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Abstract: Numerous applications of the theory of convex and nonconvex mapping exist in the fields
of applied mathematics and engineering. In this paper, we have defined a new class of nonconvex
functions which is known as up and down pre-invex (pre-incave) fuzzy number valued mappings
(F-N-V·Ms). The well-known fuzzy Hermite–Hadamard (HH)-type and related inequalities are
taken into account in this work. We extend this mileage further using fuzzy Riemann integrals and
the fuzzy number up and down pre-invexity. Additionally, by imposing some light restrictions on
pre-invex (pre-incave) fuzzy number valued mappings, we have introduced two new significant
classes of fuzzy number valued up and down pre-invexity (pre-incavity), which are referred to as
lower up and down pre-invex (pre-incave) and upper up and down pre-invex (pre-incave) fuzzy
number valued mappings. By using these definitions, we have amassed a large number of both
established and novel exceptional situations that serve as implementations of the key findings. To
support the validity of the fuzzy inclusion relations put out in this research, we also provide a few
examples of fuzzy numbers valued up and down pre-invexity.

Keywords: fuzzy-number valued mapping; fuzzy Riemann integral; up and down pre-invex fuzzy
number valued mapping; Hermite–Hadamard inequality; Hermite–Hadamard–Fejér inequality

1. Introduction

A variety of scientific fields, including mathematical analysis, optimization, economics,
finance, engineering, management science, and game theory, have greatly benefited from
the active, interesting, and appealing field of convexity theory study. Numerous scholars
study the idea of convex functions, attempting to broaden and generalize its various
manifestations by using cutting-edge concepts and potent methods. Convexity theory
offers a comprehensive framework for developing incredibly effective, fascinating, and
potent numerical tools to approach and resolve a wide range of issues in both pure and
applied sciences; see [1–4]. For more information, see [5–10] and the references there

Convexity has been developed, broadened, and extended in several sectors in recent
years. Inequality theory has benefited greatly from the introduction of convex functions.

Numerous studies have shown strong connections between the theories of inequality
and convex functions.

Functional analysis, physics, statistics theory, and optimization theory all benefit from
integral inequality. Only a handful of the applications of inequalities in research [11–18] in-
clude statistical difficulties, probability, and numerical quadrature equations. Convex anal-
ysis and inequalities have developed into an alluring, captivating, and attention-grabbing
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topic for researchers and attention as a result of various refinements, variants, extensions,
wide-ranging perspectives, and applications; the reader can refer to [19–26]. Kadakal
and Iscan recently presented n-polynomial convex functions, which are an extension of
convexity [27]. We refer the readers for more study; see [28–36] and the references therein.

A well-known particular instance of the harmonic mean is the power mean. In areas
such as statistics, computer science, trigonometry, geometry, probability, finance, and
electric circuit theory, it is frequently employed when average rates are sought. Since it
helps to control the weights of each piece of data, the harmonic mean is the ideal statistic
for rates and ratios. The harmonic convex set is defined by the harmonic mean. Shi [37]
was the first to present the harmonic convex set in 2003. The harmonic and p-harmonic
convex functions were introduced and explored for the first time by Anderson et al. [38]
and Noor et al. [39], respectively. Awan et al. [40] introduced a new class known as n-
polynomial harmonically convex function while maintaining their focus on refinements.
For further study, see [41–53] and the references therein.

We learned that there is a certain class of function known as the exponential convex
function and that there are many people working on this subject right now; see [54,55]. This
information was motivated and encouraged by recent actions and research in the field of
convex analysis. The convexity of the exponential type was described by Dragomir [56].
Dragomir’s work was continued by Awan et al. [57], who investigated and looked at a
brand-new family of exponentially convex functions. Kadakal et al. offered a fresh idea for
exponential-type convexity; see [58]. The idea of n-polynomial harmonic exponential-type
convex functions was recently suggested by Geo et al. [59]. In statistical learning, information
sciences, data mining, stochastic optimization, and sequential prediction [27,60,61] and the
references therein, the benefits and applications of exponential-type convexity are used.

Additionally, symmetry and inequality have a direct relationship with convexity. Be-
cause of their close association, whatever one we focus on may be applied to the other,
demonstrating the important relationship between convexity and symmetry; see [62].
The traditional ideas of convexity have been successfully extended in a number of in-
stances. Weir and Mond, for instance, developed the category of pre-invex functions.
The concept of h-convexity, which also encompasses several other types of convex func-
tions, was first presented by Varosanec [63]. Additionally, Varosanec has discovered a
few h-convex function-related classical inequalities. Noor et al. [64] proposed the class
of h-pre-invex functions and noted that additional classes of pre-invexity and classical
convexity may be recaptured by taking into account various appropriate options for the real
function. In a related study, they also developed a number of novel Hermite–Hadamard
and Dragomir–Agarwal inequalities. The class of (h1, h2)-convex functions was first pre-
sented by Cristescu et al. [65], who also looked into it and covered some of its fundamental
characteristics. Zhao et al. [66] developed the class of interval-valued h-convex functions
and came up with some novel iterations of the Hermite–Hadamard inequality by drawing
inspiration from interval analysis and convex analysis. For more information, see [67–73]
and the references are therein.

In order to construct the HH inequalities for harmonic convex functions, Iscan [74]
first developed the idea of a harmonic convex set. By defining the harmonic h-convex
functions on the harmonic convex set and expanding the HH inequalities that Iscan [74]
developed, Mihai [75] advanced the concept of harmonic convex functions.

Remember that fuzzy interval-valued functions are fuzzy-number-valued mappings.
On the other hand, Nanda and Kar [76] were the first to introduce the idea of convex
F-N-V·Ms. In order to offer new versions of HH and fractional type of inequalities,
Khan et al. [77,78] presented h-convex F-N-V·Ms and (h1, h2)-convex F-N-V·Ms and ob-
tained some by utilizing fuzzy Riemann Liouville Fractional Integrals and fuzzy Rieman-
nian integrals, respectively. Similarly, using fuzzy order relations and fuzzy Riemann
Liouville Fractional Integrals, Sana and Khan et al. [79] developed new iterations of fuzzy
fractional HH inequalities for harmonically convex F-N-V·Ms. We direct the readers
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to [80–108] and the references therein for further information on extended convex functions,
fuzzy intervals, and fuzzy integrals.

Motivated and inspired by ongoing research, we have developed a novel extension
of HH inequalities for up and down pre-invex F-N-V·Ms via fuzzy inclusion relation. We
have developed new iterations of the HH inequalities exploiting fuzzy Riemann operators
with the help of this class. In addition, we explored the applicability of our study in rare
instances.

2. Preliminaries

Let XC be the space of all closed and bounded intervals of R and € ∈ XC be defined by

€ = [€∗, €∗] = {o ∈ R| €∗ ≤ o ≤ €∗}, (€∗, €∗ ∈ R). (1)

If €∗ = €∗, then € is said to be degenerate. In this article, all intervals will be non-
degenerate intervals. If €∗ ≥ 0, then [€∗, €∗] is called the positive interval. The set of all posi-
tive intervals is denoted by X+

C and defined as X+
C = {[€∗, €∗] : [€∗, €∗] ∈ XC and €∗ ≥ 0}.

Let i ∈ R and i · € be defined by

i · € =


[i€∗, i€∗] if i > 0,
{0} if i = 0,
[i€∗, i€∗] if i < 0.

