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Abstract This paper brings a new mathematical

model of the third-order autonomous deterministic

dynamical system with associated chaotic motion. Its

unique property lies in the existence of circular equi-

librium which was not, by referring to the best knowl-

edge of the authors, so far reported. Both mathemat-

ical analysis and circuitry implementation of the cor-

responding differential equations are presented. It is

shown that discovered system provides a structurally

stable strange attractor which fulfills fractal dimension-

ality and geometrical density and is bounded into a

finite state space volume.

Keywords Autonomous system · Attracting set ·

Circular equilibrium · Chaos · Nonlinear dynamics ·

Vector field

1 Introduction

It is well known that chaotic dynamics is not restricted

only to complicated and strongly nonlinear vector

fields [1] but can be observed also in the case of

algebraically simple systems with six terms includ-

ing nonlinearity [2]. Recent progress in overall per-

formance of the personal computers and possibility
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of multi-grid calculation allows to implement fast-

to-be-calculated quantifier of the dynamical motion

inside a procedure for chaos or hyper-chaos localiza-

tion [3]. Doing this we can start searching for irreg-

ular behavior of arbitrary-order nonlinear dynamical

system. Such process begins with analytical defini-

tion of dimensionless mathematical models and con-

tinues with specification of the internal system para-

meters which are so far unknown. Since coexistence

of multiple different attractors is possible in such sys-

tems, the initial conditions are randomly and, more

importantly, repeatedly chosen. Each time a routine

comes across vector field which provides the so-called

folding and stretching mechanism, the dynamical sys-

tem is remembered for consequent numerical analy-

sis.

This work has been primarily motivated by two

recently published research papers where a group of

dynamical systems with very specific properties have

been presented. In paper [4] a class of the dynami-

cal systems without equilibrium has been presented.

Similarly paper [5] introduces several dynamical sys-

tems with a line equilibrium. Both works can be

considered as a breakthrough idea since chaos is

often put into the context of the singular saddle-

type fixed points; the most common configuration

of the vector field contains two [6] or three[7] of

them. From this point of view a system with circular

equilibrium (CES) represents somehow future logical

progress.
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Fig. 1 3D perspective view of the chaotic attractor without initial transient motion and associated plane projections for a d = −0.15,

b d = −0.12, c d = −0.10 with equilibrium half-circle located in plane z = 0

2 Mathematical models under inspection

As previously mentioned first step toward discovery of

new chaotic dynamics goes through a choice of dimen-

sionless set of three first-order differential equations

dx

dt
= a · z

dy

dt
= z · f1(x, y, z)

dz

dt
= x2

+ y2
− r2

+ z · f2(x, y, z), (1)

where r became radius of circular equilibrium and a

marks free parameter. Of course a predefined form (1)

is not unique for CES; it is only the most straight-

forward realization of system containing fixed points

which form a circle located on the plane z = 0. The

nonlinear functions f1 and f2 can contain a variety of

terms; eventually it seems that several quadratic poly-

nomials are sufficient to generate necessary geometri-

cal structure of a vector field. In particular search rou-

tine reveals following smooth functions

f1(x, y, z) = b · x + c · z2

f2(x, y, z) = d · x, (2)

where b, c and d are remaining free constants. The

numerical values of all free parameters are following

a = −0.1 b = 3 c = −2.2 d = −0.1 r = 1, (3)

for which a chaotic attractor evolves. To prove it Math-

cad and built-in fourth-order Runge–Kutta integration

method have been employed with final time 5000 and

time step equals to 0.1 as demonstrated by means of

Fig. 1.

The initial conditions can be taken as x0 =

(0, 0, 0)T . Typical property of this dynamical system

is long spiral-type transient behavior and dissipative

dynamical flow given by parameter d.
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Fig. 2 A contour-surface plots of the largest Lyapunov exponent (LE) for two variable parameters while remaining two are fixed at

default values (3). The positive value of LE stands for chaotic solution

Figure 2 demonstrates the regions of chaotic solu-

tion in the hyper-space of the internal system parame-

ters where a concept of the largest Lyapunov exponent

(LE) is adopted. The LEs are calculated using Jacobi

matrix (4) as presented in [8]. In order to get better

insight into global dynamics only fragments of this

hyper-space are demonstrated. The dark blue color in

the topographically scaled graphs should be understood

as limit cycle and green as a weakly chaotic system, and

yellow denotes chaotic motion. Discovered dynamical

system possesses several attractors; see the basins of

attraction provided in Fig. 3.

Dynamical motion in the close neighborhood of the

equilibrium circle is determined by the eigenvalues and

associated eigenspaces established along this structure

[9]. In the case of (1) and (2) a state-dependent lin-

earization matrix can be established as

J(x) =

⎛

⎝

0 0 a

b · z 0 b · x + 3 · c · z2

2 · x + d · z 2 · y d · x

⎞

⎠ (4)
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Fig. 3 Cross sections of basin of attraction, from left to right z = −1, z = −0.5, z = 0, z = 0.5, z = 1 (white color represent

unbounded solutions, black areas are fixed points, and gray regions denote chaotic motion)

Fig. 4 A local behavior of

the discovered system: a

two remaining eigenvalues

and the associated

two-dimensional subspace:

red (saddle-type), blue

(stable spiral), green

(unstable spiral), b

dynamical motion with

initial conditions near

equilibrium circle (outside)

and c dynamical motion

with initial conditions near

equilibrium circle (inside)

A local behavior along the equilibrium circle is deter-

mined by the so-called eigenvalues, i.e., roots of the

parameterized characteristic equation

λ(x) = λ3
− d · x · λ2 (5)

−2 · x ·

(

a ± b
√

r2 − x2
)

· λ = 0.

