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Abstract

A point of a discrete object is called simple if it can be

deleted from this object without altering topology. In this

article, we present new characterizations of simple points

which hold in dimensions 2, 3 and 4, and which lead to effi-

cient algorithms for detecting such points. In order to prove

these characterizations, we establish two confluence prop-

erties of the collapse operation which hold in the neighbor-

hood of a point in spaces of low dimension. This work is set-

tled in the framework of cubical complexes, which provides

a sound topological basis for image analysis, and allows to

retrieve the main notions and results of digital topology, in

particular the notion of simple point.

Key Words: Cubical complex, topology preservation, col-

lapse, simple point, confluence, 4D space.

Introduction

Topology-preserving operators, like homotopic skele-

tonization, are used in many applications of image analysis

to transform an object while leaving unchanged its topolog-

ical characteristics. Applications in 2D and 3D are already

widely spread, and with the emergence of fast 3D image ac-

quisition devices, such as medical X-ray and MRI scanners,

there is a growing interest in considering a time sequence

of 3D objects as a coherent 4D structure. For example, the

segmentation of a moving heart muscle can be facilitated in

this way [12].

In discrete grids (Z2, Z
3, Z

4), a topology-preserving

transformation can be defined thanks to the notion of simple

point [20]: intuitively, a point of an object is called simple if

it can be deleted from this object without altering topology.

This notion, pionneered by Duda, Hart, Munson [14], Go-

lay [17] and Rosenfeld [27], has since been the subject of

an abundant literature. In particular, local characterizations

of simple points have been proposed, which allow efficient

implementation of thinning procedures.

Let us illustrate informally the notion of simple point

through some examples, first in 2D, then in 3D. In Fig. 1,
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c

Figure 1. Illustration of 2D simple pixels. The
set X is made of the pixels in gray, a,b,c are

simple while x,y,z,t are not simple.

the points (or pixels) x,y,z,t are not simple: the removal of x

from the set X of pixels would create a new connected com-

ponent of the complement X of X ; the removal of y would

merge two connected components of X ; the removal of z

would split a connected component of X ; and the removal

of t would delete a connected component of X . On the other

hand, the pixels a,b and c are simple pixels. We see that, in

2D, the notion of connectedness (for both X and X) suffices

to characterize simple pixels.

x
y

Figure 2. A set X of voxels. The voxels x and
y are not simple.

Things are more difficult in 3D. Consider the example

of the set X depicted in Fig. 2, removing the voxel x or the

voxel y from X would not split, merge, create or suppress



any component of X nor any component of X . However

neither x nor y is simple, for the deletion of x (resp. y) causes

the suppression (resp. creation) of a tunnel. Surprisingly, it

is still possible to characterize 3D simple points by local

conditions which are only based on connectedness (see [1,

9, 28]), but this is no longer true in 4D.

In this article, we use a definition of simple points ([4],

see also [8]) based on the collapse operation. Collapse is an

elementary topology-preserving transformation which has

been introduced by Whitehead [29] and plays an important

role in combinatorial topology, it can be seen as a discrete

analogue of a continuous deformation (a homotopy). No-

tice that this definition of simple points makes sense in any

dimension.

We present new characterizations of 2D, 3D and 4D sim-

ple points based on the collapse (Th. 13, Th. 14), which

lead to simple, greedy linear-time algorithms for simplicity

checking. We also retrieve in our framework, a character-

ization of 4D simple points established by T.Y. Kong [19],

and some previously proposed characterizations of 3D sim-

ple points [19, 1, 9, 28].

In order to prove these characterizations, we establish

some confluence properties of the collapse (Th. 11, Th. 12).

These properties do not hold in general due to the existence

of “topological monsters” such as the Bing’s house ([10],

see also [25]) and the dunce hat [30]; we show that they

are indeed true in the neighborhood of a point, when the

dimension of the space is such that this neighborhood is not

large enough to contain such counter-examples.

This work is settled in the framework of cubical com-

plexes. Abstract (cubical) complexes have been promoted

in particular by V. Kovalevsky [22] in order to provide a

sound topological basis for image analysis. For instance, in

this framework, we retrieve the main notions and results of

digital topology, such as the notion of simple point.

1 Cubical Complexes

Intuitively, a cubical complex may be thought of as a set

of elements having various dimensions (e.g. cubes, squares,

edges, vertices) glued together according to certain rules.

In this section, we recall briefly some basic definitions on

complexes, see also [7, 5, 6] for more details. We consider

here d−dimensional complexes, mainly with 0 ≤ d ≤ 4.

Let S be a set. If T is a subset of S, we write T ⊆ S. We

denote by |S| the number of elements of S.

Let Z be the set of integers. We consider the families

of sets F
1
0, F

1
1, such that F

1
0 = {{a} | a ∈ Z}, F

1
1 = {{a,a +

1} | a ∈ Z}. A subset f of Z
d , d ≥ 2, which is the Cartesian

product of exactly m elements of F
1
1 and (d −m) elements

of F
1
0 is called a face or an m−face of Z

d , m is the dimension

of f , we write dim( f ) = m.

Observe that any non-empty intersection of faces is a

face. For example, the intersection of two 2−faces A and

B may be either a 2−face (if A = B), a 1−face, a 0−face, or

the empty set.

(a) (b) (c) (d) (e)

Figure 3. Graphical representations of: (a)

a 0−face, (b) a 1−face, (c) a 2−face, (d) a
3−face, (e) a 4−face.

We denote by F
d the set composed of all m−faces of Z

d ,

with 0 ≤m ≤ d. An m−face of Z
d is called a point if m = 0,

a (unit) edge if m = 1, a (unit) square if m = 2, a (unit) cube

if m = 3, a (unit) hypercube if m = 4 (see Fig. 3).

