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ABSTRACT

A new classical least squares/partial least squares (CLWPLS) hybrid algorithm

has been developed that demonstrates the best features of both the CLS and PLS

algorithms during the analysis of spectroscopic data. By adding our recently reported

prediction-augmented (PACLS) features to the hybrid algorithm, we have the added

ability to incorporate known or empirically derived spectral shape information into the

hybrid algorithm to correct the hybrid model for the presence of unmodeled sources of

spectral variation. The detailed steps of the new hybrid algorithm in calibration and

prediction are presented. The powerfid capabilities of the new PACLMPLS hybrid are

demonstrated for the near-infrared spectra of a system of dilute aqueous solutions

containing the analytes urea, creatinine, and NaC1. The PACLEVPLS method is used to

correct the detrimental effects of unmodeled solution temperature changes and

spectrometer drift in the multivariate spectral calibration model. PLS and PACLS/PLS

predictions of analytes from the variable-temperature data were made with models based

upon spectra previously taken of the samples at constant temperature. Prediction errors

were inflated by more than an order of magnitude due to the presence of unmodeled

temperature variations and system drift. PLS achieved improved predictions of the

variable-temperature spectra by adding spectra of a few variable-temperature samples
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into the original calibration data followed by recalibration. PACLWPLS predictions were

corrected for temperature variations and system drift by adding spectral differences of the

same subset of samples collected under constant- and variable-temperature conditions to

the PACLS prediction portion of the hybrid algorithm during either calibration or

prediction. Comparisons of the prediction ability of the hybrid algorithm relative to the

PLS method using the same calibration and subset information demonstrated hybrid

prediction improvements that were significant at least at the 0.01 @roper terminology?)

level for all three analytes. The new hybrid algorithm has widespread uses, some of

which are also discussed in the paper.

*Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed

Martin Company, for the United States Department of Energy under Contract DE-AC04-

94AL85000.
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INTRODUCTION

Multivariate spectral calibrations are now standard methods for performing

quantitative spectral analyses. Partial least squares (PLS) and principal component

regression (PCR) are the most common multivariate methods for quantitative spectral

analyses. 1’2’3’4’5’6Although classical least squares (CLS) and inverse least squares (ILS)

methods were used extensively before 1990,7’8’9they are now used less often. However,

Haaland and coworkers7710 have advocated the use of CLS multivariate calibration for

qualitative interpretation of spectral data. CLS also has advocates in the infrared analysis

of gas-phase samplesl 1>12’13and in the analysis of atomic emission spectra. 14>15716Martens

and Naes17y18have reported an extended Beer’s law model that greatly improves the

applicability of CLS, but this method has not received much attention in the literature.

Recently, Haaland and Melgaard have presented an enhanced version of CLS, named

prediction-augmented CLS (PACLS),19 that further improves the extended Beer’s law

model of Martens and Naes and demonstrates significant advantages relative to standard

CLS methods and is less restrictive than CLS. With the PACLS algorithm, known

spectral information about interfering spectral components can be efficiently included in

the PACLS algorithm to readily correct for their presence in the calibration or unknown

sample spectra. The restriction on the CLS algorithm that the concentrations of all

spectrally active components must be included during calibration is relaxed with PACLS

if spectral information of interfering spectral components is added during CLS prediction.

In the remainder of this document, we will refer to the added spectral information as

“spectral shapes” since the example here uses a single continuous spectral region in the

analyses. However, the analyses can also be performed using multiple spectral regions or
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even multiple isolated spectral intensities where the term “spectral shapes” has less

meaning.

We have also demonstrated that the PACLS algorithm has the ability to

accommodate the presence of unmodeled components in unknown samples if the spectral

shape of the unmodeled component can be determined and added during the CLS

prediction step. 19 Additional uses of the PACLS algorithm include correction of the

effects of spectrometer drifi and changes between spectrometers with the use of repeat

sample spectra and subset sample spectra, respectively. Thus, PACLS has the ability to

address maintenance and transfer of calibration. However, the PACLS algorithm is still

too restrictive in many real cases encountered in industry since it requires that all spectral

components be included as concentrations during calibration or added as spectral shapes

during prediction. Historically, PLS is has gained widespread use because it has the

flexibility to define a calibration model even when all the spectrally active components

are not known.

