
New climate and socio-economic scenarios for assessing

global human health challenges due to heat risk

Weihua Dong & Zhao Liu & Hua Liao & Qiuhong Tang &

Xian’en Li

Received: 31 July 2014 /Accepted: 22 February 2015 /Published online: 11 March 2015
# The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract Motivated by growing heat-related morbidity and mortality in a warming climate,

this paper assesses global heat health risk in order to understand the challenges to sustainability

in the 21st century, using four Representative Concentration Pathways (RCPs) of the

HadGEM2-ES climate model and five Shared Socio-Economic Pathways (SSPs). Factors

influencing global heat health risk were reviewed and risks were estimated based on heat

hazard and socio-economic vulnerability. Hazard, vulnerability, risk and in particular, popula-

tions at different risk levels, were analyzed quantitatively at both global and regional scales.

The results show that under an RCP8.5-SSP3 scenario, the world will be subject to the highest

heat health risk, with rapidly increasing hazard levels and vulnerability over the century. Less

developed or developing regions, such as Africa and Southeast Asia, are at the highest risk.

The heat risk under an RCP2.6-SSP1 scenario will first increase and then fall, resulting in the

lowest heat-health-risk pattern. We found that heat health risk will increase during the century

under all RCP-SSP scenarios, with a higher frequency, higher intensity, longer duration and
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expanding spatial reach. Significant differences were observed across regions. The results

make clear that the increasing risk poses significant challenges to sustainable human health. To

meet these challenges, more attention and effective actions are urgently needed from both

policy makers and individuals.

1 Introduction

Global climate change creates new risks to human health. There is mounting evidence showing

that humans have been suffering from a warming planet over a period of years and that this

trend will continue. In its Fifth Assessment Report (AR5), the Intergovernmental Panel on

Climate Change (IPCC) concluded that the global mean-surface temperature increased 0.85 °C

from 1880 to 2012 and that the temperature is likely to increase by 1.5 °C compared to the

period from 1850 to 1900 by the end of the 21st century (IPCC 2013). Extreme weather

events, such as heat waves, are also expected to occur more frequently and with longer

duration over most land areas in the late 21st century (Meehl and Tebaldi 2004). Numerous

extremely high temperature events with associated mortality worldwide have been reported,

such as severe heat waves in Chicago in 1995 (Semenza et al. 1996) and in Europe in 2003

(Robine et al. 2008). Other cases exist in Australia (Vaneckova et al. 2008), Russia (WMO

2013), and China (Tan et al. 2007) as well as in many other areas.

Extremely high temperatures can induce various adverse effects or heat-related diseases

(e.g., cardiovascular, cerebrovascular and respiratory disorders) and increase related morbidity

and mortality (Barrow and Clark 1998; Bouchama and Knochel 2002; Braga et al. 2002;

Fouillet et al. 2006; Hansen et al. 2008; Tian et al. 2013). As indicated by the IPCC report, Bthe

economic and social costs of those events will increase, and these increases will be substantial

in the areas most directly affected (IPCC 2007).^ It is thus urgent that policy makers are able to

predict the high-risk areas and take adaptive measures in response to this trend. This paper

presents a preliminary assessment of global heat health risk effects from climate change to

identify heat wave challenges to sustainable human health.

1.1 RCPs and SSPs: new scenarios for future climate and socioeconomic development

Scenarios have been proposed as effective tools to investigate alternative futures based on

existing studies and various assumptions (van Vuuren et al. 2012). For example, the IPCC’s

SERS scenarios (IPCC 2000) are widely used projections that characterize future climate

change and socio-economic development. In SERS, socio-economic development determines

future greenhouse gas (GHG) and aerosol emissions, matching each climate scenario with its

corresponding socio-economic storyline. Since AR5, a new Bparallel^ methodology was

adopted to produce new scenarios, and thereby new climate scenarios, the so-called

