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ABSTRACT

Densely ionizing radiation has always been a main topic in radiobiology. In fact, a-particles and neutrons are sources of

radiation exposure for the general population and workers in nuclear power plants. More recently, high-energy protons

and heavy ions attracted a large interest for two applications: hadrontherapy in oncology and space radiation protection

in manned space missions. For many years, studies concentrated on measurements of the relative biological effectiveness

(RBE) of the energetic particles for different end points, especially cell killing (for radiotherapy) and carcinogenesis (for

late effects). Although more recently, it has been shown that densely ionizing radiation elicits signalling pathways quite

distinct from those involved in the cell and tissue response to photons. The response of the microenvironment to charged

particles is therefore under scrutiny, and both the damage in the target and non-target tissues are relevant. The role of

individual susceptibility in therapy and risk is obviously a major topic in radiation research in general, and for ion

radiobiology as well. Particle radiobiology is therefore now entering into a new phase, where beyond RBE, the tissue

response is considered. These results may open new applications for both cancer therapy and protection in deep space.

Biological effects of densely ionizing radiation have been

studied since the beginning of radiobiology. As a matter of fact,

a-particles deliver the main contribution to the background

radiation dose on Earth, owing to inhalation of the indoor

radon.1 Neutrons have also been extensively studied because of

protection of workers in nuclear power plants; use of fast

neutrons in radiotherapy; and of the exposure of the survi-

vors of the atomic bomb in Hiroshima and Nagasaki,

where a neutron component was added to g-rays. Bacq and

Alexander2 already elegantly described the radiobiology

of a-particles and neutrons in their 1955 seminal book.

More recently, radiobiology research has focused on high-

energy protons and heavy ions, mostly for two reasons:

charged particle therapy (CPT) in oncology and radiation

protection in manned space missions. In both cases, charged

particles at energies .100MeV n21 are involved. The

characteristic depth–dose distribution with the sharp Bragg

peak at the end of the range can be exploited for killing

tumours; on the other hand, densely ionizing radiation

can effectively delay tissue morbidity. Notwithstanding

the many differences in exposure conditions, CPT and space

radiation protection share several research topics, including

individual sensitivity, non-targeted effects, late stochastic

effects and so forth.3 Research in these fields requires large

high-energy accelerators and is often performed by the same

research groups with a common interest in particle ra-

diobiology. Research is rapidly moving forward owing to

the diffusion of CPT centres in the USA, Europe, and Asia4

and to the growing interest in manned space exploration,

now a priority for all space agencies,5 but with cosmic rays

acknowledged as a potential showstopper.6 We are also facing

a shift in the mainstream research topics, from comparisons

of cellular end points to studies of the tissues and of the

microenvironment.3,7–10

RELATIVE BIOLOGICAL EFFECTIVENESS

For many years, particle radiobiology was focused on mea-

surements of relative biological effectiveness (RBE). The RBE

is used to scale the data from reference radiation (X- or

g-rays) to test radiation (here energetic charged particles).

The radiation weighting factors wR are among the few

quantities proposed by the International Commission on

Radiological Protection11 not derived from epidemiology,

but from laboratory studies in radiobiology. In space travel,

radiation weighting is instead based on the radiation quality

factor Q, which is a continuous function of the radiation

linear energy transfer (LET), rather than on radiation quality-
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specific wR values.12 Quality factors are derived mostly from

accelerator-based experiments on relevant end points, such as

carcinogenesis in animals, neoplastic transformation in vitro,

mutations, chromosomal aberrations and so on. In CPT, the RBE-

weighted absorbed dose is expressed in Gy(RBE), which replaces

the former grey-equivalent (GyE) or cobalt-grey-equivalent

(CGE).13 Despite many years of studies, starting at the Lawrence

Berkeley Laboratory (LBL) in the 1970s14 and then at GSI,

Darmstadt, Germany; Heavy-Ion Medical Accelerator, Chiba, Japan;

Brookhaven National Laboratory, Upton, NY, and many other

accelerators, uncertainty about RBE is still very high. RBE is indeed

the main source of uncertainty about the estimates of cancer risk

for interplanetary missions (Figure 1)15 and in dose estimation in

CPT.4 In proton therapy, a constant value of 1.1 is used all along the

spread-out-Bragg-peak (SOBP), but it is generally acknowledged

that corrections should be used, at least in the distal part of the

SOBP, where radiobiology shows that slow protons have an in-

creased effectiveness.16 The increase of RBE with depth causes

a shift of the fall-off of the proton beam, i.e. a change of the beam

range (biological effective range).17,18 Depending on the SOBP

specific characteristics, increases in depth of several millimetres are

expected due to the increased RBE in the distal penumbra

(Figure 2). The RBE has obviously a much greater impact when

heavy ions are used, because in that case, the LET varies sharply

along the SOBP. For carbon ions, currently used for therapy in

Germany, Italy, Japan and China, the dose in the SOBP is modu-

lated using appropriate models for the RBE.19,20 Different models

are used in Europe and Japan, and the calculated doses in Gy(RBE)

can differ significantly.21 Uncertainty on the RBE is often quoted as

a major hindrance to a widespread use of heavy ions in radio-

therapy and is a source of concern for the potential late effects. For

instance, C-ions have been used very little in paediatric patients,22

mostly for the concern about high risk of secondary cancers.