(2)

Then, the Minkowski difference ¥ − €, addition € + ¥ and € × ¥ for €, ¥ ∈ XC are
defined by

[¥∗, ¥∗] + [€∗, €∗] = [¥∗ + €∗, ¥∗ + €∗], (3)

[¥∗, ¥∗]× [€∗, €∗] = [min{∗€∗, ¥∗€∗, ¥∗€∗, ¥∗€∗}, max{¥∗€∗, ¥∗€∗, ¥∗€∗, ¥∗€∗}] (4)

[¥∗, ¥∗]− [€∗, €∗] = [¥∗ − €∗, ¥∗ − €∗]. (5)

Remark 1. (i) For given [¥∗, ¥∗], [€∗, €∗] ∈ RI , the relation “⊇I” defined on RI by

[€∗, €∗] ⊇I [¥∗, ¥∗] i f and only i f €∗ ≤ ¥∗, ¥∗ ≤ €∗, (6)

for all [¥∗, ¥∗], [€∗, €∗] ∈ RI , it is a partial interval inclusion relation. The relation
[ €∗, €∗ ] ⊇I [ ¥∗, ¥∗ ] is coincident to [€∗, €∗ ] ⊇ [ ¥∗, ¥∗ ] on RI . It can be easily seen
that “⊇I” looks like “up and down” on the real line R, so we refer to “⊇I” as “up and down” (or

“UD” order, in short) [92].
(ii) For given [¥∗, ¥∗], [€∗, €∗] ∈ RI , we say that [¥∗, ¥∗] ≤I [€∗, €∗] if and only if

¥∗ ≤ €∗, ¥∗ ≤ €∗, it is a partial interval order relation. The relation [¥∗, ¥∗] ≤I [€∗, €∗]
coincident to [¥∗, ¥∗] ≤ [€∗, €∗] on RI . It can be easily seen that “≤I” looks like “left and right”
on the real line R, so we call “≤I” is “left and right” (or “LR” order, in short) [91,92].

For [¥∗, ¥∗], [€∗, €∗] ∈ XC, the Hausdorff–Pompeiu distance between intervals [¥∗, ¥∗], and
[€∗, €∗]is defined by

dH([¥∗, ¥∗], [€∗, €∗]) = max{|¥∗ − €∗|, |¥∗ − €∗|}. (7)

It is a familiar fact that (XC, dH) is a complete metric space; see [83,89,90].

Definition 1. ([82,83]) A fuzzy subset L of R is distinguished by a mapping €̃ : R→ [0, 1] called
the membership mapping of L. That is, a fuzzy subset L of R is a mapping €̃ : R→ [0, 1] . So, for
further study, we have chosen this notation. We appoint E to denote the set of all fuzzy subsets of R.

Let €̃ ∈ E. Then, €̃ is known as a fuzzy number or fuzzy interval if the following properties
are satisfied by €̃:

(1) €̃ is normal i.e., if there exists o ∈ R and €̃(o) = 1;
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(2) €̃ should be upper semi-continuous on R if for given o ∈ R, there exist ε > 0 and there exist
δ > 0 such that €̃(o)− €̃(s) < ε for all s ∈ R with |o− s| < δ;

(3) €̃ should be fuzzy convex that is €̃((1− i)o+ is) ≥ min
(

€̃(o), €̃(s)
)

, for all o, s ∈ R, and
i ∈ [0, 1];

(4) €̃ should be compactly supported: that is, cl
{
o ∈ R

∣∣∣ €̃(o) >0
}

is compact.

We appoint EC to denote the set of all fuzzy numbers of R.

Definition 2. ([82,83]) Given €̃ ∈ EC, the level sets or cut sets are given by
[
€̃
]λ

=
{
o ∈ R

∣∣∣ €̃(o) ≥ λ
}

for all λ ∈ [0, 1] and by
[
€̃
]0

=
{
o ∈ R

∣∣∣ €̃(o) >0
}

. These sets are known as λ-level sets or λ-cut sets

of €̃.

Proposition 1. ([85]) Let €̃, ¥̃ ∈ EC. Then, relation “≤F” given on EC by

€̃ ≤F ¥̃ i f and only i f ,
[
€̃
]λ
≤I

[
¥̃
]λ

, f or every λ ∈ [0, 1], (8)

it is a left and right-order relation.

Proposition 2. Let €̃, ¥̃ ∈ EC. Then, relation “⊇F” given on EC by

€̃ ⊇F ¥̃ when and only when,
[
€̃
]λ
⊇I

[
¥̃
]λ

, f or every λ ∈ [0, 1], (9)

it is an up and down-order relation on EC.

Proof. The proof follows directly from the up and down relation ⊇I defined on XC.
Remember the approaching notions, which are offered in the literature. If €̃, ¥̃ ∈ EC

and i ∈ R, then, for every λ ∈ [0, 1], the arithmetic operations are defined by[
€̃⊕ ¥̃

]λ
=
[
€̃
]λ

+
[
¥̃
]λ

, (10)

[
€̃⊗ ¥̃

]λ
=
[
€̃
]λ
×
[

¥̃
]λ

, (11)[
i � €̃

]λ
= i.

[
€̃
]λ

. (12)

These operations follow directly from Equations (4), (5), and (6), respectively. �

Theorem 1 . ([83]) The space EC dealing with a supremum metric, i.e., for €̃, ¥̃ ∈ EC

d∞

(
€̃, ¥̃

)
= sup

0≤λ≤1
dH

([
€̃
]λ

,
[
¥̃
]λ
)

, (13)

is a complete metric space, where H denotes the well-known Hausdorff metric on the space of intervals.

Riemann Integral Operators for the Interval- and Fuzzy-Number Valued Mappings

Now, we define and discuss some properties of fractional integral operators of interval-
and fuzzy-number-valued mappings.
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Theorem 2. ([83,84]) If G : [ν, τ] ⊂ R→ XC is an interval-valued mapping (I-V·M) satisfying
that G(o) = [G∗(o), G∗(o)], then G is Aumann integrable (IA-integrable) over [ν, τ] when and
only when G∗(o) and G∗(o) both are integrable over [ν, τ] such that

(IA)
∫ τ

ν
G(o)do =

[∫ τ

ν
G∗(o)do,

∫ τ

ν
G∗(o)do

]
. (14)

Definition 3. ([91]) Let G̃ : I ⊂ R→ EC be called fuzzy-number valued mapping. Then, for
every λ ∈ [0, 1], as well as λ-levels, define the family of I-V·Ms Gλ : I ⊂ R→ XC satisfying that
Gλ(o) = [G∗(o, λ), G∗(o, λ)] for every o ∈ I. Here, for every λ ∈ [0, 1], the endpoint real-valued
mappings G∗(·, λ), G∗(·, λ), : I→ R are called lower and upper mappings of Gλ.

Definition 4. ([91]) Let G̃ : I ⊂ R→ EC be a F-N-V·M. Then, G̃(o) is said to be continuous at
o ∈ I, if for every λ ∈ [0, 1], Gλ(o) is continuous when and only when, both endpoint mappings
G∗(o, λ), and G∗(o, λ) are continuous at o ∈ I.

Definition 5. ([84]) Let G̃ : [ν, τ] ⊂ R→ EC be F-N-V·M. The fuzzy Aumann integral ((FA)-
integral) of G over [ν, τ], denoted by (FA)

∫ τ
ν G̃(o)do, is defined level-wise by[

(FA)
∫ τ

ν
G̃(o)do

]
λ = (IA)

∫ τ

ν
Gλ(o)do =

{∫ τ

ν
G(o, λ)do : G(o, λ) ∈ S(Gλ)

}
, (15)

where S(Gλ) = {G(·, λ)→ R : G(·, λ)is integrable and G(o, λ) ∈ Gλ(o)}, for every λ ∈ [0, 1].
G is (FA)-integrable over [ν, τ] if (FA)

∫ τ
ν G̃(o)do ∈ EC.

Theorem 3. ([85]) Let G̃ : [ν, τ] ⊂ R→ EC be a F-N-V·M as well as λ-levels define the family
of I-V·Ms Gλ : [ν, τ] ⊂ R→ XC satisfying that Gλ(o) = [G∗(o, λ), G∗(o, λ)] for every o ∈
[ν, τ] and for every λ ∈ [0, 1]. Then, G̃ is (FA)-integrable over [ν, τ] when and only when,
G∗(o, λ) and G∗(o, λ) both are integrable over [ν, τ]. Moreover, if G is (FA)-integrable over
[ν, τ], then[

(FA)
∫ τ

ν
G̃(o)do

]
λ =

[∫ τ

ν
G∗(o, λ)do,

∫ τ

ν
G∗(o, λ)do

]
= (IA)

∫ τ

ν
Gλ(o)do, (16)

for every λ ∈ [0, 1].
Breckner discussed the coming emerging idea of interval-valued convexity in [86].