Representative Concentration Pathways (RCPs), which are no longer linked to any socio-

economic scenarios. RCPs consist of four pathways modeled as a basis for future climate

research and assessment according to atmospheric radiative forcing, covering a period up to

the year 2100 (van Vuuren et al. 2011). The four RCPs include RCP2.6 (very low GHG

emission), RCP4.5 (intermediate stabilization), RCP6.0 (high stabilization) and RCP8.5 (very

high emission), with each representing a pathway based on simulated influences of land use

and emissions of air ingredients and greenhouse gases. RCP2.6 describes a very low GHG-

emission scenario, with radiative forcing at 2.6 W/m2 by 2100, and so on (Moss et al. 2010).

Shared Socioeconomic Pathways (SSPs) provide reference scenarios describing the devel-

opment of society and the natural environment, with the assumption that no climate change or
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climate impacts occur and that no climate policies are adopted at a global scale over the course

of the 21st century (O’Neill et al. 2014). Five SSP scenarios were defined that employ the

mitigation and adaptation to socio-economic challenges: SSP1~3 refers to low, intermediate

and high challenges, respectively; SSP4 and SSP5 denote dominating adaptation challenges

and dominating mitigation challenges, respectively (Kriegler et al. 2012; O’Neill et al. 2014).

Five SSPs and four RCPs can produce 5×4 scenario combinations that provide plausible bases

for heat-risk assessment, although some combinations (e.g., SSP1-RCP8.5) are unlikely to

occur in the future (van Vuuren et al. 2014).

1.2 Vulnerability of different populations

Vulnerability refers to the extent that a given population may suffer harm from exposure to a

hazard related to various socio-economic and demographic characteristics. However, some

vulnerability indices are complicated and difficult tomeasure quantitatively. General vulnerability

analysis of sustainability assessments includes exposure, sensitivity, resilience, and adaptive

capacity (Turner et al. 2003; van Vuuren et al. 2012). Several vulnerability indices of environ-

mental hazards have been proposed, such as the SoVI (Cutter et al. 2003), EHVI (Johnson et al.

2012), and PVI (Adger 2006). A number of social vulnerability factors have been identified in

local- or city-level heat health risk assessments, such as age, poverty, social isolation, education,

ethnicity, and access to transportation (Schwartz 2005; Semenza et al. 1996; Vescovi et al. 2005).

In this paper, we have identified four indicators of the presence of a vulnerable population:

(1) High population density is closely correlated to higher risk (Dolney and Sheridan 2006;

Hajat and Kosatky 2010; Harlan et al. 2006; Medina-Ramon and Schwartz 2007). This

correlation may be explained by the phenomenon that high population density is located

in urban areas that have higher temperatures because inner-city areas are affected by the

urban heat island (UHI) effect (Tomlinson et al. 2011). High population density regions

have more human activity such as vehicle and air-conditioning use that contributes to the

local heat island (Luber and McGeehin 2008; Smith et al. 2009).

(2) Elderly people have lower adaptation ability and higher mortality rates (Poumadère et al.

2005; Vescovi et al. 2005; CDC 2002; Pan et al. 1995). Older people have decreasing

regulatory abilities for intrinsic homeostasis, making them insensitive to temperature

changes and unaware of becoming ill (Koppe et al. 2004). Elderly-related diseases (e.g.,

coronary heart disease and cerebral infarction) increase their mortality, and their lower

mobility prevents them from taking countermeasures to reduce their exposure.

Furthermore, a higher incidence of isolation contributes to the absence of daily care

and efficient help in emergency situations.