Let f be a face in F
d . We set f̂ = {g ∈ F

d | g ⊆ f} and

f̂ ∗ = f̂ \ { f}.

Any g ∈ f̂ is a face of f , and any g ∈ f̂ ∗ is a proper face of

f .

If X is a finite set of faces in F
d , we write X− = ∪{ f̂ | f ∈

X}, X− is the closure of X (see Fig. 4).

x y

z t

(a) (b) (c)

(d) (e)

Figure 4. (a): Four points x,y,z,t. (b): A
graphical representation of the set of faces

{{x,y,z,t},{x,y},{z}}. (c): A set of faces X ,

which is not a complex. (d): The set X+, com-
posed by all facets of X . (e): The set X−, i.e.

the closure of X , which is a complex.

A set X of faces in F
d is a cell or an m−cell if there

exists an m−face f ∈ X , such that X = f̂ . The boundary of

a cell f̂ is the set f̂ ∗. For example, a 3−cell is composed of

27 faces: a cube, six squares, twelve edges and eight points.

Its boundary is composed of all these faces but the cube.

A finite set X of faces in F
d is a complex (in F

d) if X =
X−. Any subset Y of a complex X which is also a complex

is a subcomplex of X . If Y is a subcomplex of X , we write

Y � X . If X is a complex in F
d , we also write X � F

d .
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See in Fig. 4e an example of a complex, and in Fig. 4b,c,d

examples of sets of faces which are not complexes. Also in

Fig. 2 and Fig. 5, some complexes are represented. Notice

that any cell is a complex.

Let X ⊆ F
d , let f ∈ X and m = dim( f ). We say that f

is a facet of X or an m−facet of X if there is no g ∈ X such

that f ∈ ĝ∗. We denote by X+ the set composed of all facets

of X (see Fig. 4).

If X is a complex, observe that in general, X+ is not a com-

plex, and that [X+]− = X .

Let X � F
d , X 6= /0, the number dim(X) = max{dim( f )

| f ∈ X+} is the dimension of X . We say that X is an

m−complex if dim(X) = m.

We say that X is pure if, for each f ∈X+, we have dim( f ) =
dim(X).
In Fig. 5, the complexes (a) and (f) are pure, while (b,c,d,e)

are not.

Let X ⊆ F
d be a set of faces. A sequence π= 〈 f0, . . . , fℓ〉

of faces of X is a path in X (from f0 to fℓ) if either fi is a

face of fi+1 or fi+1 is a face of fi, for each i ∈ {0, . . . , ℓ−1}.

Let X ⊆ F
d . We say that X is connected if, for any two

faces f ,g in X , there is a path from f to g in X ; otherwise we

say that X is disconnected. We say that Y is a (connected)

component of X if Y 6= /0, Y ⊆ X , Y is connected and if Y is

maximal for these properties (i.e., we have Z = Y whenever

Y ⊆ Z ⊆ X and Z is connected). Notice that the empty set is

connected but has no connected component.

If X is an m−complex with m ≤ 1, then X is also called a

graph (see [16]). Examples of graphs can be seen in Fig. 12

and Fig. 13. Let X be a graph, and let π= 〈 f0, . . . , fℓ〉 be

a path in X such that dim( f0) = dim( fℓ) = 0. The path π
is said to be closed whenever f0 = fℓ, it is a trivial path

whenever ℓ = 0, it is said to be elementary if its faces are

all distinct except that possibly f0 = fℓ. A graph which is

constituted by the faces of a non-trivial elementary closed

path is called a cycle. The graph X is acyclic if none of its

subcomplexes is a cycle. A connected and acyclic graph is

a tree.

2 Collapse and simple sets

Intuitively a subcomplex of a complex X is simple if its

removal from X “does not change the topology of X”. In

this section we recall a definition of a simple subcomplex

based on the operation of collapse [29, 16], which is a dis-

crete analogue of a continuous deformation (a homotopy).

Let X be a complex in F
d and let f ∈ X . If there exists

one face g ∈ f̂ ∗ such that f is the only face of X which

strictly includes g, then g is said to be free for X and the

pair ( f ,g) is said to be a free pair for X . The complex,

which is the closure of the set of all free faces for X , is

called the boundary of X and is denoted by Bd(X). Notice

that, if ( f ,g) is a free pair, then we have necessarily f ∈ X+

and dim(g) = dim( f )−1.

Let X be a complex, and let ( f ,g) be a free pair for X .

Let m = dim( f ). The complex X \ { f ,g} is an elementary

collapse of X , or an elementary m−collapse of X .

Let X , Y be two complexes. We say that X collapses onto Y

if Y = X or if there exists a collapse sequence from X to Y ,

i.e., a sequence of complexes 〈X0, ...,Xℓ〉 such that X0 = X ,

Xℓ = Y , and Xi is an elementary collapse of Xi−1, for each

i ∈ {1, . . . , ℓ}. If X collapses onto Y and Y is a complex

made of a single point, we say that X is collapsible.

Fig. 5 illustrates a collapse sequence. Observe that, if

X is a cell of any dimension, then X is collapsible. Also,

a graph is a tree if and only if it is collapsible ([16]). Fur-

thermore, it may easily be seen that the collapse operation

preserves the number of connected components.

(a)

f

(b)

(c) (d)

(e) (f)

Figure 5. (a): a pure 3−complex X � F
3, and

a 3−face f ∈ X+. (f): a complex Y which is
the detachment of f̂ from X . (a-f): a collapse

sequence from X to Y .