Definition 6. A interval valued mapping G : I = [ν, τ]→ XC is called convex inteval valued
mapping if

G(io+ (1− i)s) ⊇ iG(o) + (1− i)G(s), (17)

for all o, s ∈ [ν, τ], i ∈ [0, 1], where XC is the collection of all real valued intervals. If (17) is
reversed, then G is called concave.

Definition 7. ([76]) The F-N-V·M G̃ : [ν, τ]→ EC is called convex F-N-V·M on [ν, τ] if

G̃(io+ (1− i)s ) ≤F i � G̃(o)⊕ (1− i)� G̃(s), (18)

for all o, s ∈ [ν, τ], i ∈ [0, 1], where G̃(o) ≥F 0̃ for all o ∈ [ν, τ]. If (18) is reversed then, G̃ is
called concave F-N-V·M on [ν, τ]. G̃ is affine if and only if it is both convex and concave F-N-V·M.

Definition 8. ([92]) The F-N-V·M G̃ : [ν, τ]→ EC is called up and down convex F-N-V·M on
[ν, τ] if

G̃(io+ (1− i)s) ⊇F i � G̃(o)⊕ (1− i)� G̃(s), (19)
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for all o, s ∈ [ν, τ], i ∈ [0, 1], where G̃(o) ≥F 0̃ for all o ∈ [ν, τ]. If (19) is reversed then, G̃ is
called up and down concave F-N-V·M on [ν, τ]. G̃ is up and down affine F-N-V·M if and only if it
is both up and down convex and up and down concave F-N-V·M.

Theorem 4. ([92]) Let G̃ : [ν, τ]→ EC be an F-N-V·M, whose λ-levels define the family of I-V·Ms
Gλ : [ν, τ]→ X+

C ⊂ XC are given by

Gλ(o) = [G∗(o, λ), G∗(o, λ)], (20)

for all o ∈ [ν, τ] and for all λ ∈ [0, 1]. Then, G̃ is up and down convex F-N-V·M on [ν, τ] if and
only if, for all λ ∈ [0, 1], G∗(o, λ) is a convex mapping and G∗(o, λ) is a concave mapping.

3. Up and Down Fuzzy-Number Valued Mappings and Related Integral Inequalities

Definition 9. The F-N-V·M G̃ : [ν, τ]→ EC is called up and down pre-invex F-N-V·M on
[ν, τ] if

G̃(o+ (1− i)j(s, o)) ⊇F i � G̃(o)⊕ (1− i)� G̃(s), (21)

for all o, s ∈ [ν, τ], i ∈ [0, 1], where G̃(o) ≥F 0̃ for all o ∈ [ν, τ]. If (19) is reversed then, G̃ is
called up and down pre-incave F-N-V·M on [ν, τ]. G̃ is up and down affine F-N-V·M if and only if
it is both up and down pre-invex and up and down pre-incave F-N-V·M.

Theorem 5. Let G̃ : [ν, τ]→ EC be an F-N-V·M, whose λ-levels define the family of I-V·Ms
Gλ : [ν, τ]→ X+

C ⊂ XC are given by

Gλ(o) = [G∗(o, λ), G∗(o, λ)], (22)

for all o ∈ [ν, τ] and for all λ ∈ [0, 1]. Then, G̃ is up and down pre-invex F-N-V·M on [ν, τ] if and
only if, for all λ ∈ [0, 1], G∗(o, λ) is a pre-invex mapping and G∗(o, λ) is a pre-incave mapping.

Remark 2. If G∗(o, λ) 6= G∗(o, λ) and λ = 1, then we obtain the definition of a pre-invex
interval-valued function; see [95]:

G(o+ (1− i)j(s, o)) ⊇ IG(o) + (1− i)G(s). (23)

If G∗(o, λ) = G∗(o, λ) and λ = 1, then we obtain the classical definition of pre-invex functions.

Now, we have obtained in the following some new definitions from the literature
which will be helpful to investigate some classical and new results as special cases of the
main results.

Definition 10. Let G̃ : [ν, τ]→ EC be a F-N-V·M, whose λ-levels define the family of I-V·Ms
Gλ : [ν, τ]→ X+

C ⊂ XC and are given by

Gλ(o) = [G∗(o, λ), G∗(o, λ)], (24)

for all o ∈ [ν, τ] and for all λ ∈ [0, 1]. Then, G̃ is lower up and down pre-invex (pre-incave)
F-N-V·M on [ν, τ] if and only if, for all λ ∈ [0, 1],

G∗(o+ (1− i)j(s, o), λ) ≤ (≥)iG∗(o, λ) + (1− i)G∗(s, λ),

and
G∗(o+ (1− i)j(s, o), λ) = iG∗(o, λ) + (1− i)G∗(s, λ).
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Definition 11. Let G̃ : [ν, τ]→ EC be a F-N-V·M, whose λ-levels define the family of I-V·Ms
Gλ : [ν, τ]→ X+

C ⊂ XC and are given by

Gλ(o) = [G∗(o, λ), G∗(o, λ)], (25)

for all o ∈ [ν, τ] and for all λ ∈ [0, 1]. Then, G̃ is upper up and down pre-invex (pre-incave)
F-N-V·M on [ν, τ] if and only if, for all λ ∈ [0, 1],

G∗(o+ (1− i)j(s, o), λ) = iG∗(o, λ) + (1− i)G∗(s, λ),

and
G∗(o+ (1− i)j(s, o), λ) ≤ (≥)iG∗(o, λ) + (1− i)G∗(s, λ).

Remark 3. Both concepts “up and down pre-invex F-N-V·M” and classical “pre-invex F-N-V·M,
see [97]” behave alike when G is lower up and down pre-invex F-N-V·M.

Both concepts “pre-invex interval-valued mapping” (see [95]) and “left and right
pre-invex interval-valued mapping” (see [88]) are coincident when G is lower up and down
pre-invex F-N-V·M with λ = 1.

If we take j(s, o) = s− o, then we acquire classical and new results from Definitions 7–9,
Remarks 2 and 3, and Theorem 5; see [76,86,92,93].

Since j : K× K → R is a bi-function, then we require the following condition to prove
the upcoming results:

Condition C. Let K be an invex set with respect to j. For any ν, τ ∈ K and i ∈ [0, 1],

j(τ, ν + ij(τ, ν)) = (1− i)j(τ, ν),

j(ν, ν + ij(τ, ν)) = −ij(τ, ν).

From Condition C, it can be easily seen that when i = 0, then j(τ, ν) = 0 if and only if, τ = ν,
for all ν, τ ∈ K. For more useful details and the applications of Condition C, see [94,97].

Theorem 6. (The fuzzy HH-type inequality for up and down pre-invex F-N-V·M). Suppose
that G̃ : [ν, ν +j(τ, ν)]→ E is an up and down pre-invex F-N-V·M along with the family
of I-V·Ms Gλ : [ν, ν +j(τ, ν)] ⊂ R→ KC

+ as well as Gλ(o) = [G∗(o, λ), G∗(o, λ)] for all
o ∈ [ν, ν +j(τ, ν)] and for all λ ∈ [0, 1]. If j satisfies the Condition C and G̃ ∈
FR([ν, ν+j(τ,ν)],λ), then

G̃

(
2ν +j(τ, ν)

2

)
⊇F

1
j(τ, ν)

� (FA)
∫ ν+j(τ, ν)

ν
G̃(o)do ⊇F

G̃(ν) ⊕ G̃(τ)

2
. (26)

Proof. Let G̃ : [ν, ν +j(τ, ν)]→ E be an up and down pre-invex F-N-V·M. Then, by
hypothesis, we have

2� G̃

(
2ν +j(τ, ν)

2

)
⊇F G̃(ν + (1− i)j(τ, ν)) ⊕ G̃(ν + ij(τ, ν)).