In an effort to take advantage of the qualitative interpretation of CLS and the

special capabilities of PACLS outlined above while retaining the flexibility of PLS, we

have developed a new hybrid algorithm that has the advantages of CLS, PACLS, and

PLS. The hybrid method is named CLS/PLS hybrid or PACLWPLS hybrid depending on

whether CLS or PACLS is used during the initial steps of the hybrid algorithm. We

hypothesize that the new PACLMPLS algorithm will have advantages over existing

methods in cases involving maintenance and/or transfer of calibration or when

unmodeled species are present in the unknown samples to be predicted. In this paper, we

apply the new hybrid algorithm to the quantitative analysis of a system of dilute aqueous

4



f ,

solutions. The power of the method is demonstrated for the case where a constant-

temperature model is applied to variable-temperature data. We demonstrate that the new

hybrid method can handle the presence of the unmodeled temperature variation and

spectrometer drift with the use of a set of subset sample spectra obtained under both

constant- and variable-temperature conditions. Alternatively, we can independently

determine the spectral effects of temperature changes and system drift on the sample

spectra and then add the appropriate spectral shapes to the PACLWPLS hybrid algorithm.

The new algorithm yields better prediction ability than CLS, PACLS, or PLS applied to

the same data. It also outperforms the procedure of simply adding the data from the

variable-temperature subset samples back into the constant-temperature data followed by

recalibration using the standard PLS algorithm. Our hybrid method yields improved

prediction precision relative to the newly described synthetic PLS method by more

effectively accommodating for the presence of unmodeled spectral interferences.20 The

new hybrid algorithm is efficient and can eliminate the need for collecting a new

calibration set when the unknown samples exhibit unmodeled sources of spectral

variation.

EXPERIMENTAL METHODS

The samples used in this study area seriesof31 dilute aqueous solutions of urea,

creatinine, and NaC1. These samples and the experimental details have been presented

previously .19’2021The samples were prepared by weight and volume in a pseudo D-

optimal design22 that allowed each of the three analytes to be varied separately at 16

levels from Oto approximately 3000 mg/dL. The sample solutions were sealed along
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with a magnetic stirring bar in 10-mm pathlength cuvettes. All sample spectra plus single

repeat spectra of 3 samples were collected on one day at a constant temperature of 23”C.

Several days later, the spectra of each sample were collected under variable temperature

conditions from 20 to 25°C in 1“C intervals. The temperatures were held constant to

0.05°C (Ll a) with a HP temperature controller that included a magnetic stirrer. Spectra

of pure water were also obtained in random order at 0.5°C intervals from 20 to 25°C in

an experiment run on a separate day.

The near-infi-ared spectra were obtained on a Nicolet Model 800 Fourier

transform infrared (FT-IR) spectrometer. The spectrometer employed a 75 W tungsten-

halogen lamp, quartz beam splitter, and liquid-N2-cooled InSb detector. Spectra at 16

cm-l resolution were obtained with 256 scans signal averaged. Although background

spectra of the empty cuvette were collected after each sample, best prediction results

were obtained by using an average background obtained from all the background single-

beam spectra collected during the day. Analyses were always performed after converting

the ratioed spectra to absorbance. Spectra were analyzed over the spectral region from

7500 to 11,000 cm-l.

The data were analyzed using PLS and PACLWPLS hybrid algorithms

incorporated into software developed at Sandia National Laboratories. The software was

programmed using the Array Basic programming language from the GRAMS 32

software obtained from Galactic Industries Corporation. Cross-validated calibrations

were performed removing all the data from a given sample during each rotation. Since

the calibration data contained repeat spectra from three samples, 31 sample rotations

were performed in these analyses. Previously reported calibrations 19-21did not include
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the 3 spectra from the constant-temperature repeat samples. Two sets of five subset

samples were selected from the variable-temperature data for augmenting the constant-

temperature PLS and hybrid calibration data. The first set of 5 samples had temperature

variations and maximally spanned the concentration variation of calibration samples.

The second set included 5 of the 6 samples that were obtained at 23°C during the

variable-temperature data collection, i.e., samples that were collected at the same

temperature as the constant-temperature sample set. These subset sample data were used

to separately augment the constant-temperature PLS and PACLS/PLS models.