(3) Economic or income levels indicate the mitigation ability of individuals and governments

to the hazard. For individuals, income level affects building and housing features, for

example, air-conditioning use, which is considered a protective measure for urban

populations from heat exposure (Lundgren and Kjellstrom 2013). A study of the

Missouri heat wave in 1980 shows that the possibility of heatstroke in low-income

groups was six times that of high-income groups (Jones et al. 1982). Low income is

associated with fewer opportunities to assess useful information and resources and less

awareness of self-protection during heat waves (Blaikie et al. 2004). At the level of both

country and city, economic health, or gross domestic product (GDP), is likely linked with

infrastructure construction and risk-management level that are critical to quick responses

and recovery when a hazard occurs. Hajat and Kosatky (2010) found that the lower GDP

of cities contributed to higher heat health risks.
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(4) Education level is an indicator of vulnerability (Cutter et al. 2003; Johnson et al. 2009;

Vescovi et al. 2005), because educational attainment can significantly affect individuals’

resilience, as it is related to a higher awareness and better knowledge of hazard preven-

tion. It is also assumed that people with higher education levels can find better employ-

ment and access to assistance programs (Morrow 1999). Higher educational attain-

ment allows for an improved quality of life (O’Neill et al. 2003). Higher

mortality rates have also been observed among less-educated people.(Steenland

et al. 2002). Furthermore, the proportion of a population with higher education is

a sign of technological strength, which is an important indicator of the ability to

mitigate and adapt to climate change.

2 Methods

2.1 Assessment of heat health risk

This study measures heat health risk simply as the product of hazard and vulnerability (Eq. (1),

UNDRO 1991; Tomlinson et al. 2011; Vescovi et al. 2005) using the geographic information

system (GIS).

Risk ¼ Hazard � Vulnerability ð1Þ

where Hazard and Vulnerability are calculated below. Both Hazard and Vulnerability are

normalized to 0–1 using maximum and minimum values across all scenarios and years.

2.2 Heat hazard

Defining the temperature threshold for heat events is a key step in risk assessment, but there is

no consistent standard in the existing literature. Studies typically define heat waves as

exceeding fixed absolute values or deviations from the normal (Robinson 2001). For example,

the US National Weather Service (NWS) suggests a Tmax (daily maximum temperature) of

≥40.6 °C (105 °F) for excessive heat warning (NWS 2015), while the Netherlands uses a

period during which Tmax>25 °C for ≥5 days, provided that at least 3 days in this period have a

Tmax>30 °C (Garssen et al. 2005). This paper holds that an absolute threshold is

inappropriate on a global scale because the acclimatization of populations in different

regions differs significantly for physiological, behavioral and cultural reasons (Kovats

and Hajat 2008). For example, a study of the vulnerability curves in 11 US cities

showed that the higher the latitude, the lower the tolerance to high temperature

(Curriero et al. 2002). Therefore, a relative threshold definition, described below, is adopted

to define heat waves.

To quantify the heat hazard, we used the number of heat wave days defined as the number

of days that exceed the threshold for at least six consecutive days. The threshold is defined as

the local 90th percentile of daily maximum temperatures over the period 1971–2000 (Fischer

and Schär 2010). If the local 90th percentile is lower than 25 °C, we use 25 °C as the threshold

(Garssen et al. 2005). The daily maximum temperature data were obtained from the bias-

corrected climate data (Hempel et al. 2013) from the HadGEM2-ES model (Jones et al. 2011)

under 4 RCPs, which are available from the Inter-Sectoral Impact Model Intercomparison

Project (ISI-MIP: http://esg.pik-potsdam.de) (Warszawski et al. 2014).
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2.3 Socio-economic vulnerability

The socio-economic data were obtained from the ISI-MIP (http://clima-dods.ictp.it/d10/

fcolon_g/ISI-MIP), which includes five SSP scenarios, namely SSP 1–5. The SSP-scenario

data provide four sub-indices:

(1) Population density (PopDen) with a spatial resolution of 0.5°.

(2) Percent of population aged over 65 (AgedPop) in an administrative unit at the country

level.

(3) Per capita GDP (GDP) in an administrative unit at the country level.

(4) Education level (Edu), measured by the percentage of the population with higher

education in an administrative unit at the country level.