Therefore, for every λ ∈ [0, 1], we have

2G∗
(

2ν+j(τ, ν)
2 , λ

)
≤ G∗(ν + (1− i)j(τ, ν), λ) +G∗(ν + ij(τ, ν), λ)

2G∗
(

2ν+j(τ, ν)
2 , λ

)
≥ G∗(ν + (1− i)j(τ, ν), λ) +G∗(ν + ij(τ, ν), λ).
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Then

2
∫ 1

0 G∗
(

2ν+j(τ, ν)
2 , λ

)
di ≤

∫ 1
0 G∗(ν + (1− i)j(τ, ν), λ)di +

∫ 1
0 G∗(ν + ij(τ, ν), λ)di,

2
∫ 1

0 G∗
(

2ν+j(τ, ν)
2 , λ

)
di ≥

∫ 1
0 G∗(ν + (1− i)j(τ, ν), λ)di +

∫ 1
0 G∗(ν + ij(τ, ν), λ)di.

It follows that

G∗
(

2ν+j(τ, ν)
2 , λ

)
≤ 1

j(τ, ν)

∫ ν+j(τ, ν)
ν G∗(o, λ)do,

G∗
(

2ν+j(τ, ν)
2 , λ

)
≥ 2

j(τ, ν)

∫ ν+j(τ, ν)
ν G∗(o, λ)do.

That is[
G∗

(
2ν +j(τ, ν)

2
, λ

)
, G∗

(
2ν +j(τ, ν)

2
, λ

)]
⊇I

1
j(τ, ν)

[∫ ν+j(τ, ν)

ν
G∗(o, λ)do,

∫ ν+j(τ, ν)

ν
G∗(o, λ)do

]
.

Thus,

G̃

(
2ν +j(τ, ν)

2

)
⊇F

1
j(τ, ν)

� (FA)
∫ ν+j(τ, ν)

ν
G̃(o)do. (27)

In a similar way as above, we have

1
j(τ, ν)

� (FA)
∫ ν+j(τ, ν)

ν
G̃(o)do ⊇F

G̃(ν) ⊕ G̃(τ)

2
. (28)

Combining (27) and (28), we have

G̃

(
2ν +j(τ, ν)

2

)
⊇F

1
j(τ, ν)

� (FA)
∫ ν+j(τ, ν)

ν
G̃(o)do ⊇F

G̃(ν) ⊕ G̃(τ)

2
.

This completes the proof. �

Remark 4. If j(τ, ν) = τ− ν, then Theorem 6 reduces to the result for convex F-N-V·M, see [93]:

G̃

(
ν + τ

2

)
⊇F

1
τ − ν

� (FA)
∫ τ

ν
G̃(o)do ⊇F

G̃(ν) ⊕ G̃(τ)

2
. (29)

Let G be a lower up and down pre-invex F-N-V·M. Then, we achieve the following inequality
from Theorem 6; see [97]:

G̃

(
2ν +j(τ, ν)

2

)
≤F

1
j(τ, ν)

� (FA)
∫ ν+j(τ, ν)

ν
G̃(o)do ≤F

G̃(ν) ⊕ G̃(τ)

2
. (30)

If lower up and down pre-invex F-N-V·M with j(τ, ν) = τ − ν, then Theorem 6 reduces to
the result for convex F-N-V·M, see [77]:

G̃

(
ν + τ

2

)
≤F

1
τ − ν

� (FA)
∫ τ

ν
G̃(o)do ≤F

G̃(ν) ⊕ G̃(τ)

2
. (31)

If G∗(o, λ) = G∗(o, λ) with λ = 1, then Theorem 6 reduces to the result for pre-invex
mapping; see [94]:

G

(
2ν +j(τ, ν)

2

)
≤ 1

j(τ, ν)

∫ ν+j(τ, ν)

ν
G(o)do ≤ [G(ν) +G(τ)]

∫ 1

0
idi. (32)
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If G∗(o, λ) = G∗(o, λ) with j(τ, ν) = τ − ν and λ = 1, then Theorem 6 reduces to the
result for classical convex mapping:

G

(
ν + τ

2

)
≤ 1

τ − ν

∫ τ

ν
G(o)do ≤ G(ν) +G(τ)

2
. (33)

Example 1. Let o ∈ [2, 2 +j(3, 2)], and the F-N-V·M G̃ : [ν, ν +j(τ, ν)] = [2, 2 + j(3, 2)]
→ EC, which is defined by

G̃(o)(θ) =


θ−2+o

1
2

1−o
1
2

θ ∈
[
2− o

1
2 , 3

]
2+o

1
2−θ

o
1
2−1

θ ∈
(

3, 2 + o
1
2

]
0 otherwise,

(34)

Then, for each λ ∈ [0, 1], we haveGλ(o) =
[
(1− λ)

(
2− o

1
2

)
+ 3λ, (1 + λ)

(
2 + o

1
2

)
+ 3λ

]
.

Since left and right end point mappings G∗(o, λ) = (1− λ)
(

2− o
1
2

)
+ 3λ, and G∗(o, λ) =

(1+ λ)
(

2+ o
1
2

)
+3λ are pre-invex and pre-incave mappings withj(τ, ν) = τ−ν for each λ ∈ [0, 1],

respectively, then G(o) is up and down pre-invex F-N-V·M with j(τ, ν) = τ− ν. We clearly see that
G ∈ L([τ, ν],EC) and

G∗

(
2ν +j(τ, ν)

2
, λ

)
= G∗

(
5
2

, λ

)
= (1− λ)

4−
√

10
2

+ 3λ

G∗
(

2ν +j(τ, ν)

2
, λ

)
= G∗

(
5
2

, λ

)
= (1 + λ)

4 +
√

10
2

+ 3λ

Note that

1
j(τ, ν)

∫ ν+j(τ, ν)

τ
G∗(o, λ)do =

∫ 3

2

(
(1− λ)

(
2− o

1
2

)
+ 3λ

)
do =

843
2000

(1− λ) + 3λ,

1
j(τ, ν)

∫ ν+j(τ, ν)

τ
G∗(o, λ)do =

∫ 3

2

(
(1 + λ)

(
2 + o

1
2

)
+ 3λ

)
do =

179
50

(1 + λ) + 3λ,

and
G∗(τ, λ) +G∗(ν, λ)

2
= (1− λ)

(
4−
√

2−
√

3
2

)
+ 3λ

G∗(τ, λ) +G∗(ν, λ)

2
= (1 + λ)

(
4 +
√

2 +
√

3
2

)
+ 3λ .

Therefore,[
(1− λ) 4−

√
10

2 + 3λ, (1 + λ) 4+
√

10
2 + 3λ

]
⊇I

[
843

2000 (1− λ) + 3λ, 179
50 (1 + λ) + 3λ

]
⊇I

[
(1− λ)

(
4−
√

2−
√

3
2

)
+ 3λ, (1 + λ)

(
4+
√

2+
√

3
2

)
+ 3λ

]
Hence,

G̃

(
2ν +j(τ, ν)

2

)
⊇F

1
j(τ, ν)

� (FR)
∫ ν+j(τ, ν)

τ
G̃(o)do ⊇F

G̃(τ) ⊕ G̃(ν)

2

and Theorem 6 is verified.
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The next results, which are linked with the well-known Fejér–Hermite–Hadamard-
type inequalities, will be obtained using symmetric mappings of one-variable forms.

Theorem 7. Suppose that G : [ν, ν +j(τ, ν)]→ E is an up and down pre-invex F-N-V·M along with
a family of I-V·Ms Gλ : [ν, ν +j(τ, ν)] ⊂ R→ KC

+ as well as Gλ(o) = [G∗(o, λ),G∗(o, λ)] for
all o ∈ [ν, ν +j(τ, ν)] and for all λ ∈ [0, 1]. If j satisfies Condition C and G ∈
FR([ν, ν+j(τ, ν)], λ), and V : [ν, ν +j(τ, ν)]→ R, V(o) ≥ 0, symmetric with respect to ν +
1
2j(τ, ν), then

1
j(τ, ν)

� (FA)
∫ ν+j(τ, ν)

ν
G̃(o)�V(o)do ⊇F

[
G̃(ν) ⊕ G(τ)

]
�
∫ 1

0
iV(ν + ij(τ, ν))di. (35)

Proof. Let G̃ be an up and down pre-invex F-N-V·M. Then, for each λ ∈ [0, 1], we have

G∗(ν + (1− i)j(τ, ν), λ)V(ν + (1− i)j(τ, ν))
≤ (iG∗(ν, λ) + (1− i)G∗(τ, λ))V(ν + (1− i)j(τ, ν)),

G∗(ν + (1− i)j(τ, ν), λ)V(ν + (1− i)j(τ, ν))
≥ (iG∗(ν, λ) + (1− i)G∗(τ, λ))V(ν + (1− i)j(τ, ν)).