We say that the collapse sequence 〈X0, ...,Xℓ〉 is decreas-

ing if for any i ∈ {1, ..., ℓ−1}, we have m ≥ m′ whenever Xi

is an elementary m−collapse of Xi−1 and Xi+1 is an elemen-

tary m′−collapse of Xi. For example in Fig. 5, the collapse

sequence 〈a,b,c,d,e〉 is decreasing, but 〈a,b,c,d,e, f 〉 is

not decreasing.

Let 〈X0, ...,Xℓ〉 be a collapse sequence. If there exists

i ∈ {1, . . . , ℓ−1} such that Xi is an elementary m−collapse

of Xi−1 and Xi+1 is an elementary m′−collapse of Xi, with

m′ > m, then it may be seen that the sequence obtained by

exchanging these two elementary collapse operations is still

a collapse sequence from X0 to Xℓ. By induction, this proves

the following property, which will be used later.
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Proposition 1. Let X ,Y be two complexes. If X collapses

onto Y , then there exists a decreasing collapse sequence

from X to Y .

Let X ,Y be two complexes. Let Z be such that X ∩Y �
Z � Y , and let f ,g ∈ Z \ X . The pair ( f ,g) is a free pair

for X ∪Z if and only if ( f ,g) is a free pair for Z. Thus, by

induction, we have the following property.

Proposition 2 ([3, 4]). Let X ,Y � F
d . The complex X ∪Y

collapses onto X if and only if Y collapses onto X ∩Y .

The operation of detachment allows to remove a subset

from a complex, while guaranteeing that the result is still a

complex.

Definition 3 ([3, 4]). Let Y ⊆X �F
d . We set X ⊘ Y =(X+\

Y+)−. The set X ⊘ Y is a complex which is the detachment

of Y from X.

In the following, we will be interested in the case where

Y is a single cell. For example in Fig. 5, we see a complex

X (a) containing a 3−cell f̂ , and X ⊘ f̂ is depicted in (f).

Let us now recall here a definition of simplicity based

on the collapse operation, which can be seen as a discrete

counterpart of the one given by T.Y. Kong [19].

Definition 4 ([3, 4]). Let Y ⊆ X; we say that Y is simple for

X if X collapses onto X ⊘ Y .

The collapse sequence displayed in Fig. 5 (a-f) shows

that the cell f̂ (and the face f ) is simple for the complex

depicted in (a).

The notion of attachment, as introduced by T.Y. Kong

[18, 19], leads to a local characterization of simple sets,

which follows easily from Prop. 2.

Let Y � X � F
d . The attachment of Y for X is the com-

plex defined by Att(Y,X) = Y ∩ (X ⊘ Y ).

Proposition 5 ([3, 4]). Let Y � X � F
d . The complex Y is

simple for X if and only if Y collapses onto Att(Y,X).

Fig. 6 shows the attachments of simple pixels a,b,c and

non-simple pixels x,y,z,t of Fig. 1. We invite the reader to

use these examples to illustrate Prop. 5.

a b c x y z t

Figure 6. Attachments (in black) of simple
pixels a,b,c and non-simple pixels x,y,z,t of

Fig. 1.

Let us introduce informally the Schlegel diagrams as a

graphical representation for visualizing the attachment of a

cell. In Fig. 7a, the boundary of a 3−cell f̂ and its Schlegel

diagram are depicted. The interest of this representation lies

in the fact that a structure like f̂ ∗ lying in the 3D space may

be represented in the 2D plane. Notice that one 2−face of

the boundary, here the square {e, f ,h,g}, is not represented

like the other ones in the schlegel diagram, but we may con-

sider that it is represented by the ouside space.

As an illustration of Prop. 5, Fig. 7b shows (both directly

and by its Schlegel diagram) the attachment of f̂ for the

complex X of Fig. 5a, and we can easily verify that f̂ col-

lapses onto Att( f̂ ,X). Also, Fig. 7c shows Att(x̂,X) (see

Fig. 2) and we can verify by Prop. 5 that x is not simple.

(a)

a b

c d

e f

g h

e

g h

f

a

c d

b

(b)

(c)

Figure 7. (a): The boundary of a 3−cell and
its Schlegel diagram. (b): The attachment of

f̂ for X (see Fig. 5a). (c): The attachment of x̂

for X (see Fig. 2).

Representing 4D objects is not easy. To start with, let us

consider Fig. 8a where a representation of the 3D complex

X of Fig. 5a is given under the form of two horizontal cross-

sections, each black dot representing a 3−cell.

In a similar way, we may represent a 4D object by its “3D

sections”, as the object Y in Fig. 8b. Such an object may be

thought of as a “time series of 3D objects”. In Fig. 8b, each

black dot represents a 4−cell of the whole 4D complex Y .

Schlegel diagrams are particularly useful for represent-

ing the attachment of a 4D cell f̂ , whenever this attachment

if not equal to f̂ ∗. Fig. 9a shows the Schlegel diagram of the

boundary of a 4−cell (see Fig. 3e), where one of the eight

3−faces is represented by the ouside space. Fig. 9b shows

the Schlegel diagram of the attachment of the 4−cell g in Y

(see Fig. 8b). For example, the 3−cell H represented in the

center of the diagram is the intersection between the 4−cell

g and the 4−cell h. Also, the 2−cell I (resp. the 1−cell

4



h
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m

f
g

i

k

l

j

(a) (b)

Figure 8. (a): An alternative representation of

the 3D complex X of Fig. 5a. (b): A similar
representation of a 4D complex Y .