The four factors were combined into the final vulnerability formula using Eq. (2):

Vulnerability ¼
1

3
AgedPopþ 1−GDPð Þ þ 1−Eduð Þ½ � � PopDen ð2Þ

The symbols are defined above. Although the literature shows that the contribution of social

indices differs and that autocorrelation exists among them, there is no commonly acknowl-

edged standard for each index and for this reason, we combined these indices with equal

weight (Cutter et al. 2003; Reid et al. 2009; Johnson et al. 2012). Pixels that mean population

density is lower than 1/km2 are excluded from the calculation. A base 10 logarithm of

population density is applied before normalization.

3 Results

3.1 Hazard

The heat wave area, calculated as the area with heat wave divided by the total land area

excluding Greenland and other areas with missing values, will grow continually under all RCP

scenarios (Supplementary Fig.1a). RCP8.5 shows both a rapid increase and that the heat-wave

area will reach near 85 % of land surface by 2100. RCP2.6 will first increase and then stabilize

at a level of 70 % after the mid-century. The RCP4.5 and RCP6.0 scenarios fall in between

RCP8.5 and RCP2.6. Statistics show that by 2100, the number of heat-wave days will exceed

80 per year under the RCP2.6 scenario and 280 per year under the RCP8.5 scenario in the areas

between 10°N and 20°S and will spatially decrease to the two poles (Supplementary Fig. 1b).

By the late 21st century, the global mean number of heat-wave days under the RCP8.5

scenario will exceed 100, whereas the number will be less than 50 under the 2.6 scenario (see

lower panel in Fig. 2). At the regional scale, the value in Africa and South America will exceed

200 by 2100 under the RCP8.5 scenario, while Asia and Australia will reach nearly 100, and

Europe and North America will exceed 60. The RCP6.0 scenario shows a relatively

lower growth speed and the value reaches more than 150 in Africa and South

America and more than 40 in other continents. In contrast, the RCP2.6 scenario exhibits

a slight rise and then stabilizes at approximately 50 days in all continents over the course of the

century. Values have some fluctuation for each continent, but it is much higher in South

America than in the other continents.
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3.2 Vulnerability

Combining four factors (i.e., population, older population, per capita GDP and education, see

Supplementary Fig. 2) into vulnerability, SSP3 has the most vulnerable population and the

vulnerability continues to grow, followed by SSP4 and SSP2. SSP1 and SSP5 display

an increasing tendency and reach their peaks in 2075 before decreasing. The interan-

nual variance and spatial distribution of vulnerability show similarities across all SSP

scenarios (Supplementary Fig. 3). It can be seen that China and India, which have the largest

populations in the world, maintain high vulnerability through the century. By 2100, the most

vulnerable areas include most of India, parts of east China and sub-Saharan Africa, followed by

most of Europe, parts of Central Africa, Asia, eastern parts of North America, Central America

and South America.

Significant differences in vulnerability across regions are observed at the regional scale

(Fig. 2). Generally, regions can be divided into three classes according to their numerical

values of vulnerability: high (Africa, Asia and Europe), medium (North America and South

America) and low (Australia). Furthermore, the trends differ significantly between scenarios.

Under the SSP3 scenario, the mean vulnerability of Europe will experience a clear reduction,

but the descending range is small; mean vulnerability for Asia, North America and Australia

will maintain a steady state, and the vulnerability of Africa and South America will increase

continuously and rapidly, most dramatically in Africa. In contrast, under the SSP1 scenario,

vulnerability will decrease continuously in more continents, including Europe, Asia, South

America and Australia. Except for Europe, the descending ranges are small in these continents

and they all first grow and then decrease after 2050. Only Africa will experience an increasing

trend of vulnerability and only North America will experience a stable trend under the SSP1

scenario. The variation trends of each continent will be between SSP1 and SSP3. Comparing

the vulnerability under all three SSP scenarios in different regions, only Africa will increase

under all scenarios, and it also has the highest growth rate. The global mean vulnerability is

between 0.3 and 0.4 under all scenarios. Under SSP3, vulnerability will increase to 0.35 by

2100. Under the remaining two scenarios, vulnerability will increase in the first stage and then

decrease to the 2010 level.