(36)

And
G∗(ν + ij(τ, ν), λ)V(ν + ij(τ, ν))
≤ ((1− i)G∗(ν, λ) + iG∗(τ, λ))V(ν + ij(τ, ν)),

G∗(ν + ij(τ, ν), λ)V(ν + ij(τ, ν))
≥ ((1− i)G∗(ν, λ) + iG∗(τ, λ))V(ν + ij(τ, ν)).

(37)

After adding (36) and (37), and integrating over [0, 1], we obtain∫ 1
0 G∗(ν + (1− i)j(τ, ν), λ)V(ν + (1− i)j(τ, ν))di

+
∫ 1

0 G∗(ν + ij(τ, ν), λ)V(ν + ij(τ, ν))di

≤
∫ 1

0

[
G∗(ν, λ)

{
iV(ν + (1− i)j(τ, ν)) + (1− i)V(ν + ij(τ, ν))

}
+G∗(τ, λ)

{
(1− i)V(ν + (1− i)j(τ, ν)) + iV(ν + ij(τ, ν))

}]di,

∫ 1
0 G∗(ν + (1− i)j(τ, ν), λ)V(ν + (1− i)j(τ, ν))di

+
∫ 1

0 G∗(ν + ij(τ, ν), λ)V(ν + ij(τ, ν))di

≥
∫ 1

0

[
G∗(ν, λ)

{
iV(ν + (1− i)j(τ, ν)) + (1− i)V(ν + ij(τ, ν))

}
+G∗(τ, λ)

{
(1− i)V(ν + (1− i)j(τ, ν)) + iV(ν + ij(τ, ν))

}]di.

= 2G∗(ν, λ)
∫ 1

0 iV(ν + (1− i)j(τ, ν))di + 2G∗(τ, λ)
∫ 1

0 iV(ν + ij(τ, ν))di,
= 2G∗(ν, λ)

∫ 1
0 iV(ν + (1− i)j(τ, ν))di + 2G∗(τ, λ)

∫ 1
0 iV(ν + ij(τ, ν))di.

Since V is symmetric, then

= 2[G∗(ν, λ) +G∗(τ, λ)]
∫ 1

0 iV(ν + ij(τ, ν))di,
= 2[G∗(ν, λ) +G∗(τ, λ)]

∫ 1
0 iV(ν + ij(τ, ν))di.

(38)

Since ∫ 1
0 G∗(ν + ij(τ, ν), λ)V(ν + ij(τ, ν))di
=
∫ 1

0 G∗(ν + (1− i)j(τ, ν), λ)V(ν + (1− i)j(τ, ν))di
= 1

j(τ, ν)

∫ ν+j(τ, ν)
ν G∗(o, λ)V(o)do,∫ 1

0 G∗(ν + ij(τ, ν), λ)V(ν + ij(τ, ν))di
=
∫ 1

0 G∗(ν + (1− i)j(τ, ν), λ)V(ν + (1− i)j(τ, ν))di
= 1

j(τ, ν)

∫ ν+j(τ, ν)
ν G∗(o, λ)V(o)do.

(39)
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From (39), we have

1
j(τ, ν)

∫ ν+j(τ, ν)
ν G∗(o, λ)V(o)do ≤ [G∗(ν, λ) +G∗(τ, λ)]

∫ 1
0 iV(ν + ij(τ, ν))di,

1
j(τ, ν)

∫ ν+j(τ, ν)
ν G∗(o, λ)V(o)do ≥ [G∗(ν, λ) +G∗(τ, λ)]

∫ 1
0 iV(ν + ij(τ, ν))di,

that is [
1

j(τ, ν)

∫ ν+j(τ, ν)
ν G∗(o, λ)V(o)do, 1

j(τ, ν)

∫ ν+j(τ, ν)
ν G∗(o, λ)V(o)do

]
⊇I [G∗(ν, λ) +G∗(τ, λ), G∗(ν, λ) +G∗(τ, λ)]

∫ 1
0 iV(ν + ij(τ, ν))di,

Hence

1
j(τ, ν)

� (FA)
∫ ν+j(τ, ν)

ν
G̃(o)�V(o)do ⊇F

[
G̃(ν) ⊕ G̃(τ)

]
�
∫ 1

0
iV(ν + ij(τ, ν))di.

Next, we construct the first HH-Fejér inequality for up and down pre-invex F-N-
V·M, which generalizes first HH-Fejér inequalities for up and down pre-invex mapping;
see [94,96]. �

Theorem 8. Suppose that G̃ : [ν, ν +j(τ, ν)]→ E are two up and down pre-invex F-N-V·Ms
along with ν < ν +j(τ, ν) and family of I-V·Ms Gλ : [ν, ν +j(τ, ν)] ⊂ R→ KC

+ as well as
Gλ(o) = [G∗(o, λ), G∗(o, λ)] for all o ∈ [ν, ν +j(τ, ν)] and for all λ ∈ [0, 1]. If
G̃ ∈ FR([ν, ν+j(τ, ν)], λ) and V : [ν, ν +j(τ, ν)]→ R, V(o) ≥ 0, symmetric with respect

to ν + 1
2j(τ, ν), and

∫ ν+j(τ, ν)
ν V(o)do > 0, and Condition C for j, then

G̃

(
ν +

1
2
j(τ, ν)

)
⊇F

1∫ ν+j(τ, ν)
ν V(o)do

� (FA)
∫ ν+j(τ, ν)

ν
G̃(o)�V(o)do. (40)

Proof . Using Condition C, we can write

ν +
1
2
j(τ, ν) = ν + ij(τ, ν) +

1
2
j(ν + (1− i)j(τ, ν), ν + ij(τ, ν))

Since G is an up and down pre-invex, then for λ ∈ [0, 1], we have

G∗
(

ν + 1
2j(τ, ν), λ

)
= G∗

(
ν + ij(τ, ν) + 1

2j
(

ν + (1− i)j(τ, ν), ν + ij(τ, ν)
)
, λ
)

≤ 1
2 (G∗(ν + (1− i)j(τ, ν), λ) +G∗(ν + ij(τ, ν), λ)),

G∗
(

ν + 1
2j(τ, ν), λ

)
= G∗

(
ν + ij(τ, ν) + 1

2j
(

ν + (1− i)j(τ, ν), ν + ij(τ, ν)
)
, λ
)

≥ (G∗(ν + (1− i)j(τ, ν), λ) +G∗(ν + ij(τ, ν), λ)).

(41)

By multiplying (41) by V(ν + (1− i)j(τ, ν)) = V(ν + ij(τ, ν)) and integrating it by
i over [0, 1], we obtain

G∗
(

ν + 1
2j(τ, ν), λ

) ∫ 1
0 V(ν + ij(τ, ν))di

≤ 1
2

(∫ 1
0 G∗(ν + (1− i)j(τ, ν), λ)V

(
ν + (1− i)j(τ, ν)

)
di

+
∫ 1

0 G∗(ν + ij(τ, ν), λ)diV(ν + ij(τ, ν))di

)
,

G∗
(

ν + 1
2j(τ, ν), λ

) ∫ 1
0 V(ν + ij(τ, ν))di

≥ 1
2

(∫ 1
0 G∗(ν + (1− i)j(τ, ν), λ)V

(
ν + (1− i)j(τ, ν)

)
di

+
∫ 1

0 G∗(ν + ij(τ, ν), λ)V(ν + ij(τ, ν))di

)
.