Many years of in vitro studies on the RBE for cell killing con-

sistently show a bell-shaped dependence on LET (Figure 3) and

a significant dependence also on the particle charge.23 Recent

data mining of survival curves for cell cultures exposed to

charged particles24,25 confirms the spread in the RBE-LET

Figure 1. Estimates of uncertainties in projecting cancer risks

for interplanetary space missions based on current knowledge

on radiation protection on Earth. Several factors such as radiation

quality of high-energy ions, space dosimetry and microgravity

do not contribute on Earth and lead to large increases in risk

projections. The relative biological effectiveness (RBE) is by far

the main factor contributing to uncertainty. Predicting risks to

individuals is difficult, as there are very few quantitative measures

of individual sensitivity. Reproduced from Durante and

Cucinotta15 with permission from Nature Publishing Group.

Figure 2. Biological range extension owing to a variable

relative biological effectiveness (RBE) with depth in proton

therapy. The orange dashed line indicates the corrected physical

spread-out-Bragg-peak using the conventional RBE5 1.1. The

orange line represents the correction used with the Local Effect

Model version IV (LEMIV) model.20,21 The black dashed line

indicates 80% of the prescribed RBE-weighted dose. The inset

shows a zoom of the distal penumbra, and the green line

shows the increased range predicted by the biological model.

Image and calculation courtesy of Rebecca Grün, GSI, Darmstadt,

Germany. Modified with permission from the American Associa-

tion of Physicists in Medicine.18

Figure 3. Variability of the relative biological effectiveness

(RBE) (calculated at 10% survival level) vs linear energy

transfer (LET) (dose-averaged in water, in keVmm21) in vitro

data. Points are extracted from the large Particle Irradiation

Data Ensemble (PIDE) database (https://www.gsi.de/bio-pide)

developed at GSI, Darmstadt, Germany.24 Different colours

correspond to different ions as shown in the legend. The blue

curves describe the approximated band of Chinese hamster V79

survival data as collected from Sørensen et al.25 The red curves

include the data on different in vitro cell lines collected at

Lawrence Berkeley Laboratory.14 DC, dendritic cell.

BJR M Durante

2 of 14 bjr.birjournals.org Br J Radiol;87:20130626

https://www.gsi.de/bio-pide
http://bjr.birjournals.org


relationship originally measured at LBL.14 RBE is in fact

a function of several factors, often non-independent: biological

end point, tissue type, proliferation status, dose, dose rate, ox-

ygen concentration, culture conditions (in vitro) or metabolism

(in vivo) and so forth. Replicating in vitro measurements on

different cell lines, as done many times since the Berkeley

experiments,14 cannot reduce this intrinsic variability. Modelling

will always be necessary for including RBE in the treatment

planning, and here, there is room for improvements switching

from phenomenological to mechanistic models.26 It is worth

noting that although the uncertainty in RBE is certainly a problem

in heavy ion therapy, it should not prevent the use of this treat-

ment modality, owing to the lack of significant side effects ob-

served so far in Japan and Europe. Centres like the National

Institute for Radiological Sciences (NIRS), Heidelberg Ion

Therapy Center (HIT) or Centro Nazionale Adroterapia Onco-

logica (CNAO), where patients are treated with C-ions, all use

Phase I/II dose escalation trials to find optimal protocols.4 At the

Institute of Modern Physics, Chinese Academy Sciences, Lanzhou,

China, patients are treated with C-ions without any biological

modulation, i.e. with an SOBP flat in dose, apparently with no

major toxicity.27

HYPOFRACTIONATION

Thanks to tremendous improvements in image-guided radio-

therapy (IGRT), there is nowadays a tendency to reduce the

number of fractions and increase the dose per fraction (hypo-

fractionation).28 The advantages for the patient and for the

economy are enormous. X-ray stereotactic body radiation therapy

(SBRT) and CPTare both pushing hypofractionation towards the

region of 1–3 fractions (oligofractionation) with a very high dose/

fraction (up to 25–30Gy). For non–small cell lung cancer

(NSCLC) and oligometastases, SBRT has proven high control

rates, durable local control and little normal tissue complica-

tions.29 At very high dose, the vascular injury, i.e. damage to the

endothelial cells supplying the cancer tissue with oxygen and

nutrients, may become a dominant pathway for tumour sup-

pression.30 Damage to the tumour stroma at high doses was

originally demonstrated in fibrosarcoma and melanoma grown in

genetically modified mice, where vascular endothelial cell apo-

ptosis was shown .10Gy per fraction.31 The ceramide pathway

orchestrated by acid sphingomyelinase is a major pathway for the

apoptotic response. In later clinicalwork involving the use of single

fraction high-dose spinal SBRT, investigators from the Memorial

Sloan Kettering Cancer Center (MSKCC, New York, NY) recorded

pronecrotic response after doses in the range of 18–24Gy, a

radiographical change consistent with a devascularizing effect.32

Although the engagement of the vascular component in radiation

response can be crucial at very high doses, it should be underlined

that according to the conventional linear–quadratic model used in

fractionated radiotherapy, hypofractionation leads to very high

biologically effective doses (BED). This was not possible in the past

because of the damage to the normal tissue, but it can now be

spared, at least for parallel organs, with the modern image-guided

techniques. In NSCLC, BED correlates with the tumour control

probability (TCP) over a wide range of fractionated conformal

radiotherapy and SBRTregimes.33 The question remains therefore

open, whether oligofractionation can be only justified by the im-

proved physical dose distribution in IGRTand, consequently, very

high BED,34 or it requires a different radiobiological mechanism

involving vascular damage and possibly reperfusion.35

The high conformity granted by the Bragg peak makes CPT ideal

for radiosurgery. Particle radiobiology research at high doses is

needed to support and guide oligofractionation in hadrontherapy.