THEORY

The first two steps of the PLS algorithm have been explained by Haaland and

Thomas2 as CLS calibration and CLS prediction for one component. The new hybrid

algorithm adds a completely separate CLS calibration and prediction front end to the Ml

PLS model. Thus, the new hybrid method might be considered an extension of the first

two single-component CLS steps by allowing the initial CLS calibration step of PLS to

use all concentrations of species that are known in the calibration samples. This fust

improvement has the advantage of generating pure-component spectral estimates that are

closer to the true pure-component spectra than are obtained from the first PLS weight-

loading vector since the influence of any known interferences are minimized with the

more complete CLS calibration step of the hybrid algorithm. The addition of more

component information in the first CLS step should also generate a more parsimonious

model than PLS since the first weight-loading vector of the hybrid is rotated in a

direction that is closer to the pure-component spectrum of the analyte. A similar analogy

7



t r

to the parsimony improvement of PLS over PCR has been made previouslfi3717 based on

the argument that the first weight-loading vector of PLS is more similar to the pure-

component spectrum of the analyte relative to the first eigenvector of the PCR model.

Also, the additional powerfid capability of prediction-augmentation used in

PACLS can be added to the CLS prediction step of the new hybrid algorithm. That is,

any analytes or spectral effects whose concentrations or reference values, respectively,

are not known in the calibration can have their pure-component spectral shapes added

during the CLS prediction step of the hybrid modeling. Here the “spectral shapes” added

in the CLS prediction step do not have to be representative of molecular components.

They can in fact represent the spectral effects of spectrometer drift, the spectral changes

caused by changing spectrometers, or the effect of other influences on the spectra such as

sample temperature, purge gas variations, or optical effects due to sample insertion

variations. Thus, the appropriate augmentation in the second CLS prediction step of the

hybrid algorithm can provide for maintenance of calibration, transfer of calibration, or

accommodating the influence of spectral variations or spectral components not included

in the calibration spectra. The concentration and spectral residuals from the CLS

calibration and CLS or PACLS prediction are then passed to the PLS portion of the

hybrid algorithm as the starting concentrations and spectra. With the PLS portion of the

hybrid algorithm, we build a model based on CLS residuals that can correct the CLS

concentration estimates for any sources of spectral variation left out of the CLS portion of

the model.

In the description of the hybrid calibration and prediction algorithms, matrices are

represented by bold upper-case letters, vectors as lower-case bold letters, and scalars are
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in italics. Vectors are represented as column vectors and row vectors are described as

transposed column vectors. The superscript T indicates transposed matrices and vectors,

the superscript –1 is used to indicate the inverse, and the superscript+ represents the

pseudoinverse matrix.23 The pseudoinverse can be solved by a variety of mathematical

procedures such as QR decomposition or singular value decomposition.23 In this paper,

the generic hybrid algorithm will be called CLS/PLS when there is no prediction

augmentation step. We further distinguish the hybrid by adding a 2 to the acronym to

indicate when the concentrations of 2 or more components are included in the CLS

calibration portion of the algorithm (similar to the PLS2 notation for PLS when 2 or more

analytes are simultaneously included in the analysis). CLS l/PLS will be used to indicate

the hybrid algorithm where there is no prediction augmentation and the analysis is

preformed using concentrations from a single component. PACLS2/PLS and

PACLS l/PLS are the comparable hybrid algorithms where the prediction step of the CLS

portion of the hybrid is augmented with spectral shape information. Note that the

prediction augmentation can occur during either the hybrid calibration or the hybrid

prediction or during both calibration and prediction phases of the algorithm.

PACLWPLS refers generically to either PACLS l~LS or PACLS2/PLS. The term

“hybrid algorithm” will encompass the full family of hybrid models listed above.

Hybrid Calibration Algorithm

Step 1. Pretreatment of data.

Center A and C (optional) where A is an n x p matrix of the n sample spectra withp

spectral intensities. C is an n x m matrix of the reference concentrations for the n
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samples and m components. If all spectrally active chemical components are included in

C and each row of C adds to 1, a singularity in the least-squares solution will be

generated. To avoid such a singularity in step 2, either leave out one component in C or

do not mean center the data.

Scale A (optional).

Set index h to 1.

Step 2. Estimate the CLS pure-component spectra(K) where K is an m x p matrix and

EA is an n x p matrix of spectral errors.

