���−�� +3	���−��, whereas the user in the new proposal needs to

perform two general hash operations in ∗� , one map-to-

point hash operation in �1, two-point addition operations in�1, and four-pointmultiplication operations in�1.�erefore,
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Table 3: Computation cost comparisons (millisecond).

kumar’s Scheme [8] Our Proposed Scheme

� $� 	��� + 	��� + 2	���−�� + 3	���−�� ≈ 21.0372 2	��� + 	��� + 2	���−�� + 4	���−�� ≈ 24.7774
%�� &# 	��� + 	��� + 	���−�� + 	���−�� + 3	�� ≈ 48.0802 2	��� + 	��� + 	���−�� + 2	���−�� + 3	�� ≈ 51.8204
�$���$��� 99	���−�� ≈ 2.178 99	���−�� ≈ 2.178
�$$��$���−%�� &# 100	��� + 200	��� + 298	���−�� + 100	���−�� + 3	�� ≈2369.721 200	��� + 101	��� + 298	���−�� + 200	���−�� + 3	�� ≈1776.214

the running time of the � $� phase in our proposed scheme
is 2	��� + 	��� + 2	���−�� + 4	���−�� milliseconds.

In %�� &# phase, the veri�er in kumar et al.’s scheme
needs to perform one general hash operation in∗� , onemap-

to-point hash operation in �1, one-point addition operation
in �1, one-point multiplication operation in �1, and three-
bilinear pairing operations. �erefore, the running time of
the %�� &# phase is 	��� + 	��� + 	���−�� + 	���−�� + 3	��,
whereas the veri�er in the new proposal needs to perform
two general hash operations in ∗� , one map-to-point hash

operation in �1, one-point addition operation in �1, two-
point multiplication operation in �1, and three-bilinear
pairing operations.�erefore, the running time of the %�� &#
phase in our proposed scheme is 2	��� + 	��� + 	���−�� +2	���−�� + 3	�� milliseconds.

In �$$��$��� phase, the aggregator in kumar et al.’s
scheme needs to perform � − 1 point addition operations
in �1, whereas the aggregator in the new proposal needs to
perform � − 1 point addition operations in �1. We can �nd
that the running time of the �$$��$��� phase in the two
schemes is equal to (� − 1)	���−�� milliseconds.

In �$$��$��� − %�� &# phase, the aggregate veri�er in
kumar et al.’s scheme needs to perform � general hash
operations in ∗� , 2� map-to-point hash operations in �1,3� − 2 point addition operations in �1, � point multiplication
operations in �1, and three-bilinear pairing operations.
�erefore, the running time of the �$$��$��� − %�� &#
phase is �	��� + 2�	��� + (3� − 2)	���−�� + �	���−�� + 3	��
milliseconds, whereas the veri�er in the new proposal needs
to perform 2� general hash operations in ∗� , � + 1 map-to-

point hash operations in �1, 3� − 2 point addition operations
in �1, 2� point multiplication operations in �1, and three-
bilinear pairing operations. �erefore, the running time of
the �$$��$��� − %�� &# phase in our proposed scheme is2�	��� + (� + 1)	��� + (3� − 2)	���−�� + 2�	���−�� + 3	��
milliseconds.

Assuming that � = 100 in the�$$��$��� and�$$��$���−%�� &# phases, the computation overhead comparisons are
shown in Table 3 and Figure 3. As can be seen from the
results in Table 3 and Figure 3, the computation overhead
of our proposed CL-AS scheme is slightly higher than that
of kumar et al.’s scheme for � $� and %�� &# phases. In�$$��$��� phase, the computation overheads of the two
schemes are equal, whereas in the �$���$��� − %�� &# phase,
the computation overhead of our scheme is much lower
than that of kumar et al.’s scheme. However, compared with
the total computation overheads of these four phases, our
scheme’s computation overhead is reduced by 24 percentage

Figure 3: Computation cost comparisons.

points compared with the that of kumar et al.’s scheme [8].
�at is, we enforce the security in a large extent with the
e	ciency increased by 24 in computation overhead.

9. Conclusion

To ensure the privacy and integrity of patients medical
information, several CL-AS schemes have been put forward
recently. In this paper, we �rst investigate the techniques
of the data signature. �en we show that Pankaj Kumar et
al.’s scheme is vulnerable against the malicious attack. �is
attack is a serious threat from the inside attacker acting as
a MS, because it allows the adversary to forge a signature of
message � using the signature of the message �� on signer���.

To overcome this security �aw, we put forward a new CL-
AS scheme for the issues of integrity and privacy in HMSN.
�e security analysis shows that our proposed CL-AS scheme
is provably secure and can meet the security requirements in
HMSN. In addition, the detailed performance analysis and
evaluation demonstrate that our CL-AS scheme can achieve a
novel security level while reducing the computation cost. Our
CL-AS scheme is robust against all types of attacks, making
it more useful for protecting the integrity and privacy of
patients medical information.
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