Experiments in three-dimensional cultures of human endothelial

cells36,37 or lung cancer cells injected with basement membrane

matrix into nude mice38 showed reduced angiogenesis and vas-

culogenesis capability after exposure to high-energy charged

particles, suggesting that the vascular damage may be particularly

effective with protons or heavy ions. Hypofractionation with

protons and C-ions is under way for NSCLC in several centres.

Published TCP data for CPT in NSCLC39–46 are plotted in

Figure 4, along with the curve derived fromX-ray SBRT trials.33,34

CPT TCP are generally consistent with the X-ray SBRT TCP. One

major deviation is observed in the single-fraction treatment at

NIRS in Japan,46 which corresponds to BED.200Gy(RBE). RBE

in the Japanese treatment plan is assumed to be independent from

Figure 4. Tumour control probability (TCP) vs biological

effective dose (BED) for different stereotactic body radiation

therapy (SBRT) and charged particle therapy trials for non–

small cell lung cancer (NSCLC). The red curve represents the fit

to the X-ray SBRT data as reported in Mehta et al33 using the

common linear–quadratic formula BED5nd½11d=ða=bÞ�; where

d is the dose given in every fraction, n the number of fractions,

and a/b58.6 for NSCLC. Data points are calculated from

published trials with protons or C-ions.43–46 The number of

fractions is shown next to the high BED C-ions data points. The

single-fraction C-ion data point with the highest BED is

described in Tsujii and Kamada,46 while the highest TCP has

been achieved at Tsukuba University, Ibaraki, Japan, in a trial on

58 (T1/T2, 30/28) patients treated with 66Gy(RBE)/10 frac-

tions for peripherally located and 72.6Gy(RBE)/22 fractions for

centrally located tumours.42 BED for CPT was calculated using

the formula above with d in Gy(RBE) as reported in the

publications and the same a/b ratio as for X-rays.
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the dose per fraction.19 This can lead to overestimations at high

dose per fraction up to a factor of 2.21 In fact, the single-fraction

trial for NSCLC at NIRS46 gives a TCP consistent with a BED

around 140Gy X-rays (Figure 4). Moreover, the hypofractionated

C-ion trial45,46 reported no side effects, whereas a small but sig-

nificant fraction of complications was reported in all other trials.

On the other hand, some proton data seem to point to a higher

RBE than expected, especially the trial at the University of

Tsukuba.42 This would be consistent with an RBE.1.1 for pro-

tons inNSCLC. Slow protons aremore effective than X-rays in the

inactivation of human tumour cell lines.47 A recent experiment

in a human NSCLC cell line reported an RBE5 1.9 for 3.9MeV

protons compared with X-rays.48 The Tsukuba proton beam line

used for the NSCLC treatment42 has been used for in vitro

experiments in different human cell lines.49 Apoptosis induction

was greater than two-fold the level induced by 10MeV X-ray.49

Other experiments have shown that the signalling cascade fol-

lowing exposure to protons can substantially differ from the damage

response to photons.50

A potential advantage of CPT in hypofractionation is the reduced

oxygen enhancement ratio (OER) using high-LET radiation.

Hypoxia is one of the main factors reducing local controls in solid

tumours,51 and fractionation in radiotherapy has one of the main

reasons in the possibility of re-oxygenation of the hypoxic areas.

Re-oxygenation will be reduced in hypofractionation and, finally,

lost in single-fraction/high-dose radiosurgery. Combinations with

hypoxic sensitizers have been proposed for SBRT.52 Owing to the

reduction of OERusing heavy ions,14,53CPTmay be an alternative.

Targeting specifically hypoxic regions can be achieved with strat-

egies of dose-54 or LET-painting.55 For oligofractionation or single

fraction/high dose treatments, use of ions heavier than carbon

(such as 16O) may be beneficial, because with these ions, the OER

can be further reduced in the clinically relevant hypoxia region53

(Figure 5). Interestingly, SBRT commonly uses a non-uniform

dose distribution in the tumour to achieve sharp edges on the

border of the target volume.56The excess dose in the central region

of the target may indeed be already acting, in current SBRT

practice, as a dose-painting for the hypoxic fraction.57

Animal experiments comparing SBRT and CPT at high dose per

fraction are necessary to clarify this issue and for a full exploitation

of CPT in radiosurgery for both malignant and benign diseases. In

fact, CPT can be potentially used for several non-cancer diseases58

including atrial fibrillation (Figure 6), a common heart disease

now treated by catheter ablation. These applications require ex-

tensive research in particle radiobiology for different tissue, such as

heart, nerves, blood vessels and so on. Very little data are available

for the response of these tissues to particle, whereas clinical results

are used to establish X-ray tolerance doses in SBRT.59

Sensitivity of different tissues to high doses of charged particles

is also important for protection of astronauts from intense solar

particle events (SPEs), which can deliver high doses, even lethal,

to unprotected crews.6 Animal experiments in minipigs60 sug-

gest that the RBE for acute radiation syndrome of protons in

simulated SPE is .1. Ferrets exposed to SPE-like protons had

increase in fibrin clots, prothrombin time and partial throm-

boplastin time values post-irradiation,61 suggesting a proton

radiation-induced coagulopathy, which represents a risk for SPE

in space but may find important applications in CPT.