Model: A= CK+EA

Least-squares solution: K = (CTC)-’CTA = C+A

Step 3. Estimate the CLS concentrations using PACLS prediction.

Add spectral baseline components and additional known spectral features as rows to K .

Increase the size of the C and ~ matrixes to accommodate the estimated concentrations

.

for the original plus the augmented components. Label these augmented matrixes K, ~,

A

and ~, respectively.

A

Model: A“~K+EA

Least-squares solution: ~ = AKT(&T)-l = A(KT)+

Step 4. Calculate CLS residuals.

Spectral residuals: EA =A-~K

Concentration residuals: Ec =&C

(1)

(2)

(3)

(4)

(5)

(6)
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where ~ is derived from ~ by removing the columns of the @ matrix corresponding to

the added spectral shapes.

Step 5. Isolate the results for a single analyte from Ec to form the concentration

residuals eCfor that analyte.

The following PLS-like steps are to be performed one selected analyte at a time.

Seth=l

Step 6. Estimate weight-loading vector (*fi ) for selected analyte.

Model: EA = ecwT + EL where EL is used to differentiate the PLS spectral residuals

from the CLS residuals EA.

Least-squares solution:
A EATeC

Wh = (7)
e~eC

Normalize Wh

Step 7. Form score vector (;~ ) for selected analyte.

Model: EA = t~ti: +E~ (8)

Least-squares solution: (9)

Step 8. Relate score vector ( ~~) to the concentration residual.

Model: eC= vht~ +e~ (lo)

where e: represents the new concentration residual for the PLS portion of the hybrid

algorithm.

Least-squares solution:

11

(11)
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Step 9. Formation of fi~, the PLS loading vector for the CLS spectral residuals, EA.

Model: EA ={kb: +E~ (12)

*

Least-squares solution: fih _ Ei:h

i;th

(13)

Step 10. Calculation of the PLS spectral and concentration residuals

Spectral residuals: E~ = E~ –ihb; (14)

Concentration residuals: e: = eC–v~i~ (15)

Step 11. Increment h, substitute e: fore, and EL for EA and repeat Steps 6 through 10

for the desired number of loading vectors.

Step 12. Repeat from Steps 5 to 11 for other analytes in the calibration samples.

Hybrid Prediction Algorithm

Step 1. Center the unknown sample spectrum, a, if A was centered in the calibration.

Also scale a if A was scaled.

.

Step 2. If desired, augment the rows of K fhrther if new spectral shapes are to be added

during prediction (e.g., to accommodate system drift with repeat sample spectral

differences). Further augment the size of F to accommodate the predicted values that

A

correspond to the spectral shapes added to ~.

Step 3. Estimate the initial CLS-estimated concentrations for the analyte in the unknown

sample.

A

Model: a= fiT~+e
a

(16)

A. .

Least-squares solution: ~ = (~T)-lfia
(17)

Step 4. Calculate CLS spectral residuals using the model in Step 3.
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=a– K c (18)

Step 5. Isolate analyte concentration 2 from $, add the average analyte concentration F

from the calibration if the data were mean centered, and label the result &, i.e.,

to =t+c (19)

Seth=l.

Step 6. Calculate the PLS score from CLS spectral residual

Solution: th= +~ea (20)

Step 7.
A

2* =2*.1+ Vhth (21)

Step 8. eh = eh-1 -bhth (22)

Step 9. Increment h, substitute e~ for e. and repeat Steps 6 through 9 until h = r, where r

is the number of PLS factors in the hybrid model.

Note: ti~, f~, and b~ are from the PLS portion of the hybrid calibration algorithm, and

eo=ea.

The above hybrid calibration and prediction algorithms represent the full

calibration and prediction algorithms. However, a cross validation procedure that rotates

out one or more sample spectra at a time is used for factor selection and improved outlier

detection. The optimal number of PLS factors to use in the hybrid algorithm is

determined using cross validation in the same manner as we proposed earlier for the PLS

model factor selection.2 It is important to note that the cross-validation procedure must

be performed properly to obtain optimal factor selection. A full CLS calibration should

not be executed first followed by cross-validated PLS applied to the residual

concentrations and residual spectra from the fill CLS model. In this latter case, PLS will
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oveflt the CLS residuals, and the predicted error sum of squared errors (PRESS) will

continuously decrease with increased numbers of PLS factors. The entire hybrid

algorithm must be part of the cross-validation procedure in order for factor selection to be

optimized. The same outlier detection metrics such as spectral F ratio, concentration F

ratio, Mahalanobis distance, and cross-validated spectral residuals described

previousl#24 can also be developed during the generation of the cross-validated hybrid

model.