J, the 1−cell K, the 0−cell L) is g∩ i (resp. g∩ j, g∩ k,

g∩ l). The two 2−cells which are the intersections of g

with, respectively, m and n, are both included in the 3−cell

H. Observe that the cell g is not simple (its attachment is

not connected).

H

J
I

K

L
(a) (b)

Figure 9. (a): The Schlegel diagram of the

boundary of a 4−cell. (b): The Schlegel di-

agram of the attachment of the 4−cell g of
Fig. 8b, which is not simple.

The following property easily follows from the definition

of the boundary of a face, and may be checked on Fig. 9a.

Proposition 6. Let f be a 4−face. Then,

i) any 2−face of f̂ ∗ is included in exactly two 3−faces of

f̂ ∗; and

ii) any 1−face of f̂ ∗ is included in exactly three 3−faces of

f̂ ∗; and

iii) any 1−face of f̂ ∗ is included in exactly three 2−faces of

f̂ ∗.

3 Confluences

Let X � F
d . If f is a facet of X , then by Def. 4, f̂ is

simple if and only if X collapses onto X ⊘ f̂ . From Prop. 5,

we see that checking the simplicity of a cell f̂ reduces to the

search for a collapse sequence from f̂ to Att( f̂ ,X). We will

show in Sec. 4 that the huge number (especially in 4D) of

possible such collapse sequences need not be exhaustively

explored, thanks to the confluence properties (Th. 11 and

Th. 12) introduced in this section.

Consider three complexes A,B,C. If A collapses onto C

and A collapses onto B, then we know that A,B and C “have

the same topology”. If furthermore we have C � B � A, it

is tempting to conjecture that B collapses onto C.

In the two-dimensional discrete plane F
2, the above con-

jecture is true, for example any complex obtained by a col-

lapse sequence from a full rectangle, collapses onto a point.

We call it a confluence property. But quite surprisingly it

does not hold in F
3 (more generally in F

d,d ≥ 3), and this

fact constitutes indeed one of the principal difficulties when

dealing with certain global topological properties, such as

the Poincaré conjecture. Classical counter-examples to this

assertion are the Bing’s house ([10], see also [25]) and the

dunce hat ([30]).

In Fig. 10a, we see a classical (informal) representation

of the Bing’s house. The house has two rooms separated by

a floor ; one can enter the lower room of the house by the

chimney passing through the upper room, and vice-versa.

In Fig. 10b, we depict a Bing’s house B which is a

2−complex. For readability of the figure, only some of the

1−faces and 2−faces are displayed. This 2−complex may

be obtained by collapse from the 3−complex depicted in

Fig. 10c, which is composed of twenty-four 3−cells. The

dotted arrow suggests one half of a possible sequence of

collapse operations, the other half being symmetrical to this

one. The 2−complex B contains no free face: we can verify

that each 1−face is contained in two or three 2−faces.

From any 2−complex, we may extract the graph com-

posed by all the 1−cells which are included in three or more

2−cells. We call this graph the signature of the 2−complex.

In Fig. 10b, the signature of the Bing’s house B is high-

lighted by a bold black line: it is composed of three con-

nected cycles.

Fig. 11a depicts a triangulation of the dunce hat. Notice

that the three sides of the biggest triangle (in bold) are iden-

tified, and that the different occurences of the point a are

indeed representations of the same point (this remark also

holds for points b and c). Notice also that only segments

ab, bc and ca are included in three triangles, furthermore

they form a cycle, which is the signature of the dunce hat.

In Fig. 11b, we show a realization of the dunce hat

as a 2−complex, which is very likely to be the smallest

one which may be built in F
3. For readability, only some

5



(a)

(b)

(c)

Figure 10. (a) The Bing’s house with
two rooms (classical representation). (b)

A realization of a Bing’s house as a
2−complex B. (c) A 3−complex made of 24

cubes. The arrows symbolize the order in

which 3−collapse operations can be made in
order to “carve” the lower room of the house.

By performing a symmetrical operation for

the upper room, we obtain the 2−complex in
(b).

(a)

aa

a a

b b

b c

c cd e

f

g
h

(b)

Figure 11. Dunce hats (see text).

1−faces and three 2−faces are displayed. The collapse se-

quence from a 3−complex to this 2−complex, composed

of 12 elementary 3−collapse operations, is suggested by

the dotted arrow. We may verify that the signature of this

2−complex is composed of the 1−cells highlighted by a

bold black line: it is a cycle.

In this section we show that, in the boundary of a d−face

with d ≤ 4, there is “not enough room” to build such

counter-examples, and thus some kinds of confluence prop-

erties hold.

We emphasize that for our purpose, it is sufficient to

make a combinatorial proof for only one lemma (Lemma 7).

Due to the high number of cases in dimension 4, we used

a computer program for this proof. Notice that, however, it

would not be possible to establish direcly, by exhaustive ex-

ploration of all possible configurations, the main properties

proved in this paper (confluence properties and simple point

characterizations): the number of possible configurations in

the boundary of a four-dimensional face is 280.

Lemma 7. Let f be a d−face with d ∈ {3,4}, and let X

be a non-empty subcomplex of f̂ ∗. Let us denote by X the

complementary of X in f̂ ∗. Suppose that dim(X) = d − 2

and that X is connected, then the two following statements

hold:

i) The complex X has at least one free (d −3)−face.

ii) If d = 4 and if X is pure, then the graph Bd(X) is not

6



acyclic.