COMBINED TREATMENTS

Although local control is generally very high with CPT, in most

malignancies, radiotherapy must be combined to systemic ther-

apies to control metastasis and increase survival. Combined

radio1 chemotherapy protocols are already used in many can-

cers, such as glioblastoma multiforme (GBM) or pancreas cancer.

Figure 5. Comparison of the computed oxygen enhancement

ratio (OER) along a spread-out-Bragg-peak for carbon (black

curves) and oxygen (red curves) at different pO2 levels. The

hatched areas represent the interesting clinical regions for

hypoxia (0.15%,pO2,0.5%). Doses indicated are prescribed

relative biological effectiveness (RBE)-weighted doses in the

target to achieve iso-survival. Plans for use of 16O in addition to
12C and 1H in the clinics are currently under way at Heidelberg

Ion Therapy Center (Heidelberg, Germany). Reproduced from

Scifoni et al53 with permission from IOP Publishing.

Figure 6. An in silico study for the application of heavy ions in

the treatment of atrial fibrillation based on four-dimensional

CT targets, the left pulmonary vein (LPV) and right pulmonary

vein (RPV) with high-energy 12C-ions. Atrial fibrillation would

require a five-dimensional treatment plan for compensation of

both breathing motion and heartbeat.58 The radiobiological

response of the vein and cardiac tissue are very little known

and, therefore, the choice of the dose level is at present

uncertain. Image and calculation courtesy of Anna Constanti-

nescu, GSI, Darmstadt, Germany.
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However, very few radiobiology studies specifically address the

potential synergistic interaction of the drugs and ion irradiations.

In vitro experiments on GBM provided useful indications on the

combination of different drugs with C-ions.62

Equally important is the combination of particle therapy with

immunotherapy,63which is now rapidly gaining practice in clinics

with great expectations for cancer cure. Abscopal effects, defined

as shrinkage of metastatic lesions far from the irradiation field

during radiotherapy of a primary malignancy, have been reported

for many years,64 but although immune-related effects were as-

sumed to play a role, this was hitherto not immunologically

proven until a recent case of a female melanoma patient at

MSKCC, receiving immune adjuvant anti-CTLA4 therapy for 1

year, resulting in disease progression, requiring focal irradiation

of her spinal metastasis (28.5Gy and 6MV X-rays in three frac-

tions). In the CT scan, 4 months after irradiation, vanishing of

multiple metastases out of the irradiation field occurred.65

Changes in cellular and molecular parameters indicate a com-

prehensive immune reaction against the tumour. More cases of

abscopal effects with anti-CTLA4 treatment concurrent with ra-

diotherapy were reported later, including one complete response

(no cancer visible in PETscan).66 This is clear clinical evidence of

immune-mediated abscopal effect, formerly observed in different

animal models.67 The mechanism underlying this effect is now

fairly well understood.68 Radiation triggers cell death via DNA

damage. Ceramide formation andmitochondrial damage, leading

to release of mitochondrial cytochrome C and consecutive cas-

pase activation, cause cell apoptosis. In addition to apoptosis, cells

can be effectively eliminated following DNA damage by necrosis,

mitotic catastrophe, autophagy and premature senescence, and

these pathways are prevalent in most solid cancers.69 Radiation

damage response leads to the release of damage-associated

molecular patterns, which induce dendritic cell (DC) maturation

and tumour antigen uptake, resulting in priming and clonal ex-

pansion of cytotoxic lymphocytes (CTLs) in the lymph node,

which harbour the T-cell receptor matching specifically to the

antigen. From the lymph nodes, CTL can travel to the tumour.

There, release of granzyme results in caspase activation and mi-

tochondrial membrane permeabilization. At that point, immu-

nity converges with the same cell death pathways as induced

directly by irradiation (Figure 7). The immune-mediated cell

killing is supported further by radiation through upregulation of

HSP70, which aids in transferring granzyme into the cell, an in-

creased antigen presentation via major histocompatibility

complex-I and upregulation of NKG2D (natural killer group 2,

member D) ligands, facilitating tumour cell killing by natural

killer (NK) cells. The induction of NKG2D ligands may be the

reason of the clinically65,66 observed sensitization of unresponsive

tumours to anti-CTLA4 immunotherapy70 (Figure 8).

These studies beg the question of whether abscopal effects and

combined immunotherapy and radiotherapy, can be enhanced by

charged particles.68 Carbon ions significantly reduce lung me-

tastasis count in LM8 osteosarcoma mouse models and a model

of squamous cell carcinoma in immune competent C3H mice.71

Figure 7. Pathways where radiation can synergize with immune

adjuvant therapy for cancer. (1) Immunogenic cell death is

promotedby ionizing radiation, throughdendritic cell activation

and, consequently, T-cell expansion. (2) Cytokines play a role in

radiation therapy success. (3) NKG2D-ligands, sensitizing stressed

cells to natural killer cells (innate immunity) are upregulated by

radiation. (4) Chemokines can be induced by radiation, attracting

effector T-cells to the tumour. (5) Radiation-induced interferon-

gamma-dependent upregulation of cell adhesion molecule also

influences antitumour immunity. (6) Heat shock proteins sensitize

to cytotoxic granzymes. (7) Radiation can lead to enhanced

expression ofmajor histocompatibility complex (MCH)-I and tode

novo expression of neoantigens. (8) Death receptors can be

upregulated by irradiation. (9) CD8 T-cells are essential for the

success of radiotherapy. Image courtesy of Norman Reppingen,

Technical University of Darmstadt, Darmstadt, Germany. CTL,

cytotoxic T cell; DC, dendritic cell; IFN, interferon; TCR, T cell

receptor; TNF, tumour necrosis factor.