We can see from the hybrid calibration and prediction algorithms that there is an

opportunity to add spectral shapes in either the calibration (during the CLS prediction

step of the hybrid calibration) or the prediction portions of the algorithm or in both parts

of the algorithm. In the case of the PACLS algorithm, the same sample prediction results

are obtained independent of whether the spectral shapes are added during cross-validated

calibration or during prediction. The hybrid algorithm, on the other hand, has a CLS

prediction step in the calibration as well as during the prediction of unknown samples.

Whether we add the spectral shapes during calibration or prediction affects the hybrid

prediction results of the unknown samples. We find that best prediction ability is

sometimes achieved by adding the spectral shapes during calibration. In addition, outlier

detection is more effective when all the spectral shape information is included during

calibration. However, updating the hybrid model during prediction is much faster

computationally than updating the cross-validated calibration model.

As described in Ref. 19, the spectral shapes added in the PACLS part of the

hybrid algorithm can represent pure spectral variations due to chemical components or

any other sources of spectral variation (e.g. temperature changes, spectrometer drift,
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purge gas variations, changes in spectrometers, etc.), or they can represent different linear

combinations of the underlying sources of spectral variation. If linear combinations of

pure spectral effects are used in the PACLS portion of the algorithm, we must add as

many independent linear combinations as there are pure spectral effects present in the

data in order to correct the model for all sources of spectral variation in the data.

However, if quantitation of the pure spectral interference is not required, then the

magnitude of its spectral shape is not important when adding spectral shapes to the

PACLS portion of the hybrid algorithm.

RESULTS AND DISCUSSION

The individual constant- and variable-temperature spectral data sets, separately

mean-centered, are shown in Fig. 1 along with the mean spectrum of all spectra. Much of

the variance in the spectral data is a result of spectrometer drift. The drift present in the

variable-temperature spectra is somewhat greater than in the constant temperature data

either due to the longer data collection time for the variable-temperature experiments or

due to greater system drift on the day of the collection of the variable-temperature data.

The effects of temperature variation in the variable-temperature set are also evident as

greater variance in the spectra on the high-energy side of the water absorption features.

Cross-validated prediction results for PLS, CLS/PLS with all known components

and time of data collection added in the CLS portion of the calibration (CLS2/PLS), and

CLWPLS with only a single analyte added during the calibration (CLS1/PLS) are

presented in Table I. Factor selection is based upon the method suggested by Haaland

and Thomas.2 As can be seen in Table I, all three methods yield comparable cross-
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validated calibration prediction precision. Thus, the new hybrid models do not exhibit

significant cross-validated calibration improvements with this data set. Their advantage

will be shown to be evident during true prediction. Figure 2 presents the plot of cross-

validated calibration predictions versus reference values for creatinine using a CLS211?LS

model applied to the constant-temperature data.

If any of the above constant-temperature models are applied to the variable-

temperature sample spectra, large prediction errors are encountered as demonstrated in

Table II for all three models and presented for creatinine in Fig. 3 using the CLS2/PLS

model. For comparison with later results using models that incorporate subset spectral

information, the results in Table 11and Fig. 3 do not include predictions of the 5 sample

spectra that are used in later calibrations that employ the subset samples to adjust the

models for temperature variations and system drift. Thus, the spectral effects of

temperature variations and long-term system drift on the spectra are extremely

detrimental to the predictions. The higher SEP’S indicate that the hybrid model

predictions may be even more sensitive to spectra outside the original calibration model

than the PLS model predictions.

We have previously suggested methods of generating synthetic PLS calibration

models20 by adding variable amounts of the spectral shape of a temperature change in the

solutions to the original constant-temperature spectra to allow temperature variations to

be incorporated into the model. Another method to incorporate temperature variations

into the constant-temperature model is to collect a subset of sample spectra that includes

temperature variations and add these subset spectra to the original constant-temperature

data. PLS models generated for the subset-augmented

16
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about the interfering temperature variations and system drift. This augmented PLS

method reduces the time and effort involved relative to regenerating the PLS calibration

model using an entire new set of sample spectra collected under variable-temperature

conditions.