Proof. With the help of a computer program, we generated

all the possible such subcomplexes of f̂ ∗, and checked the

property exhaustively. In the case d = 4, notice that 0− and

1−facets of X play no role in the connectedness of X , thus

without loss of generality for proving statement i), we can

suppose, as for ii), that X is a pure 2−complex. The number

of such complexes is 224. �

Suppose that f is a 4−face, then f̂ ∗ is a 3−complex. We

observe that statements i) and ii) of Lemma 7 do not hold if,

instead of being a subcomplex of the 3−complex f̂ ∗, X is a

subcomplex of F
3, due to the existence of counter-examples

such as the Bing’s house. Let B be a Bing’s house which is

a pure 2−complex, we can see that B has no free 1−face

and B is connected, furthermore since Bd(B) = /0, the graph

Bd(B) is acyclic.

We will also need the following result for the proofs of

Prop. 9, Lemma 21 and Th. 15. We prove it here for the

case of the boundary of a cell, but a more general property

could be established in the framework of discrete manifolds

(see [13]).

Proposition 8. Let f be a d−face with d ∈ {2,3,4}, and

let Y � X � f̂ ∗ such that X collapses onto Y . Then, the

sets X = f̂ ∗ \X and Y = f̂ ∗ \Y have the same number of

connected components.

Proof. It is sufficient to prove the proposition whenever

Y = X \{h,g}, with (h,g) being a free pair for X . We make

the proof for d = 4, the other cases are similar and simpler.

Let us call an m−path, a path in which each face has a di-

mension greater or equal to m. It may be seen that a subset

Z of X is connected if and only if any two 3−faces of Z are

linked by a 2−path. Let us denote by |C (Z)| the number of

connected components of Z, thus we have |C (Y )| 6= |C (X)|
only if either h or g is a 2−face.

Case 1: dim(g) = 2. Hence, dim(h) = 3. Since (h,g)
is a free pair for X , hence h ∈ X , from Prop. 6i we de-

duce that g is included in exactly one 3−face of X , thus

|C (Y )| = |C (X)|.
Case 2: dim(h) = 2. Hence, dim(g) = 1. Let A,B,C be

the three 3−faces of f̂ ∗ which contain g (see Prop. 6ii),

with A∩B = h. Since g is free, these 3−faces all belong

to X . Furthermore A and B are connected by the 2−path

〈A,A∩C,C,C∩B,B〉 in X . Thus, A and B are in the same

connected component of X , and |C (Y )| = |C (X)|. �

We are now ready to introduce the confluence properties.

Proposition 9 (Downstream confluence). Let f be a

d−face with d ∈ {2,3,4}, and let A,B� f̂ ∗ such that B� A,

A collapses onto B, and A is collapsible. Then, B is collapsi-

ble.

Proof. We make the proof for d = 4, the other cases are

similar and simpler. We only have to prove that B either

is a point, or has a free face. If the latter is true, then by

collapsing this face we obtain a subcomplex B′ of A strictly

included in B, which is such that A collapses onto B′ (by

transitivity). The result follows by induction on the size of

B.

Let us consider the following (mutually exclusive) cases.

• dim(B) = 3 : Since A is collapsible, we have A 6= f̂ ∗ and

B 6= f̂ ∗. Since B has at least one 3−face, it can be easily

seen that there exists a 2−face of B which is a free face:

since there are only eight 3−faces in f̂ ∗, this fact may be

checked by enumeration (this property may also be derived

from general properties of manifolds, see [13]).

• dim(B) = 2 : From Prop. 8 and our hypotheses, B is con-

nected, thus by Lemma 7i, B has at least one free 1−face.

• dim(B) = 1 : In other words, B is a graph. The hypotheses

imply that B is indeed a connected and acyclic graph, i.e., a

tree. Since dim(B) = 1, B cannot be a point, then it has at

least one free 0−face ([16]).

• dim(B) = 0 : In other words, B is a set of points. The

hypotheses, and the fact that collapse preserves the number

of connected components, imply that B is indeed a single

point. �

Prop. 20, Lemma 21 and Lemma 22, which may be

found in the appendix, are needed in addition to Prop. 9

for the proof of Prop. 10.

Proposition 10 (Upstream confluence). Let f be a d−face

with d ∈ {2,3,4}, and let A,B � f̂ ∗ such that B � A, A is

collapsible, and B is collapsible. Then, A collapses onto B.

Proof. Let k = |A|, the property is trivially true when k = 1.

Suppose now that k > 1, and suppose that the property holds

for any complexes A′,B′ verifying the hypotheses of the the-

orem, whenever k′ < k (with k′ = |A′|). From Lemma 21 and

Lemma 22, there exists a pair of faces (h,g) such that (h,g)
is free for A and either (h,g) is free for B or {h,g}∩B = /0.

Case 1: {h,g}∩B = /0. We set A′ = A\ {h,g}, we have ob-

viously B � A′. By Prop. 9, A′ is collapsible, furthermore

k′ < k. By the recurrence hypothesis, we deduce that A′ col-

lapses onto B, thus A collapses onto B.

Case 2: (h,g) is free for B. We set A′ = A \ {h,g}, and

B′ = B\{h,g}, we have obviously B′ � A′. By Prop. 9, both

A′ and B′ are collapsible, furthermore k′ < k. By the recur-

rence hypothesis, we deduce that A′ collapses onto B′. Fur-

thermore, it can easily be seen that any collapse sequence

from A′ to B′ induces a collapse sequence from A to B (by

removing the same pairs in the same order). �

Th. 11 summarizes Prop. 9 and Prop. 10.

Theorem 11. Let f be a d−face with d ∈ {2,3,4}, let

A,B � f̂ ∗ such that B � A, and A is collapsible. Then, B

is collapsible if and only if A collapses onto B.

The following theorem may be easily derived from

Th. 11 and the fact that f̂ is collapsible, its proof is left

7



to the reader.