(42)
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Since ∫ 1
0 G∗(ν + ij(τ, ν), λ)V(ν + ij(τ, ν))di
=
∫ 1

0 G∗(ν + (1− i)j(τ, ν), λ)V(ν + (1− i)j(τ, ν))di
= 1

j(τ, ν)

∫ ν+j(τ, ν)
ν G∗(o, λ)V(o)do,∫ 1

0 G∗(ν + ij(τ, ν), λ)V(ν + ij(τ, ν))di
=
∫ 1

0 G∗(ν + (1− i)j(τ, ν), λ)V(ν + (1− i)j(τ, ν))di
= 1

j(τ, ν)

∫ ν+j(τ, ν)
ν G∗(o, λ)V(o)do.

(43)

From (43), we have

G∗
(

ν + 1
2j(τ, ν), λ

)
≤ 1∫ ν+j(τ, ν)

ν V(o)do

∫ ν+j(τ, ν)
ν G∗(o, λ)V(o)do,

G∗
(

ν + 1
2j(τ, ν), λ

)
≥ 1∫ ν+j(τ, ν)

ν V(o)do

∫ ν+j(τ, ν)
ν G∗(o, λ)V(o)do.

From this, we have[
G∗
(

ν + 1
2j(τ, ν), λ

)
, G∗

(
ν + 1

2j(τ, ν), λ
)]

⊇I
1∫ ν+j(τ, ν)

ν V(o)do

[ ∫ ν+j(τ, ν)
ν G∗(o, λ)V(o)do,

∫ ν+j(τ, ν)
ν G∗(o, λ)V(o)do

]
,

(44)

From (44), we have

G̃

(
ν +

1
2
j(τ, ν)

)
⊇F

1∫ ν+j(τ, ν)
ν V(o)do

� (FA)
∫ ν+j(τ, ν)

ν
G̃(o)�V(o)do.

This completes the proof. �

Remark 5. If j(τ, ν) = τ − ν, then the inequalities in Theorems 7 and 8 reduce for up and down
convex F-N-V·Ms; see [93].

If G∗(ν, λ) = G∗(ν, λ) with λ = 1, then Theorems 7 and 8 reduces to classical first and
second HH-Fejér inequality for pre-invex mapping; see [94].

If G∗(ν, λ) = G∗(ν, λ) with λ = 1 and j(τ, ν) = τ − ν then Theorems 7 and 8 reduce to
classical first and second HH-Fejér inequality for convex mapping; see [96].

Example 2. We consider the F-N-V·M G : [0, j(2, 0)]→ EC defined by,

G(o)(θ) =


θ−2+o

1
2

3
2−2−o

1
2

θ ∈
[
2− o

1
2 , 3

2

]
2+o

1
2−θ

2+o
1
2− 3

2

θ ∈
(

3
2 , 2 + o

1
2

]
0 otherwise,

(45)

Then, for each λ ∈ [0, 1], we haveGλ(o) =
[
(1− λ)

(
2− o

1
2

)
+ 3

2 λ, (1 + λ)
(

2 + o
1
2

)
+ 3

2 λ
]
.

Since end point mappings G∗(o, λ), and G∗(o, λ) are pre-invex and pre-incave mappings with
j(τ, ν) = τ − ν, respectively, for each λ ∈ [0, 1], then G(o) is up and down pre-invex F-N-
V·M. If

B(o) =

{ √
o, σ ∈ [0, 1],√

2− o, σ ∈ (1, 2],
(46)

then B(2− o) = B(o) ≥ 0, for all o ∈ [0, 2]. Since G∗(o, λ) = (1− λ)
(

2− o
1
2

)
+ 3

2 λ and

G∗(o, λ) = (1 + λ)
(

2 + o
1
2

)
+ 3

2 λ. Now, we compute the following:
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1
j(τ, ν)

∫ ν+j(τ, ν)
τ [G∗(o, λ)]B(o)do = 1

2

∫ 2
0 [G∗(o, λ)]B(o)do

= 1
2

∫ 1
0 [G∗(o, λ)]B(o)do+ 1

2

∫ 2
1 G∗(o, λ)B(o)do,

= 1
2

∫ 1
0

[
(1− λ)

(
2− o

1
2

)
+ 3

2 λ
](√

o
)
do+ 1

2

∫ 2
1

[
(1− λ)

(
2− o

1
2

)
+ 3

2 λ
](√

2− o
)
do

= 1
4

[
13
3 −

π
2

]
+ λ

[
π
8 −

1
12

]
,

1
j(τ, ν)

∫ ν+j(τ, ν)
τ [G∗(o, λ)]B(o)do = 1

2

∫ 2
0 [G

∗(o, λ)]B(o)do

= 1
2

∫ 1
0 [G

∗(o, λ)]B(o)do+ 1
2

∫ 2
1 G∗(o, λ)B(o)do,

= 1
2

∫ 1
0

[
(1 + λ)

(
2 + o

1
2

)
+ 3

2 λ
](√

o
)
do+ 1

2

∫ 2
1

[
(1 + λ)

(
2 + o

1
2

)
+ 3

2 λ
](√

2− o
)
do

= 1
4

[
19
3 + π

2

]
+ λ

[
π
8 + 31

12

]
.

(47)

And

[G∗(τ, λ) +G∗(ν, λ)]
∫ 1

0 iB(ν + ij(τ, ν)) di

=
[
4(1− λ)−

√
2(1− λ) + 3λ

][∫ 1
2

0 i
√

2idi +
∫ 1

1
2
i
√

2(1− i)di
]

= 1
3

(
4(1− λ)−

√
2(1− λ) + 3λ

)
,

[G∗(τ, λ) +G∗(ν, λ)]
∫ 1

0 iB(ν + ij(τ, ν))di

=
[
4(1 + λ) +

√
2(1 + λ) + 3λ

][∫ 1
2

0 i
√

2idi +
∫ 1

1
2
i
√

2(1− i)di
]

= 1
3

(
4(1 + λ) +

√
2(1 + λ) + 3λ

)
.

(48)

From (47) and (48), we have[
1
4

[
13
3 −

π
2

]
+ λ

[
π
4 −

7
6
]
, 1

4

[
19
3 + π

2

]
+ λ

[
π
4 + 25

6
]]

⊇I

[
1
3

(
4(1− λ)−

√
2(1− λ) + 3λ

)
, 1

3

(
4(1 + λ) +

√
2(1 + λ) + 3λ

)]
, f or all λ ∈ [0, 1].

Hence, Theorem 7 is verified.
For Theorem 8, we have

G∗
(

2ν+j(τ, ν)
2 , λ

)
= G∗(1, λ) = 2+λ

2 ,

G∗
(

2ν+j(τ, ν)
2 , λ

)
= G∗(1, λ) =

3(2+3λ)
2 ,

(49)

∫ ν+j(τ, ν)

τ
B(o)do =

∫
1

0

√
odo+

∫ 2

1

√
2− odo =

4
3

,

1∫ ν+j(τ, ν)
τ B(o)do

∫ ν+j(τ, ν)
τ G∗(o, λ)B(o)do = 3

8

[
13
3 −

π
2

]
+ 3λ

2

[
π
8 −

1
12

]
,

1∫ ν+j(τ, ν)
τ B(o)do

∫ ν+j(τ, ν)
τ G∗(o, λ)B(o)do = 3

8

[
19
3 + π

2

]
+ 3λ

2

[
π
8 + 31

12

]
. (50)

From (49) and (50), we have[
2 + λ

2
,

3(2 + 3λ)

2

]
⊇I

[
3
8

[
13
3
− π

2

]
+

3λ

2

[
π

8
− 1

12

]
,

3
8

[
19
3

+
π

2

]
+

3λ

2

[
π

8
+

31
12

]]
.

Hence, Theorem 8 has been verified.
Further, we also offer the fuzzy integral relations of the product of two up and down pre-invex

F-N-V·Ms.