We can compare predictions of variable-temperature spectra using the above

recalibration method with the predictions obtained from PACLS2/PLS and PACLS1/PLS

models where spectral shapes derived from the same subset samples are added during

calibration. The spectral shapes added to the hybrid models are the pair-wise difference

spectra from the five selected samples run both with the original constant-temperature

data and the variable-temperature prediction samples. These difference spectra should

not contain any analyte information since the composition of the samples is constant in

the sealed cells. The difference spectra, therefore, contain linear combinations of the

spectral variations due to within and between-day spectrometer drift and the temperature

changes in the samples.

Comparisons are given in Table III for the prediction ability of the augmented

PLS model and two hybrid models using the same calibration and subset spectral

information in the models for all three sets of predictions. Figure 4 presents predicted vs.

prediction error plots for urea using the augmented PLS and PACLS2/PLS models.

Augmented PLS is given the spectral and concentration information from the five

variable-temperature subset samples and the hybrid models are given just the five pair-

wise spectral differences of the subset samples under constant- and variable-temperature

conditions. Clearly the prediction abilities of the augmented hybrid models are better

than that of the augmented PLS model. Since prediction errors are highly correlated
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between the various methods, we use the nonparametric Wilcoxin signed-rank statistic25

[missing reference] rather than the F-test statistic to compare prediction abilities of the

various calibration methods. The improvements in the prediction errors of both hybrid

models over those of the conventional PLS models are found to be significant at least at

the 0.01 level in all cases. Note that the number of PLS factors used in all models

changes when additional subset information is added to either PLS or the hybrid

algorithms. PLS requires more factors since there are new sources of spectral variation

that are present in the subset data. The hybrid algorithms require fewer PLS factors since

the spectral shapes of the difference spectra are equivalent to additional CLS factors.

Although the improvements of the hybrid model predictions are significant

relative to the PLS model predictions, they are still not as good as the CVSEPS of the

original constant-temperature calibrations. Examination of the concentration residuals

shows that the concentration residuals are correlated with temperature for both creatinine

(R2 = 0.25 for the PACLS2/PLS model) and NaCl (R2 = 0.49). The correlation of errors

with temperature inflates the prediction errors. Interestingly, the correlations of

prediction errors with temperature are eliminated if we predict using models one factor

less than the optimal selected during cross-validated calibration (creatinine SEP = 16

mg/dL with a 3 factor PACLS/PLS model and NaCl SEP =20 mg/dL with a 4 factor

model). Unfortunately, without prior knowledge of the concentrations in the unknowns,

we would have no ability to know to reduce the number of PLS factors during prediction.

Presumably, the final factor selected in the creatinine and NaCl models has resulted in an

overfitting of the data by bringing in a PLS factor that is inappropriately sensitive to

temperature. However, this overfitting cannot be identified from the constant-
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temperature calibration data that have essentially no temperature variations in the

calibration spectra.

It would be desirable to be able to update the models without requiring the

performance of a full cross-validation on the augmented data. Prediction is significantly

faster than the recalibration involving cross-validation for factor selection. The two sets

of hybrid models allow the updating to be performed during the prediction phase of the

analysis after the model has been built (see Step 2 of the hybrid prediction algorithm).

The prediction results for the variable-temperature spectra using the two types of hybrids

augmented in prediction are presented in Table IV. The SEP’S for the CLS2/PLS hybrid

augmented during prediction are indistinguishable from those of the same model

augmented during cross-validated calibration. However, the SEP’S from the CLS l/PLS

hybrid augmented in prediction are significantly degraded from those of the same model

augmented during cross-validated calibration. The degradation is a result of the PLS

concentration errors in prediction not being consistent with the PLS portion of the hybrid

model when one or more of the major sources of spectral variation is left out of the CLS

part of the hybrid model. Thus, rapid updating in prediction is possible when the CLS

portion of the hybrid model during calibration is relatively complete. When the CLS

portion of the model is deficient, then in order to achieve high precision, recalibration is

required.

During the augmented hybrid analysis presented above, it was not possible to

predict the temperature of the variable-temperature solutions since a specific model for

temperature was not available. In order for the hybrid algorithm to predict the

unmodeled temperature, the spectral shape and magnitude of a pure temperature change
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in the solution must be used in the augmentation portion of the PACLS/PLS algorithm.