Theorem 12. Let f be a d−face with d ∈ {2,3,4}, and let

C,D � f̂ ∗ such that D � C, and f̂ collapses onto D. Then,

f̂ collapses onto C if and only if C collapses onto D.

4 New characterizations of simple cells

In the image processing literature, a (binary) digital im-

age is often considered as a set of pixels in 2D or voxels in

3D. A pixel is an elementary square and a voxel is an el-

ementary cube, thus an easy correspondance can be made

between this classical view and the framework of cubical

complexes.

If X � F
d and if X is a pure d−complex, then we write

X ⊑ F
d . In other words, X ⊑ F

d means that X+ is a set

composed of d−faces (e.g., pixels in 2D or voxels in 3D).

Notice that, if X ⊑ F
d and if f̂ is a d−cell of X , then

X ⊘ f̂ ⊑ F
d . There is indeed an equivalence between the

operation on complexes which consists of removing (by de-

tachment) a simple d−cell, and the removal of a 8-simple

(resp. 26-simple, 80-simple) point in the framework of 2D

(resp. 3D, 4D) digital topology (see [18, 19, 7, 5]).

From Prop. 5 and Th. 12, we have the following charac-

terization of a simple cell, which does only depend on the

status of the faces which are in the cell.

Theorem 13. Let X ⊑ F
d , with d ∈ {2,3,4}. Let f be a

facet of X, and let A = Att( f̂ ,X). The two following state-

ments hold:

i) The cell f̂ is simple for X if and only if f̂ collapses onto A.

ii) If there exists a complex Z such that A � Z � f̂ , f̂ col-

lapses onto Z and Z does not collapse onto A, then f̂ is not

simple for X.

Now, thanks to Th. 13, if we want to check whether a

cell f̂ is simple or not, it is sufficient to apply the following

greedy algorithm.

Algorithm A1: Set Z = f̂ ; Do

Select any free pair (h,g) in Z \A; set Z to Z \ {h,g} ;

Continue until either Z = A (answer yes) or no such pair is

found (answer no).

If this algorithm returns “yes”, then obviously f̂ col-

lapses onto A and by Th. 13i, f̂ is simple. In the other case,

by Th. 13ii, f̂ is not simple.

By Th. 13 and Th. 11, we derive a second characteriza-

tion which leads straightforwardly to a second greedy algo-

rithm A2 for checking simplicity.

Theorem 14. Let X ⊑ F
d , with d ∈ {2,3,4}. Let f be a

facet of X, and let A = Att( f̂ ,X). The two following state-

ments hold:

i) The cell f̂ is simple for X if and only if A is collapsible.

ii) If there exists a complex Z such that A collapses onto Z

and Z is not collapsible, then f̂ is not simple for X.

Both algorithms may be implemented to run in linear

time with respect to the number of elements in the attach-

ment of a cell (Remark 16 will give some elements which

support this claim).

Thanks to Th. 14 and the previous properties, we can

also retrieve a characterization of simple cells proved by

T.Y. Kong in [19], where arguments based on the continuous

framework and several combinatorial lemmas were used. In

contrast, our new proof is purely discrete and its combina-

torial part is reduced to Lemma 7.

Let X be a complex in F
4, and let us denote by ni the

number of i−faces of X , i = 0, . . . ,4. The Euler character-

istic of X , written χ(X), is defined by χ(X) = n0−n1 +n2−
n3 + n4. The Euler characteristic is a well-known topologi-

cal invariant; in particular, it can be easily seen that collapse

preserves it.

Theorem 15 (adapted from [19], theorem 9). Let X ⊑ F
d ,

with d ∈ {2,3,4}, let f be a facet of X, and let A = Att( f̂ ,X).
The facet f is simple for X if and only if the three following

statements are true:

i) A has exactly one connected component, and

ii) f̂ ∗ \A has exactly one connected component, and

iii) χ(A) = 1.

Proof. Suppose that f is simple for X . By Th. 14, A is col-

lapsible. Since collapse preserves the number of connected

components we deduce i), and by Prop. 8 we deduce ii).

Furthermore the Euler characteristic of a point is equal to 1,

and collapse preserves the Euler characteristic, hence iii).

Conversely, suppose that f verifies i), ii) and iii). One and

only one among the following cases occurs.

• dim(A) ≤ 1 : In other words, A is a graph. From i) and

iii), we deduce that A is a connected and acyclic graph, i.e.,

a tree, and thus A is collapsible ([16]).

• dim(A) = 2 and d = 4 : If d = 4, by Lemma 7i, condi-

tion ii) implies that A has at least one free pair (h,g) and

thus A collapses onto A′ = A \ {h,g}. From the properties

of collapse, we see that A′ also verifies i), ii) and iii). If

dim(A′) < 2, we deduce the result from the preceding case,

otherwise the result comes by induction on the number of

2−faces.

• dim(A) = 3 and d = 4 (resp. dim(A) = 2 and d = 3) : We

know from ii) that A 6= f̂ ∗. Since A has at least one 3−face

(resp. 2−face), it can be easily seen that A has at least a free

2−face (resp. 1−face), see the proof of Prop. 9. Thus, sim-

ilarly to the previous case, the result follows by induction.

�

Remark 16. This characterization also induces a linear-

time algorithm for simplicity checking. Nevertheless, ob-

serve that this algorithm (let us call it B) is composed of
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three steps: one for computing the Euler characteristic of

the attachment, and two for extracting connected compo-

nents. To extract connected components in linear time, one

may classically apply a breadth-first exploration strategy.

The same strategy may also be used to implement algo-

rithms A1 and A2, thus in terms of number of operations,

both A1 and A2 are comparable to one of the steps of B .