3.3 Heat health risk at the global and regional scales

Three combinations (namely, RCP2.6-SSP1, RCP6.0-SSP2, and RCP8.5-SSP3) are selected

for further analysis that are also consistent with scenarios in SRES (RCP6.0-SSP2≈B2,

RCP8.5-SSP3≈A2, no corresponding scenario to RCP2.6 in SRES).

3.3.1 Spatial distribution of risk

Figure 1 shows that, generally and unsurprisingly, the highest risk scenario combination is

RCP8.5-SSP3, followed by RCP6.0-SSP2, and the lowest is RCP2.6-SSP1. Relatively higher

risk areas are distributed between 50°N and 30°S. The lowest risk areas are mainly located

beyond 50°N in North America and Asia, almost all of Australia, the Sahara, and parts of

South Africa and South America.

RCP2.6-SSP1 has the smallest area of (very) high risk among all scenario combinations. As

a sustainable and low-emission scenario combination, both hazard under RCP2.6 and vulner-

ability under SSP1 will reach their peak values before 2100 and decline (see lower panel of

Fig. 2), thus the heat health risk exhibits a slight increase compared to the other combinations

at a global scale.
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Under RCP6.0-SSP2 scenarios, the general spatial heat health risk distribution is similar to

the distribution under the RCP8.5-SSP3 scenarios, but the average risk is lower. Specifically,

very high risk areas are located in undeveloped or developing countries in South Asia (India

Fig. 1 Spatial distribution of themean risk at the global scale in the near future (2030–2050) and the long term (2080–

2100). Risk is divided into five classes from very low to very high using break values of 0.03, 0.06, 0.12 and 0.24

Fig. 2 Hazard, vulnerability and heat health risk at global and regional scales
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and Pakistan), Africa (Nigeria, Ghana, Burkina Faso, Tanzania, and Uganda), and Asia (China,

Indonesia, and Philippines), and very high risk areas in China will expand by 2050 and then

shrink by 2100. This may be because GDP grows rapidly with a decreasing older population

after reaching a peak value in the mid-21st century.

High heat health risk areas will expand significantly under the RCP8.5-SSP3 scenarios. In

the near future, the very high risk areas include some small fragmentary regions in South

America and Africa. From 2050 to 2100, the heat health risk will increase rapidly in these

areas as well as parts of South Asia, Southeast Asia and Central America. High risk areas are

mainly distributed around very high risk areas in Europe, West Asia, East Asia and North

America.

3.3.2 Risk at the regional scale

At the regional scale, significant differences are observed (Fig. 2). Regions can be

divided into three classes according to their numerical values of risk: the high-risk

class contains only Africa (risk: 0–0.3); the medium-risk class, including North

America, South America and Asia (risk: 0–0.2); and the low-risk class, including

Australia and Europe (risk: 0–0.1). In the first class, Africa suffers from rapidly

increasing risk under RCP8.5-SSP3 and RCP6.0-SSP2 due to the high hazard and

rapid growth of vulnerability, reaching 0.3 and 0.2 until the end of the 21st century,

respectively. Compared to Africa, the risk of North America, South America and Asia

increases more slowly and peaks at 0.15, 0.18 and 0.16 by 2100 under RCP8.5-SSP3,

respectively, while under RCP2.6-SSP1, these three regions experience low and stable

risk levels (0.5 or lower) over the century. In the third class, Australia proceeds with

stable risk under all RCP-SSP combinations and has the lowest risk among all

regions.