The pure shape of temperature was not present in the pair-wise subset spectral

differences. However, the pure spectral shape of a temperature change in the samples can

be obtained from a CLS analysis of variable-temperature spectra obtained from one of the

solutions or the water solvent. A CLS analysis of the 11 variable-temperature water

spectra (20 -25° C in randomized 0.50 C increments) was performed to obtain the pure-

component spectrum of the effect of a temperature change in water (see Ref. 20). Time

of data collection was included along with temperature in the CLS analysis to remove

linear drift effects from the temperature pure-component spectrum. In order to also

model the short and long-term instrument drift, a subset of 5 spectra collected at 23° C

during both constant- and variable-temperature and days were used to form pair-wise

difference spectra without contamination with temperature variations. The CLS-

estimated spectral shape of a temperature change and the constant-temperature subset

difference spectra were added to the hybrid models in order to predict temperature

changes in the variable temperature data. The resulting temperature predictions for the

26 variable-temperature samples (excluding the 5 subset sample spectra) are presented in

Fig. 5, and the resulting SEP for temperature prediction was found to be 0.18° C. This

result compares with the PLS cross-validated calibration for temperature prediction of

O.110 C when calibrating on the same 26 samples in the variable-temperature data set.

The degradation in the temperature prediction for the hybrid versus the PLS temperature

models is likely due to the very slight temperature differences that appears in the

nominally constant-temperature subset spectral differences. Any presence of the shape of
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a temperature change in the added subset difference spectra will reduce the net-analyte

signal for temperature and, therefore, will degrade prediction precision.

CONCLUSIONS

We have introduced a new PACLNPLS hybrid algorithm that has all the

qualitative advantages of CLS, the flexibility of PLS, and the varied capabilities of the

new PALCS algorithm. The hybrid also has been demonstrated to be capable of

outperforming the predictive ability of PLS when predicting spectra that have new

sources of unmodeled spectral variation. The improvement in prediction ability with the

hybrid algorithm is highly statistically significant and is present even when the various

models are based upon data from the same set of spectra. We have shown that the effects

of instrument drift and solution temperature variations not in the original calibration

model can be incorporated into each calibration algorithm with the use of subset samples

collected during both calibration and prediction. With PLS, the subset sample spectra

containing temperature and drift information during prediction are simply added back to

the original calibration data and recalibration is performed to implicitly accommodate the

originally unmodeled sources of spectral variation. The PACLWPLS algorithm uses this

same information in a different form. Spectral differences of pairs of the original subset

sample spectra collected during calibration and prediction days are added directly to the

PACLS prediction step during the hybrid prediction or during recalibration. In this

manner, the PACLS portion of the hybrid algorithm is forced to explicitly ignore the

sources of spectral variation present in the spectral differences. Apparently, explicitly
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forcing the hybrid algorithm to ignore spectral shape information is more effective than

having PLS implicitly include the spectral information during calibration.

We have found that if all the analytes are not included in the CLS calibration

phase of the PACLS/PLS hybrid calibration, then better prediction ability is achieved by

recalibration rather than simply updating the hybrid model during prediction. Addition of

the spectral shapes during calibration of the hybrid algorithm will also improve outlier

detection and will yield more realistic estimates of I%ture prediction ability.

Since the magnitude of the added spectral shapes is not important in prediction of

the original analytes and since linear combinations of the sources of spectral variation are

useful for correcting the hybrid models, the required spectral shapes to add to the hybrid

are generally readily obtained. However, if quantitation of an unmodeled source of

spectral variation is desired, then the pure shape of the spectral interference and its

quantitative magnitude must be used to augment the hybrid algorithm. We demonstrated

the ability to predict unmodeled temperature of solution using the quantitative spectral

shape of a temperature change of the water solvent, which was easily obtained during a

separate experiment.

In order for improved predictions to be achieved, it is important that the added

spectral shapes do not contain variations due to any of the analytes of interest. If analyte

spectral variation is included in the augmented spectral shapes, then the net-analyte signal

of the analyte will be reduced and prediction ability will be degraded. Therefore, care

must be exercised in generating the augmented spectral shapes.