Figure 8. Simplified model of the mechanism of anti-CTLA4

treatment with ipilimumab. The clonal expansion of tumour-

specific T-cells is controlled by “immune checkpoints”. A

strong signal via major histocompatibility complex-I leads to

a more pronounced expression of the immune inhibitory

molecule CTLA4. CTLA4 competes with higher affinity with

the surface receptor CD28 for CD80 and CD86, which is a part

of Signal 2, and necessary for the successful mounting of an

immune response. Binding of CD80 and CD86 to CTLA4 is

antagonizing the function of helper T-cells and cytotoxic T-

cells and activating immune suppressive regulatory T-cells,

conclusively leading to suppression of immune responses

(upper row of cells). Therefore, blocking of CTLA4 leads to

an increased expression of effector molecules (granzyme,

cytokines) and an enhanced expansion of cytotoxic T-cells (lower

row), increasing the “amplitude” of an immune response. These

cells could be directed against the tumour, improving treatment

success, but also against normal cells leading to severe treatment

side effects. Radiation could assist to direct the immune pro-

cesses toward treatment success,70 as evidently seen in some

animal models and preliminarily in clinical results.65,66 Image

courtesy of Norman Reppingen, Technical University of Darm-

stadt, Darmstadt, Germany. TCR, T cell receptor.
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A recent study showed that heavy ion irradiation could confer

tumour rechallenge resistance, which was dependent on CD81 T-

cells and influenced by NK cells in this system, showing synergy

with dendritic cell treatment approaches,72 an encouraging out-

come for future protocols combining immunotherapy and CPT.73

RADIOGENOMICS

The ultimate goal of radiogenomics is to develop a genetic risk

profile individualization of radiation dose prescriptions to optimize

tumour control, whileminimizing normal tissue damage.74Genome-

wide association studies have already been successful in finding novel

genetic variants with high risk of developing some common diseases,

for instance breast cancer.75Radiogenomics uses a similar approach to

predict the sensitivity of the normal76 and cancer77 tissue to radiation.

Normal tissue

Radiogenomics is extremely attractive for the assessment of

patients’ normal tissue response as long as the genetic compo-

nent plays a major role in determining radiosensitivity. This is

clearly the case for those syndromes, such as ataxia-telangectasia

(AT) or Nijmegen breakage syndrome, where germline muta-

tions of DNA repair genes induce extreme radiosensitivity.78

These diseases are, however, rare, confined to a limited number

of families, phenotypically obvious and certainly not responsible

for the observed variability in radiotherapy response. It is in-

teresting to note that, while AT patients are homozygous for

mutation in the ATM protein, a fraction about 3% of the

population is heterozygous for ATM79 and a similar fraction is

hypersensitive in radiotherapy trials. ATM haploinsufficiency

results in increased radiosensitivity in mice,80,81 thus, suggesting

that this subgroup may be the one more at risk of side effects in

radiotherapy and radiation-induced cancer. ATM is one of the

candidate genes to be screened as potential biomarkers of ra-

diation response. Radiogenomics has used the candidate-gene

approach to look for variations in many other genes involved in

radiation response, e.g. those in the pathways of DNA repair

(BRCA1/2), cytokine production (TGFb), scavenging of free

radicals (SOD2) and so forth.82 Genetic variations include single

nucleotid polymorphism (SNP),83 copy number variations84

and other epigenetic modifications. Unfortunately, although

several studies have initially reported associations between ra-

diation toxicity and SNP, a prospective study aimed to validate

failed to detect any of the previously reported associations,85

suggesting that SNP may be irrelevant for individual sensitivity.

Few studies deal with radiation quality in radiogenomics.

Haploinsufficiency for ATM results in accelerated cataracto-

genesis in mice exposed to both X-rays and heavy ions, and the

RBE is higher for heterozygotes compared with wild-type.86 In

a recent microarray hybridization analysis of irradiated normal

human bronchial epithelial cells,87 unsupervised clustering

analysis of gene expression segregated samples according to the

radiation quality (Fe-ions, Si-ions or g-rays) followed by the

time after irradiation (0–24 h), whereas dose (0.5–3Gy) was not

a significant parameter for segregation. The great majority of

genes with modified expression where uniquely associated to

one radiation quality (Figure 9). Even if preliminary, these data

suggest that gene profiling may identify pathways uniquely as-

sociated to CPT compared with X-ray therapy.