Let us also mention another definition of simple points

based on homology ([24], see also [21]). In this context,

checking whether a point p is simple or not amounts to ver-

ify that all the homology groups of the neighborhood (or

attachment) of p are trivial. However, computing homol-

ogy groups requires a computational effort which is much

greater than the one needed by algorithms A1 and A2.

In the case d = 3, we retrieve well-known characteriza-

tions of simple points (see [18, 1, 9, 28]), using only two

conditions among the three ones of Th. 15. Of course, these

characterizations also hold for dimension 2.

Theorem 17. Let X ⊑ F
3, let f be a facet of X, and let A =

Att( f̂ ,X). The facet f is simple for X if and only if statement

i) and either statement ii) or statement iii) of Th. 15 hold.

Proof. If i) and iii) hold, then since ii) is not used in the

proof of Th. 15 for the 3D case, we are done. Suppose now

that i) and ii) hold. The case dim(A) = 2 is treated in the

proof of Th. 15, suppose that dim(A) = 1. From ii) and

Lemma 7i, we deduce that A has at least a free pair (h,g).
Let A′ = A\{h,g}, we can see that f̂ ∗ \A′ is also connected.

Thus by induction on the number of 1−faces, A collapses

onto a 0−complex. By i), this 0−complex is necessarily

reduced to a single point. �

5 Higher dimensions

Indeed, the results of this paper hold for any dimension

strictly lower than a certain dimension D, which is the low-

est dimension such that a counter-example like the Bing’s

house or the dunce hat may be built inside the boundary of

a D−face. From Th. 11 and Th. 12, we know that D > 4.

The notion of lump defined below helps us to formalize the

problem that we study in this section.

Definition 18. Let f be a d−face, with d ∈ N, and let X �
f̂ . The complex X is a lump (by collapse) if f̂ collapses

onto X and X is not collapsible.

We say that f is lump-free if no subcomplex of f̂ is a lump.

Realizations of the Bing’s house or the dunce hat as

2−complexes (see Fig. 10b and Fig. 11b) are examples of

complexes which are not collapsible and which may be ob-

tained by collapse from a cuboid in F
3, thus the existence

of lumps in a face of dimension 4 and higher may be con-

jectured. On the other hand, from Prop. 9, we know that

2−faces, 3−faces and 4−faces are lump-free.

If a face of dimension D is not lump-free, it may be seen

that the main theorems of this paper cannot be extended

to dimension D. Let us consider for example the case of

Th. 13, and take X ⊑ F
D and a simple D−face x of X such

that Att(x,X) is a point. The existence of a lump contra-

dicts the extension of Th. 13ii. Consider now the case of

Th. 14, and take X ⊑ F
D and a simple D−face x of X such

that Att(x,X) is a lump. By definition, the face x is simple

but its attachment is not collapsible, a contradiction with the

extension of Th. 14i.

The aim of this section is to answer the question: what is

the highest dimension d such that a d−face is lump-free ?

Dimensions 6 and higher

It is in fact possible to build a Bing’s house in f̂ ∗, with f

being a 6−face (or a face of higher dimension). We give an

informal description of this construction.

Let us consider the 1−subcomplex of the boundary of a

4−face, which is depicted in Fig. 12a.

(a) (b)

Figure 12. (a): A 1−subcomplex of the bound-
ary of a 4−face. (b): Another view of this

complex.

A (d + 1)−face is obtained by the product of a d−face

and a 1−face (an operation on complexes directly derived

from the Cartesian product operation). Let f be a d−face,

let g be a (d + 1)−face and let h be a (d + 2)−face, if X is

a subcomplex of f̂ then in ĝ we can embed two “indepen-

dent copies” of X , and in ĥ we can embed four independent

copies of X (see Fig. 13 an example with d = 2).

Starting from the 4−face of Fig. 12a, we can thus ob-

tain by two product operations a 6−face containing four in-

dependent copies of the 1−complex depicted in Fig. 12b.

Keeping only three of these copies, we can add them

2−faces in order to obtain the 2−complex sketched in

Fig. 14 (a Bing’s house).

Dimension 5

Such a construction is not feasible in 5D, thus we tried

another strategy in order to find out whether there exists a
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Figure 13. Illustration of the product opera-

tion.

Figure 14. Sketch of a Bing’s house in the

boundary of a 6−face (the two chimneys and
the two walls are highlighted).

lump or not in the boundary of a 5−face f .

We made a computer program which generates random

collapse sequences starting from f̂ and ending when no free

face can be found, with the hope that one of these sequences

will eventually terminate with a complex which is not re-

duced to a point. Such a complex must be a lump.

Surprisingly, this happens rather often (about one time

every 50,000 trials, to compare with the gigantic number of

possible collapse sequences, which is far beyond the possi-

bility of an exhaustive exploration).

The shortest such collapse sequence that we found is

made of 43 elementary collapse operations, and results in a

pure 2−complex having 47 facets (squares). This collapse

sequence has then been checked “by hand”.

The smallest lump that we found by this way is a pure

2−complex X105 having 29 squares, 52 edges and 24 points.

Unfortunately, it is very difficult to visualize such a com-

plex object which lies in a 5−dimensional space. Nev-

ertheless, we can easily visualize its signature, which is

depicted in Fig. 15a. Remarkably, the signature of X105

has the same structure (a cycle connected to a 1−cell)

as the signature of a variant of the dunce hat, displayed

in Fig. 15b. It may be seen that there exists a sequence

of one inverse elementary collapse and three elementary

collapses from this variant to the dunce hat (Fig. 11a):

〈+(dae f ,dae),−(dae f , f de),−(da f ,d f ),−(ea f ,e f )〉.