Theorem 9. Suppose that G̃, Ẽ : [ν, ν +j(τ, ν)]→ E are two up and down pre-invex F-
N-V·Ms along with the family of I-V·Ms Gλ, Eλ : [ν, ν +j(τ, ν)] ⊂ R→ KC

+ as well as
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Gλ(o) = [G∗(o, λ), G∗(o, λ)] and Eλ(o) = [E∗(o, λ), E∗(o, λ)] for all o ∈ [ν, ν +j(τ, ν)]
and for all λ ∈ [0, 1]. If j satisfy Condition C and G̃(o)⊗ Ẽ(o) ∈ FR([ν, ν+j(τ, ν)], λ), then

1
j(τ, ν)

� (FA)
∫ ν+j(τ, ν)

ν
G̃(o)⊗ Ẽ(o)do ⊇F

∆̃(ν, τ)

3
⊕ ∇̃(ν, τ)

6
, (51)

where ∆̃(ν, τ) = G̃(ν)⊗ Ẽ(ν)⊕ G̃(τ)⊗ Ẽ(τ), ∇̃(ν, τ) = G̃(ν)⊗ Ẽ(τ) ⊕ G̃(τ)⊗ Ẽ(ν), and
∆λ(ν, τ) = [∆∗((ν, τ), λ), ∆∗((ν, τ), λ)] and ∇λ(ν, τ) = [∇∗((ν, τ), λ), ∇∗((ν, τ), λ)].

Example 3. Let [τ, ν] = [0, 2], and the F-N-V·Ms G,E : [τ, ν] = [0, 2]→ EC, which is de-
fined by

G̃(o)(θ) =


θ
o θ ∈ [0, o]
2o−θ
o θ ∈ (o, 2o]

0 otherwise,

Ẽ(o)(θ) =


θ−o
2−o θ ∈ [o, 2]

8−eo−θ
8−eo−2 θ ∈ (2, 8− eo]

0 otherwise.

Then, for each λ ∈ [0, 1], we have Gλ(o) = [λo, (2− λ)o] and Eλ(o) = [(1− λ)o+ 2λ,
(1− λ)(8− eo) + 2λ]. Since left and right end point mappings G∗(o, λ) = λo, G∗(o, λ) =
(2− λ)o, E∗(o, λ) = (1− λ)o+ 2λ and E∗(o, λ) = (1− λ)(8− eo) + 2λ are pre-invex and
pre-incave mappings with |(τ, ν) = τ − ν for each λ ∈ [0, 1], respectively, then G(o) and
E(o) both are up and down pre-invex F-N-V·Ms with |(τ, ν) = τ − ν. We clearly see that
G(o)⊗ E(o) ∈ L([τ, ν],EC) and

1
j(τ, ν)

∫ ν+j(τ, ν)
τ G∗(o, λ)× E∗(o, λ)do = 1

2

∫ 2
0

(
λ(1− λ)o2 + 2λ2o

)
do = 2

3 λ(2 + λ),
1

j(τ, ν)

∫ ν+j(τ, ν)
τ G∗(o, λ)× E∗(o, λ)do = 1

2

∫ 2
0 ((1− λ)(2− λ)o(8− eo) + 2λ(2− λ)o)do ≈ (2−λ)

2

(
1903
250 −

903
250 λ

)
.

Note that
∆∗(τ, ν) = [G∗(τ)× E∗(τ) +G∗(ν)× E∗(ν)] = 4λ

∆∗(τ, ν) = [G∗(τ)× E∗(τ) +G∗(ν)× E∗(ν)] = 2(2− λ)
[
(1− λ)

(
8− e2

)
+ 2λ

]
,

∇∗(τ, ν) = [G∗(τ)× E∗(ν) +G∗(ν)× E∗(τ)] = 4λ2,

∇∗(τ, ν) = [G∗(τ)× E∗(ν) +G∗(ν)× E∗(τ)] = 2(2− λ)(7− 5λ).

Therefore, we have

1
3 ∆λ((τ, ν), λ) + 1

6∇λ((τ, ν), λ)
= 1

3
[
4λ, 2(2− λ)

[
(1− λ)

(
8− e2)+ 2λ

]]
+ 1

3
[
2λ2, (2− λ)(7− 5λ)

]
= 1

3
[
2λ(2 + λ), (2− λ)

[
2(1− λ)

(
8− e2)− λ + 7

]]
.

It follows that[
2
3

λ(1 + 2λ),
(2− λ)

2

(
1903
250
− 903

250
λ

)]
⊇I

1
3

[
2λ(2 + λ), (2− λ)

[
2(1− λ)

(
8− e2

)
− λ + 7

]]
and Theorem 9 has been demonstrated.

Theorem 10. Suppose that G, Ẽ : [ν, ν +j(τ, ν)]→ E are two up and down pre-invex F-
N-V·Ms along with the family of I-V·Ms Gλ, Eλ : [ν, ν +j(τ, ν)] ⊂ R→ KC

+ as well as
Gλ(o) = [G∗(o, λ), G∗(o, λ)] and Eλ(o) = [E∗(o, λ), E∗(o, λ)] for all o ∈ [ν, ν +j(τ, ν)]
and for all λ ∈ [0, 1]. If j satisfy Condition C and G̃(o)×̃Ẽ(o) ∈ FR([ν, ν+j(τ, ν)], λ), then
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2� G̃

(
2ν +j(τ, ν)

2

)
⊗ Ẽ

(
2ν +j(τ, ν)

2

)
⊇F

1
i(τ, ν)

� (FA)
∫ ν+j(τ, ν)

ν
G̃(o)⊗ Ẽ(o)do ⊕ ∆̃(ν, τ)

6
⊕ ∇̃(ν, τ)

3
, (52)

where ∆̃(ν, τ) = G̃(ν)⊗ Ẽ(ν) ⊕ G̃(τ)⊗ Ẽ(τ), ∇̃(ν, τ) = G̃(ν)⊗ Ẽ(τ) ⊕ G̃(τ)⊗ Ẽ(ν), and
∆λ(ν, τ) = [∆∗((ν, τ), λ), ∆∗((ν, τ), λ)] and ∇λ(ν, τ) = [∇∗((ν, τ), λ), ∇∗((ν, τ), λ)].

Proof. Using Condition C, we can write

ν +
1
2
j(τ, ν) = ν + ij(τ, ν) +

1
2
j(ν + (1− i)j(τ, ν), ν + ij(τ, ν)).

By hypothesis, for each λ ∈ [0, 1], we have

G∗
(

2ν+j(τ, ν)
2 , λ

)
× E∗

(
2ν+j(τ, ν)

2 , λ
)

G∗
(

2ν+j(τ, ν)
2 , λ

)
× E∗

(
2ν+j(τ, ν)

2 , λ
)

= G∗

(
ν + ij(τ, ν) +

1
2
j
(

ν + (1− i)j(τ, ν),
ν + ij(τ, ν)

)
, λ

)
× E∗

(
ν + ij(τ, ν) +

1
2
j
(

ν + (1− i)j(τ, ν),
ν + ij(τ, ν)

)
, λ

)
= G∗

(
ν + ij(τ, ν) +

1
2
j
(

ν + (1− i)j(τ, ν),
ν + ij(τ, ν)

)
, λ

)
× E∗

(
ν + ij(τ, ν) +

1
2
j
(

ν + (1− i)j(τ, ν),
ν + ij(τ, ν)

)
, λ

)
≤ 1

4

[
G∗(ν + (1− i)j(τ, ν), λ)× E∗(ν + (1− i)j(τ, ν), λ)
+G∗(ν + (1− i)j(τ, ν), λ)× E∗(ν + ij(τ, ν), λ)

]
+

1
4

[
G∗(ν + ij(τ, ν), λ)× E∗(ν + (1− i)j(τ, ν), λ)
+G∗(ν + ij(τ, ν), λ)× E∗(ν + ij(τ, ν), λ)

]
,

≥ 1
4

[
G∗(ν + (1− i)j(τ, ν), λ)× E∗(ν + (1− i)j(τ, ν), λ)
+G∗(ν + (1− i)j(τ, ν), λ)× E∗(ν + ij(τ, ν), λ)