Tumour tissue

The integration of molecular data with local control data can

allow the generation of biomarker signatures that predict tumour

response to therapy.77 The method has been applied to in vitro

survival curves of different human tumour cell lines. Microarray

profiling identified 22 genes differentially expressed in radiosen-

sitive cancer cells and 18 genes associated with resistant cell

lines.88 In amolecular regulatory networkmodel based onmRNA

expression profiles, it has been possible to identify 10 hubs of

interactions associated to radiosensitivity.89 It is not clear whether

these patterns can be used for all cancers, or they are tissue-

specific. Individual NSCLC patients’ responses to chemotherapy

are highly variable,90 and similar spread is measured irradiating

NSCLC cell lines.91 Molecular markers, including epidermal

growth factor receptor, K-ras, vascular endothelial growth factor,

mammalian target of rapamycin and anaplastic lymphoma kinase

have been proposed as potential biomarkers of response of

NSCLC to ionizing radiation.92 For head-and neck-squamous cell

carcinoma, a recent study shows that Ku80 overexpression was an

independent predictor for both local recurrence and mortality

following radiotherapy.93 The results are easy to interpret, Ku80

being a key molecule for DNA double-strand break repair.94

The variance in radiosensitivity associated to the genetic back-

ground is reduced when cells are exposed to densely ionizing

radiation.95 The interindividual variability in radiosensitivity can

be assessed with organotypic tissue slices from the human

tumours.96 A recent study showed interindividual variability for

GBM slices treated with temozolomide and a smaller variability

after C-ions.97 The RBE decreases for cells with high a/b ratios,

i.e. by decreasing intrinsic radioresistance and, eventually, rea-

ches unity for very radiosensitive cell lines.98 For this reason,

high-LET heavy ions are preferentially used for radioresistant

tumours. This is also a very attractive feature for targeting

specific resistant sub-volumes in the tumour, such as the cancer

stem cell niche.99 Expression of molecular biomarkers of radi-

oresistance should therefore represent an indication for CPT.

Figure 9. Differentially expressed genes in human bronchial

epithelial cells exposed to g-rays or heavy ions. Venn diagram

shows the numbers of genes, either specific to or overlapping

with different radiation types. Courtesy of Michael D. Story (UT

Southwestern, Dallas, TX). Reproduced from Ding et al87 with

permission from BioMed Central.
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Radiogenomics in tumour tissues can be used for synthetic lethal

genetic screen. Two genes are synthetic lethal if mutation of either

one is compatible with viability but mutation of both leads to

death.100 So, targeting a gene that is synthetic lethal to a cancer-

relevant mutation should kill only cancer cells and spare normal

cells.101 Synthetic lethality, therefore, provides a conceptual

framework for the development of cancer-specific cytotoxic

agents102 and can be extended in combined therapies, targeting

combination of genes conferring radioresistance to cancers.103

Carcinogenesis

If gene expression has a key role in determining sensitivity of the

normal and tumour tissue, it can also be argued that it affects

the risk of radiation-induced cancer. The question is whether

radiation carcinogenesis is a purely stochastic process or if there

exists a sub-population of sensitive individuals.104 Should this be

the case, radioprotection would be useless for many normal

individuals and insufficient for the (few) sensitive subjects. In

the analysis of cancer risk in children from 160 families irradi-

ated in Israel after World War II for an epidemic of tinea capitis,

it was found that the increased meningioma incidence in irra-

diated children was determined by a subgroup of only 17 fam-

ilies (11%), where 4 of 5 children developed meningioma.105 In

addition, the large European cohort study GENE-RAD-RISK106

has recently concluded that in carriers of BRCA1/2 mutations,

any exposure to diagnostic radiation before the age of 30 years is

associated with an increased risk of breast cancer. The relative

risk in the mutant carrier was 1.9 and increased with dose.106

Genetic predisposition may also drive the risk from exposure to

charged particles. This is a critical issue for paediatric patients,

a group that is often referred to proton therapy because much

normal tissue can be spared compared with X-rays and, there-

fore, toxicity is reduced.107 For these patients, the risk of second

cancer is, however, substantial and the genetic predisposition to

cancer very likely because the tumour was expressed at a young

age.108 This problem will be discussed in the next section.

LATE EFFECTS

Risk of late morbidity is a major issue for charged particle ra-

diobiology. For space travel, cancer and non-cancer late effects

represent the major showstopper for long-term interplanetary

missions beyond low-Earth-orbit (LEO).15 In CPT, as noted

above, the problem is mostly related to second cancers in pae-

diatric patients.108

Carcinogenesis

Epidemiology in subjects exposed to energetic charged particles is

very limited. No increased cancer incidence is observed in the

astronauts’ cohort, consistent with the low-dose exposure in LEO

experienced so far by crews on the International Space Station and

other space missions.15 For hadrontherapy, comparison of

chromosomal aberrations in peripheral blood lymphocytes of

patients treated either with C-ions or X-rays for similar tumours

generally shows a higher damage after conventional radiotherapy

compared with heavy ion treatment, both for passive modula-

tion109 and active raster scanning.110 These results, apparently in

contradiction with the increased effectiveness of heavy ions in the

induction of chromosomal aberrations,111 are caused by the

different treatment planning. With heavy ions, the integral dose is

reduced because, thanks to the Bragg peak, only a few fields (1–3)

at different angles are used comparedwith conformal and intensity-

modulated therapy with X-rays (up to 9–10 fields). Therefore, the

volume of normal tissue exposed is strongly reduced, and therefore

less chromosomal aberrations observed, and a reduced late mor-

bidity expected. Preliminary results from a cohort study of 558

patients treated with proton radiation from 1973 to 2001 at the

Harvard Cyclotron Laboratory, Cambridge, MA, showed a trend

towards a reduced risk of second malignancies, consistent with the

reduced integral dose to the normal tissue.112 Voxel-phantom

models able to predict the second cancer risk in different organs

(Figure 10) with different treatment modalities are now

available113,114 and could guide the choice of the oncologists in

defining the best treatment options for paediatric patients. The

epidemiological data used in these models are, however, in-

sufficient and the uncertainty is consequently very high.108

In vitro and in vivo experiments remain mandatory for un-

derstanding the mechanisms and reducing uncertainties.