The capabilities of the hybrid algorithm extend beyond accommodating the

presence of an unmodeled component during prediction. We can also use the hybrid
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algorithm to correct for short and long-term system drift. This has been accomplished

with the use of a set of subset samples in this paper, but might be more efficiently

preformed with the use of a stable repeat sample measured during the calibration and

prediction phases of the analysis. Mean-centered repeat spectra can then augment the

calibration or prediction. Since linear combinations of the sources of spectral variation

are also effective in correcting the models and since magnitudes of the vectors are not

important, an eigenvector analysis of the repeat spectra may be used in the augmentation

procedure. In this manner, only the most important eigenvectors required for prediction

could be added to the hybrid to minimize the detrimental effect of added spectral shapes

on the net-analyte signal. Another important use of the hybrid algorithm would be to

transfer multivariate models between various spectrometers using subset samples

measured on the primary and any secondary spectrometers. Paired spectral differences

obtained from these subset spectra could then be used to augment the hybrid algorithm to

correct the primary calibration model for the spectral differences of the secondary

spectrometer. Future papers from our group will demonstrate these capabilities of the

hybrid algorithm and will describe new methods that allow accurate updating of the

multivariate models during prediction without the need to recalibrate even when only

calibration information is available about a single analyte in multicomponent systems.
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Table I. Cross-validated calibration results for constant-temperature aqueous solutions.

PLS cLs2/PLs CLS1/PLS

Component

CVSEP
~2

Factors CVSEP
~2

Factors CVSEP R2 Factors

Urea (mg/dL) 16 0.9997 11 15 0.9998 5 15 0.9998 9

Creatinine (mg/dL) 15 0.9997 12 14 0.9997 6 14 0.9998 10

NaCl (mg/dL) 15 0.9997 13 18 0.9996 6 18 0.9996 10
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Table II. True prediction results of variable-temperature data using various constant-temperature models.

PLS cLs2/PLs CLS1/PLS

Component

SEP
~2

Factors SEP
~2

Factors SEP
~2

Factors

Jrea (mg/dL) 250 0.9264 11 322 0.8776 5 331 0.8705 9

;reatinine (mg/dL) 238 0.9129 12 289 0.8724 6 265 0.8926 10

JaCl (mg/dL) 225 0.9333 13 266 0.9066 6 288 0.8910 10
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Table III. True prediction results of variable-temperature data using constant-temperature models with subset spectral information

added during calibration.

PLS PAcLs2/PLs PACLS1/PLS

Component

SEP
~2

Factors SEP
~2

Factors SEP
~2

Factors

Jrea (mg/dL) 43 0.9978 11 17 0.9997 4 17 0.9997 8

;reatinine (mg/dL) 36 0.9980 15 19 0.9995 4 23 0.9992 8

JaCl (mg/dL) 39 0.9980 15 27 0.9990 5 27 0.9990 9

,
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Table IV. True prediction results of variable-temperature data using constant-temperature models with subset spectral information

added during prediction.

PAcLs2/PLs PACLSI /PLS*

Component

SEP
~2

Factors SEP
~2

Factors

Jrea (mg/dL) 22 0.9994 4 100 0.9883 9

heatinine (mgldL) 18 0.9995 4 44.9 0.9969 10

JaCl (mg/dL) 26 0.9991 5 479 0.915 10

Mean-centered model
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FIGURE CAPTIONS

Figure 1. A) Mean spectrum of the constant-temperature data, B) mean-centered

constant-temperature spectra, and C) mean-centered variable-temperature spectra.

Figure 2. Cross-validated calibration results for creatinine using the new CLS2/PLS

calibration model that includes the three analytes, water, and time of data collection in the

CLS portion of the hybrid algorithm. The solid line represents the line of identity.

Figure 3. Creatinine predictions of using the constant-temperature CLS2/PLS model

applied to the variable-temperature data. The solid line represents the line of identity.

Figure 4. Urea prediction errors for the variable-temperature data using the constant-

temperature PLS model augmented with the 5 subset variable temperature data (open

triangles) and the PACLS2/PLS model augmented during calibration with the 5 paired

subset sample difference spectra from the same 5 subset samples (X’s).

Figure 5. Temperature predictions of the variable-temperature data using the constant-

temperature CLS2/PLS model augmented during calibration with the 5 paired 23° C

subset sample difference spectra and the pure spectrum of a temperature change in water

obtained from variable temperature pure water spectra. The solid line represents the line

of identity.
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