One eigenvalue is zero, and the remaining two

depend on a position on the equilibrium circle. Obvi-

ously there always exists a center manifold, and dynam-

ical motion in the neighborhood of this circle can

be decomposed into different configurations of the

remaining two-dimensional subspace. Its nature can be

clarified by means of Fig. 4.

After huge efforts it turns out that even simpler sys-

tem without nonlinear function f2 can get very close to

the situation where it exhibits chaotic motion, in detail

dx

dt
= z

dy

dt
= z · f (x, y, z)

dz

dt
= x2

+ y2
− r2, (6)

and this expression can be marked as canonical poly-

nomial CES.

3 Experimental verification

To illustrate that dynamical systems (1) and (2) pro-

vide chaotic attractor with certain degree of the struc-

tural stability it has been implemented as a lumped

electronic circuit. For network synthesis we choose a

concept based on integrator block schematic [10,11].

Final network is given in Fig. 5 where route-to-chaos

scenario can be traced via a change in the external

dc voltage supply V d. Since desired chaotic attrac-

tor is bounded into relatively small state space vol-

ume, the dynamical ranges of used active devices can

be also reduced. Thus a four-channel four-quadrant

analog multiplier MLT04 has been chosen for imple-
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Fig. 5 Circuitry realization

of CES
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mentation of the quadratic terms. The supply voltage

for these devices is symmetrical ±5 V. Voltage limita-

tion of this active device occurs for values outside of

±2.5 V range. Thus strange attractors that occupy big-

ger volumes in the state space cannot be realized by the

proposed circuitry. For mathematical operations inte-

gration and summation a basic inverting voltage-mode

two ports with voltage feedback operational amplifier

TL084 are utilized. In this case a supply voltage is

raised to symmetrical ±15 V. The time constant of the

ideal integrators is chosen to be only τ = RC = 10−4s

such that parasitic properties of the utilized active ele-

ments can be neglected. The individual state variables

are easily measurable at the output nodes of the loss-

less integrators. Sixth multiplier is used in order to

control bifurcation parameter d via external dc volt-

age source and can be removed for further network

simplification.

If active devices can be considered as close enough

to ideal and by assumption of a fundamental transfor-

mation of the coordinates (−x, y,−z) → (u1, u2, u3),

the describing differential equations became

du1

dt
= −

u3

R1C

du2

dt
=

u3

R6 K3C

(

R2

R3
u1 +

R2

R5 K1
u2

3

)

,

du3

dt
=

1

C

(

u2
1

R7 K2
+

u2
2

R8 K4
−

Vr

R9
−

u1u3Vd

R4 K5 K6

)

(7)

where Ki = 5/2 is internally trimmed scaling factor of

i-th multiplier. The set of values for circuit realization

can be calculated by a comparison of the individual

terms of (7) with system (1) having functions (2) with

numerical values (3), in detail
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Fig. 6 Time-domain analysis of designed chaotic oscillator by using Orcad Pspice circuit simulator: a power spectra of u1 and u2

signals, b xy (blue) and xz (red) plane projections

Vr = r2 = 1V Vd = −d

R1 =
−R
a

= 10k� R2 = R9 = R = 1 k�

R3 =
R
b

= 333� R4 =
R

K5 K6
= 160 �

R5 =
−R
K1c

= 182� R6 =
R

K3
= 400 �

R7 =
R

K2
= 400� R8 =

R
K4

= 400 �.

(8)

If natural frequency components of the chaotic

waveforms need to be moved behind 1 MHz, the non-

ideal and parasitic properties of the used active ele-

ments need to be analyzed. Unlike others especially

input and output admittances in the form of a parallel

combination of resistor and capacitor as well as roll-off

nature of a transfer function typical for both MLT04 and

TL084 should be respected. These unwanted features

can introduce several error terms into describing dif-

ferential equations causing deformation of the desired

chaotic attractor or its geometrical collapse. Note that

only three integrated circuits are required for design of

the proposed chaotic oscillator. The circuit was evalu-

ated by circuit simulator Orcad Pspice, and the voltage

spectrum and plane projections can be seen in Fig. 6.

The circuit was designed on breadboard, and in

experimental setup digital oscilloscope HP54603B was

used for attractor visualization, see Fig. 7. Based on the

computed riddled basins of attraction serious problems

have to be expected during measurement. Before docu-

mentation of each particular routing-to-chaos scenario

predefined initial conditions need to be imposed into

the oscillator. However, this additional circuitry is not

provided.

4 Conclusion

In this short paper a novel dynamical system with cir-

cular equilibrium is uncovered and numerically con-

firmed as well as experimentally measured. Brief nature

of this paper leaves the place for upcoming deeper

investigation of the class of dynamical system with cir-

cular equilibrium. It is believed that brute-force method

that combines stochastic search routine with objective

function in the form of precise motion quantifier is pow-

erful tool which can be utilized for discovering inter-
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Fig. 7 Oscilloscope traces of the chaotic attractors. Projection of the chaos evolution onto (upper left:xy, upper right: xz, bottom: yz)

plane: a Vd = 800 mV, b Vd = 500 mV, c Vd = 480 mV, d Vd = 420 mV, e Vd = 400 mV, f Vd = 250 mV

esting dynamical systems with prescribed features. As

indicated by new publications [6,12] research in this

particular area will proceed in the near future.
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