Neoplastic transformation in vitro by heavy ions has been

studied in immortalized mouse C3H 10T1/2 fibroblasts,115

primary Syrian hamster embryo fibroblasts,116 and in the

HeLa X human skin fibroblast hybrid cell line CGL1.117 All

these systems are very artificial and great caution should be

exercised in extrapolating data to the in vivo situation, espe-

cially since each cancer may display a different behaviour

Figure 10. Dose and risk distribution for second cancer. Images

of a 9-year old girl who received craniospinal irradiation for

medulloblastoma using passively scattered proton beams at

MD Anderson Cancer Center. The colour scale illustrates the

difference for absorbed dose, incidence and mortality cancer

risk in different organs. Radiation absorbed dose depends

strongly on patient anatomy and treatment factors. Risk of

second cancer incidence and mortality varies strongly with

radiation dose, but, importantly, it also varies strongly between

organs, with the patient’s age at exposure and attained age, sex,

genetic profile, and other factors. Reproduced from Newhauser

and Durante108 with permission from Nature Publishing Group.
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in vivo. Nevertheless, the general trend confirms the RBE-LET

relationship observed for cell killing, mutations and chro-

mosomal aberrations, i.e. a bell-shaped curve with a peak around

100–200 keVmm21 (Figure 11).

Animal studies report the induction of different tumours in

rodents and have been recently reviewed.118 In many cases, the

trend for solid tumour induction is not in contradiction with the

in vitro data in Figure 11, although generally RBE values are lower

than those observed with fission neutrons. However, in vivo data

point to quantitative and qualitative differences in the RBE for

different types of cancers. For instance, recent work at the

Brookhaven National Laboratory accelerator has shown that the

RBE of 1GeV n21 Fe-ions for cancer induction in mice is about 1

for leukaemia and about 20 for hepatocellular carcinoma.119How

can the RBE be so different? The reason is most likely because of

the different nature of liquid and solid cancers. Although leu-

kaemia is strongly related to specific chromosomal aberrations (in

mouse, deletion of PU.1 gene in chromosome 2), solid cancers are

associated to genomic instability, i.e. to late tissue effects. Radia-

tion can act both as an initiator of the carcinogenic process (e.g. by

inducing mutations or chromosome aberrations) or in pro-

motion (related to tissue inflammation). For liquid cancers, ra-

diation could act as an initiator, whereas for solid cancer, as

a promoter. Although heavy ions are more effective than X-rays in

the induction of chromosomal rearrangements, most of the

aberrations are lethal, and the RBE drops to about one in the

surviving population.120 On the other hand, heavy ions are very

effective in the induction of inflammation,121 and this process is

a driver for promotion of carcinogenesis.122,123

Non-cancer effects

Recent epidemiological studies suggest that non-cancer late

effects, particularly, cardiovascular diseases, may contribute to

health risk after moderate to low doses of ionizing radiation.124

The radiobiology of charged particles for these end points and

tissues is scarcely known, as already noted for potential appli-

cations of CPT in radiosurgery. The major degenerative late

effects that could result from exposure to high-energy charged

particles are:

– acute and late damage to the central nervous system (CNS)

– cataract formation

– cardiovascular diseases

– other diseases related to accelerated senescence, including

digestive and respiratory diseases, endocrine and immune

system dysfunction.

CNS complications, including necrosis and leukoencephalotopy,

have been reported in patients treated for brain tumours both by

chemotherapy, X-rays125 or protons.126 However, exposure to

heavy ions seems to produce a distinct damage in the CNS also

at low doses, perhaps by single particle traversals. First evidence

of these effects came from reports of visual phosphenes, de-

scribed as sudden “light flashes”, first reported by Buzz Aldrin

after the first Moon landing and then by almost all the astro-

nauts in the Apollo programme.127 Light flashes are believed to

be produced by a direct interaction of an energetic charged

particle with the retina or the eye, as confirmed by studies in

space128 and in dedicated experiments in cancer patients treated

with C-ions using spot-scanning.129 The observation of light

flashes brought attention to the possible effects of charged

particles on the brain function. Calculations suggest that for a 3-

year mission to Mars at solar minimum, 2–13% of the “critical

sites” of cells in the CNS would be directly hit at least once by

iron ions, and roughly 20 million of 43 million hippocampal

cells and 230 000 of 1.8 million thalamus cell nuclei would be

directly hit by one or more particles with Z. 15 on such

a mission,130 without considering the additional contribution

caused by d-rays. Evidence of behavioural effects induced by

doses as low as 0.2 Gy of Fe-ions was produced in a series of

experiments in Sprague-Dawley rats.131 A review of behavioural

end points in rats exposed to different ions conclude that low

doses of heavy ions can indeed produce behavioural alter-

ations in rats, including disruption in motor behaviour, taste

aversion learning, spatial learning and conditioned place

preference.132 The large uncertainty on these behavioural end

points and the interindividual variability in the animal

experiments make, however, very difficult any reliable risk

estimates. There could be a dose threshold, and it seems to be

charge- and energy-dependent, and defining an RBE is even

more difficult, considering that most of these end points are

not observed at all with X-rays.131 These observations have

therefore triggered a number of cellular and molecular studies

on neural cells and tissue, to gain understanding of the

mechanisms of heavy ion-induced damage in the brain. These

studies are ongoing, and despite some evidence of the in-

volvement of reactive oxygen species (ROS) and neuro-

inflammation,133 they are still preliminary and do not presently

allow drawing a firm conclusion.