(a)

(b)

a a

b b

b c

c cd e

g
h

a a

f

f

Figure 15. (a): The signature of X105. (b): A

variant of the dunce hat (triangulated).

Thanks to Th. 11 and from the preceding observations,

we can conclude this section by the following theorem.

Theorem 19. A face if lump-free if and only if its dimension

is not strictly greater than 4.

Conclusion

The new characterizations of simple points that we

proved in this paper lead to simple and efficient algorithms

for checking simplicity. In 2D and 3D, configurations of

simple and non-simple points may be stored in a look-up

table, but in 4D this is clearly impossible (there are 280

possible configurations), thus such algorithms may be of

practical interest. On the theoretical point of view, we

proved these characterizations on the basis of new conflu-

ence properties, which turn out to be also keystones of a

set of new results linking minimal non-simple sets [26], P-

simple points [2] and critical kernels [3, 4], to appear in an-

other article [11]. We also proved (Th. 19) that these char-

acterizations and confluence properties do not hold beyond

dimension 4.
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Appendix

Proposition 20. Let f be a 4−face. If X is a pure

3−dimensional subcomplex of f̂ ∗, then the complex Bd(X)
has no free 1−face.

Proof. Let k = |X+|, if k = 1 then the property is obvious.

Suppose now that k > 1, and that the property holds for any

3−subcomplex Y of f̂ ∗ such that |Y+| < k. Let x ∈ |X+|,
and let Y = X ⊘ x. By the recurrence hypothesis, Bd(Y ) has

no free 1−face. If dim(Y ∩ x̂) < 2 then it may be easily seen

that Bd(X) has no free 1−face. Suppose now that dim(Y ∩
x̂) = 2 and let h be a 2−face in Y ∩ x̂. From Prop. 6i, we can

see that h is free for Y . We also see that h is not free for X

since it belongs to two 3−cells of X , namely x̂ and a 3−cell

ŷ in Y . Any 1−face of Bd(Y ) which is not in ĥ is obviously

not free for Bd(X), let us consider a 1−face g in ĥ. From

Prop. 6ii and Prop. 6iii, g belongs to x̂, ŷ and ẑ where z is

a 3−face of f̂ ∗ distinct from x and y, and g also belongs to

ĥ = x̂∩ ŷ, ĥ′ = ŷ∩ ẑ, and ĥ′′ = ẑ∩ x̂. If z /∈ X then both h′

and h′′ are free for X , and if z ∈ X then neither h, h′ nor h′′

is free for X , thus in all cases, g is not free for Bd(X). �

Lemma 21. Let f be a d−face with d ∈ {2,3,4}, and let

A,B � f̂ ∗ such that B � A, B is collapsible, A is collapsible

and dim(B) < dim(A). Then, there exists h,g ∈ A \B such

that dim(h) = dim(A) and (h,g) is free for A.

Proof. We make the proof for d = 4, the other cases are

similar and simpler. Let m = dim(A), we have m < d. If

dim(B) < m − 1 then by Prop. 1 the proof is immediate,

suppose from now that dim(B) = m−1. The case m = 1 is

trivial.

Case m = 2: hence dim(B) = 1, which means that B is a

graph. The hypotheses imply that B is indeed a connected

and acyclic graph, i.e., a tree. Let A2 be the subcomplex of

A such that A+
2 is the set of all the 2−faces of A. Obviously

A2 is a pure 2−dimensional subcomplex of f̂ ∗, and since

A is collapsible, A is connected (by Prop. 8), hence A2 is

connected. From Lemma 7ii, we deduce that Bd(A2) is not

acyclic. Thus, since B is a tree, B cannot contain Bd(A2),
and there must exist a 1−face g in Bd(A2)\B and a 2−face

h in A (and not in B, since dim(B) < 2) such that (h,g) is

free for A.

Case m = 3. Let A3 be the subcomplex of A such that

A+
3 is the set of all the 3−faces of A. From Prop. 20 and

Lemma 7i, we deduce that Bd(A3) is disconnected. Thus,

since B is collapsible, B is connected (by Prop. 8), and B

cannot contain Bd(A3) (because dim(B) = 2 and the num-

ber of connected components of Bd(A3) does not change if

k−faces (with k ≤ 2) are added to Bd(A3)). We conclude

that there must exist a 2−face g in Bd(A3)\B and a 3−face

h in A such that (h,g) is free for A. �

Lemma 22. Let f be a d−face with d ∈ {2,3,4}, and let

A,B � f̂ ∗ such that B � A, B is collapsible, A is collapsible

and dim(B) = dim(A). Then, there exists h,g in A such that

(h,g) is free for A, and either (h,g) is free for B or {h,g}∩
B = /0.

Proof. Let m = dim(B) = dim(A). Since B is collapsible, by

Prop. 1 we can deduce that B collapses onto a complex B′,

where dim(B′) = m−1, B′ contains all the (m−1)−facets

of B, and B′ is collapsible. Knowing that B′ � A, B′

is collapsible, A is collapsible and dim(B′) < dim(A), by

Lemma 21 we deduce that A has a free pair (h,g) such that

h /∈ B′, g /∈ B′ and dim(h) = dim(A). Since g /∈ B′, g is not

a (m− 1)−facet of B. If h ∈ B (hence g ∈ B) then, since

(h,g) is free for A, we can see that (h,g) is also free for B,

and we are done. Now if h /∈ B, since h is the only m−face

of A which strictly includes g, we see that if g ∈ B then g

would be a (m− 1)−facet of B: a contradiction. Hence,

{h,g}∩B = /0. �
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