]
+

1
4

[
G∗(ν + ij(τ, ν), λ)× E∗(ν + (1− i)j(τ, ν), λ)
+G∗(ν + ij(τ, ν), λ)× E∗(ν + ij(τ, ν), λ)

]
,

≤ 1
4

[
G∗(ν + (1− i)j(τ, ν), λ)× E∗(ν + (1− i)j(τ, ν), λ)

+G∗(ν + ij(τ, ν), λ)× E∗(ν + ij(τ, ν), λ)

]

+
1
4

 (iG∗(ν, λ) + (1− i)G∗(τ, λ))×
(
(1− i)E∗(ν, λ)
+iE∗(τ, λ)

)
+((1− i)G∗(ν, λ) + iG∗(τ, λ))×

(
iE∗(ν, λ)+

(1− i)E∗(τ, λ)

)
,

≥ 1
4

[
G∗(ν + (1− i)j(τ, ν), λ)× E∗(ν + (1− i)j(τ, ν), λ)

+G∗(ν + ij(τ, ν), λ)× E∗(ν + ij(τ, ν), λ)

]

+
1
4

 (iG∗(ν, λ) + (1− i)G∗(τ, λ))×
(
(1− i)E∗(ν, λ)
+iE∗(τ, λ)

)
+((1− i)G∗(ν, λ) + iG∗(τ, λ))×

(
iE∗(ν, λ)+

(1− i)E∗(τ, λ)

)
,

=
1
4

[
G∗(ν + (1− i)j(τ, ν), λ)× E∗(ν + (1− i)j(τ, ν), λ)

+G∗(ν + ij(τ, ν), λ)× E∗(ν + ij(τ, ν), λ)

]
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+
1
2

[ {
i2 + (1− i)2

}
∇∗((ν, τ), λ)

+{i(1− i) + (1− i)j}∆∗((ν, τ), λ)

]
,

=
1
4

[
G∗(ν + (1− i)j(τ, ν), λ)× E∗(ν + (1− i)j(τ, ν), λ)

+G∗(ν + ij(τ, ν), λ)× E∗(ν + ij(τ, ν), λ)

]

+
1
2

[ {
i2 + (1− i)2

}
∇∗((ν, τ), λ)

+{i(1− i) + (1− i)i}∆∗((ν, τ), λ)

]
.

Integrating over [0, 1], we have

2 G∗
(

2ν+j(τ, ν)
2 , λ

)
× E∗

(
2ν+j(τ, ν)

2 , λ
)

≤ 1
j(τ, ν)

∫ ν+j(τ, ν)
ν G∗(o, λ)× E∗(o, λ)do

+∆∗((ν,τ), λ)
6 + ∇∗((ν,τ), λ)

3 ,
2 G∗

(
2ν+j(τ, ν)

2 , λ
)
× E∗

(
2ν+j(τ, ν)

2 , λ
)

≥ 1
j(τ, ν)

∫ ν+j(τ, ν)
ν G∗(o, λ)× E∗(o, λ)do

+∆∗((ν,τ), λ)
6 + ∇∗((ν,τ), λ)

3 ,

from which, we have

2
[
G∗
(

2ν+j(τ, ν)
2 , λ

)
× E∗

(
2ν+j(τ, ν)

2 , λ
)

, G∗
(

2ν+j(τ, ν)
2 , λ

)
× E∗

(
2ν+j(τ, ν)

2 , λ
)]

⊇I
1

j(τ, ν)

[∫ ν+j(τ, ν)
ν G∗(o, λ)× E∗(o, λ)do,

∫ ν+j(τ, ν)
ν G∗(o, λ)× E∗(o, λ)do

]
+
[

∆∗((ν,τ), λ)
6 , ∆∗((ν,τ), λ)

6

]
+
[
∇∗((ν,τ), λ)

3 , ∇
∗((ν,τ), λ)

3

]
,

that is

2� G̃
(

2ν+j(τ, ν)
2

)
⊗ Ẽ

(
2ν+j(τ, ν)

2

)
⊇F

1
j(τ, ν)

� (FA)
∫ ν+j(τ, ν)

ν G̃(o)⊗ Ẽ(o)do ⊕ ∆̃(ν,τ)
6

⊕ ∇̃(ν,τ)
32τdτlued f unctions ions with .

This completes the proof. �

Example 4. We consider the F-N-V·Ms G̃, Ẽ : [τ, ν] = [0, j(2, 0)]→ FC(R) . Then, for each λ ∈
[0, 1], we have Gλ(o) = [λo, (2− λ)o] and Eλ(o) = [(1− λ)o+ 2λ, (1− λ)(8− eo) + 2λ],
as in Example 3, then G̃ and Ẽ are pre-invex and pre-incave functions with j(τ, ν) = τ − ν.
We have G∗(o, λ) = λo, G∗(o, λ) = (2− λ)o and E∗(o, λ) = (1− λ)o + 2λ, E∗(o, λ) =
(1− λ)(8− eo) + 2λ, then

2 G∗
(

τ+ν
2 , λ

)
× E∗

(
τ+ν

2 , λ
)
= 2λ(1 + λ),

2 G∗
(

τ+ν
2 , λ

)
× E∗

(
τ+ν

2 , λ
)
= 2

[
16− 20λ + 6λ2 +

(
2− 3λ + λ2)e],

1
ν− τ

∫ ν

τ
G∗(o, λ)× E∗(o, λ)do =

1
2

2∫
0

(
λ(1− λ)o2 + 2λ2o

)
do =

4
3

λ(3− λ),

1
ν− τ

∫ ν

τ
G∗(o, λ)× E∗(o, λ)do =

1
2

2∫
0

((1− λ)(2− λ)o(8− eo) + 2λ(2− λ)o)do ≈ (2− λ)

2

(
1903
250
− 903

250
λ

)
.

∆∗(τ, ν) = [G∗(τ)× E∗(τ) +G∗(ν)× E∗(ν)] = 4λ

∆∗(τ, ν) = [G∗(τ)× E∗(τ) +G∗(ν)× E∗(ν)] = 2(2− λ)
[
(1− λ)

(
8− e2

)
+ 2λ

]
,
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∇∗(τ, ν) = [G∗(τ)× E∗(ν) +G∗(ν)× E∗(τ)] = 4λ2,

∇∗(τ, ν) = [G∗(τ)× E∗(ν) +G∗(ν)× E∗(τ)] = 2(2− λ)(7− 5λ).

Therefore, we have

1
6 ∆λ((τ, ν), λ) + 1

3∇λ((τ, ν), λ)
= 1

3
[
2λ, (2− λ)

[
(1− λ)

(
8− e2)+ 2λ

]]
+ 2

3
[
2λ2, (2− λ)(7− 5λ)

]
= 1

3
[
2λ(1 + 2λ), (2− λ)

[
(1− λ)

(
8− e2)− 8λ + 14

]]
.

It follows that

2
[
λ(1 + λ),

[
16− 20λ + 6λ2 +

(
2− 3λ + λ2)e]] ⊇I

[
2
3 λ(2 + λ), (2−λ)

2

(
1903
250 −

903
250 λ

)]
+ 1

3
[
2λ(1 + 2λ), (2− λ)

[
(1− λ)

(
8− e2)− 8λ + 14

]]
,

and Theorem 10 has been demonstrated.

4. Conclusions

In this study, we have discussed the notion of fuzzy number valued up and down
pre-invex functions as an extension of convex functions. Hermite–Hadamard-type fuzzy
inclusions for up and down convex F-N-V·Ms have been constructed. In addition, some
new Hermite–Hadamard-type fuzzy inclusions are used to study the product of two up
and down convex F-N-V·Ms. Some exceptional cases are also obtained. Moreover, some
useful examples are presented to study the validity of our main results. To extend the
findings of this study, other fuzzy number valued up and down convex functions on the
coordinates can be applied. In the future, we can investigate Fejér–Hermite–Hadamard-
type inequalities for fuzzy number valued up and down pre-invex mappings by using
fuzzy number valued fractional and Riemann integrals on coordinates. The ideas and
conclusions offered in this article are intended to motivate readers to conduct more study.
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