Figure 11. Relative biological effectiveness (RBE) for in vitro

neoplastic transformation plotted vs the linear energy transfer

(LET) of different charged particles. Data on C3H 10T1/2 mouse

fibroblasts are from Yang et al;115 Syrian hamster embryo (SHE)

fibroblasts were used in Han et al;116 and HeLaxskin fibroblasts

hybrid cells (CGL1) were studied in Elmore et al.117
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On the contrary, we have now clear evidence that space radiation

induces ocular cataract in astronauts,134 and indeed lens opa-

cification is the only proven space-radiation effects actually

observed in crews of space missions. Recent epidemiological

evidence does not support the existence of dose threshold for

radiation-induced lens opacification, although the shape of the

dose–response curve is still unclear.135 However, animal studies

show that the RBE of heavy ions for cataract induction is as high

as 50 at doses ,100mGy,136 thus explaining the high effec-

tiveness for accelerated caratactogenesis in space.

Apart from cataractogenesis, the uncertainty on other, more

harmful, non-cancer late effects, especially cardiovascular dis-

eases, is much higher. There is now clear epidemiological evi-

dence that high radiation doses induce late cardiovascular

diseases. A clear correlation between radiation dose to the heart

in breast cancer patients and late ischaemic heart diseases has

been recently shown in a cohort of Swedish and Danish females

treated by radiotherapy for breast cancer.137 A-bomb survivors’

data also support these results.138 It is not clear, however,

whether this cardiovascular risk has a threshold at low doses.

This is very important for both radiotherapy and space explo-

ration. Proton therapy can efficiently spare the heart during the

treatment of left-side breast cancer,139 whereas with X-rays,

a large fraction of the heart is generally exposed. Breast cancer is

therefore becoming a major application of protontherapy.140–142

Breast cancer is indeed the most frequent cancer in females, and

if proven, superior CPT could have a much larger use than in the

past. The advantage here is not in the TCP, but in the reduced

normal tissue toxicity, and this advantage, already considered the

main justification for paediatric use of protons,107 is likely to be

decisive in the future of CPT. In space, a mission to Mars would

bring the total dose around 1 Sv,143 a region where epidemio-

logical data suggest an increase of cardiovascular diseases.138 An

examination of possible biological mechanisms indicates that the

most likely target of radiation-induced cardiovascular damages are

endothelial cells and subsequent induction of an inflammatory

response.144 Again, inflammation and, in general, non-targeted

effects mediated by the microenvironment are the major pathways

in radiation response of the organisms,122 driving both cancer and

non-cancer late effects, as well as for radiation therapy.145

Generally speaking, the epidemiological evidence of non-cancer

late effects in exposed individuals is consistent with radiation-

induced acceleration of the ageing process. As a matter of fact, it

has been shown that radiation accelerates age-related diseases

such as endocrine dysfunctions,146 digestive and respiratory dis-

eases,138 immune system function impairment.147 What can be

the mechanism relating radiation exposure to ageing? Premature

cellular senescence can be induced by radiation and other geno-

toxic agents, and this process is driven by telomere shortening.148

Even single nuclear traversals of energetic charged particles can

induce accelerated senescence of cultured human fibroblasts.149

The link between radiation exposure and accelerated ageing may

be mediated by a persistent oxidative stress.150 Indirect evidence

of ROS involvement is provided by experiments on protection

from late non-cancer effects using antioxidants.151 For example,

accelerated radiation-induced formation of aortic lesions occurred

in mice that were on a high-fat diet, whereas smaller lesions were

observed in their irradiated transgenic littermates that over-

expressed CuZn-superoxide dismutase, which is expected to de-

crease chronic oxidative stress.152

CONCLUSIONS

Radiobiology research, in general, is underfunded both in the

USA and Europe. However, it is clear that charged-particle ra-

diobiology studies are needed both for cancer therapy and radi-

ation protection in space. In CPT, medical physics can improve

the precision and quality of the treatments, but IGRT is rapidly

progressing in X-ray therapy as well. Only radiobiology can

identify areas of potential breakthrough in radiotherapy, i.e.

specific tumours, fractionation schedules and combined treat-

ments where the benefit of CPTwill be decisive for the patient. In

space travel, cosmic radiation is recognized as a potential show-

stopper. Passive shielding is not a solution to the problem, and

active (magnetic) shielding is still not technologically feasible.

Again, radiobiology studies are mandatory for reducing uncer-

tainties in late radiogenic risk and developing biomedical coun-

termeasures. These ambitious goals should be pursued with

innovative research going beyond the traditional RBE measure-

ments. In this review, we have identified several new key topics in

particle radiobiology, such as effects of high doses (hypofractio-

nation), radiogenomics, combined treatments (with chemo- and

immunotherapies), and studies on late effects focused on the

response of the microenvironment. This research needs funding

and accelerator facilities willing to invest in research. There are

already several accelerator facilities involved in biomedical

research for clinical153 and space154 radiobiology, and others

have been proposed.155 The exploitation of these facilities is,

however, dependent on the funding available for users in-

terested in high-energy particle radiobiology. In the USA, both

the US National Cancer Institute (NCI) and the US Department of

Energy (DOE) are considering further investments in CPT, in-

cluding radiobiology.156 In Europe, Horizon 2020 should be the

platform to continue the funding gathered in past years through the

European Network for LIGht ion Hadron Therapy (ENLIGHT)

platform157 and related European Union-funded projects.158 The

potential gain of this research is likely to be very high.
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