3.3.3 Populations at risk

Figure 3 and Supplementary Table 1 show populations at different levels of heat

health risk at the global and regional scale. The global population at very high risk

increases under RCP6.0-SSP2 and RCP8.5-SSP3, reaching nearly 3.4 billion and 10

billion, or 38 and 76 % of the world population, by 2100, respectively. Under

RCP2.6-SSP1, this value reaches 0.3 billion (5 %). In contrast, populations at low

and very low risk decrease throughout the century.

At the regional scale, the populations with a very high level of risk vary from

dozens/hundreds of millions (Europe, North America, and South America) to billions

(Africa and Asia). As the population of both Africa and Asia reaches over 5 billion,

the very high-risk population grows to 5 billion (94 %) and 4 billion (72 %) under

RCP8.5-SSP3 by the end of this century, respectively. Under RCP6.0-SSP2, the values

exceed 2 billion and 0.9 billion in these two regions while RCP2.6-SSP1 results in a

relatively lower proportion of the population at very high risk. In North America, the

very high-risk population reaches 13 (2 %), 153 (25 %) and 381 (65 %) million under

RCP2.6-SSP1, RCP6.0-SSP2, and RCP8.5-SSP3, respectively. The population in

South America is in line with that of North America, with values of 1 (0 %), 97

(23 %), and 418 (61 %), respectively. In Europe, the total population declines over

the century. However, the very high-risk population grows. No very high-risk population is

observed in Australia.
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4 Discussion

4.1 Influence of heat definition

A challenge faced by heat-wave studies is that no standard definition exists in terms

of temperature threshold, metric, and lasting days (Anderson and Bell 2010). In this

paper, heat waves are defined as ≥6 days with temperature ≥90th percentile (90P6D:

90th percentile, 6 days), which focuses on the duration and intensity of heat waves.

For comparison, two alternative definitions are used to explore different influences of

heat definitions on heat risk: (1) ≥3 days with temperature ≥95th percentile (95P3D,

shorter but more intense) and (2) ≥3 days with temperature ≥30 centigrade degrees

(30C3D, shorter and threshold fixed). We use heat-wave area (%) and global mean

risk to compare hazard and risk results across these three definitions, respectively.

The 90P6D and fixed-threshold 30C3D yield a very similar trend of heat wave area

(Fig. 4a) while 95P3D produces significantly higher values than 90P6D under all

scenarios (Fig. 4b). This indicates that shorter but more intense heat waves are likely

to occur in more land areas than lower intensity but longer lasting heat waves. For

global mean risk, relative temperature threshold definitions (90P6D and 95P3D)

exhibit a slight difference, with 95P3D lower than 90P6D in magnitudes of 0.01

(Fig. 4c). But the fixed-threshold definition shows significantly higher risk than the

other two definitions, which is consistent with the spatial distribution of heat risk

(Supplementary Fig. 4). Since hazard is normalized before calculating the final risk, the relative

threshold definition 95P3D produces nearly the same risk-assessment results as 90P6D,

although it differs significantly in terms of hazard.

Fig. 3 Populations at different levels of heat health risk at global and regional scales
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4.2 Influences of correlation and weights of vulnerability factors on risk

Another challenge is that a correlation exists in the vulnerability analysis. Cutter et al. (2003)

presented a general index called social vulnerability index (SoVI), which listed 42 variables

and reduced them to 11 independent factors that account for 76 % of the variance. Johnson

et al. (2012) developed an extreme heat vulnerability index (EHVI) that contains the principal

components of 25 census data and remotely sensed variables that explain 80 % of the total

variance. In this study, a correlation analysis is conducted temporally (using global means from

2010 to 2100 for a given SSP) and spatially (using country values for a given year and an

SSP). Results show that temporally, Edu, Aged, and GDP are significantly correlated, while

Edu and Aged are spatially correlated across years and SSPs (Supplementary Fig. 5). Although

the numeric values of these factors seem to be represented by one or more common variable(s)

using factor analysis, they present different aspects of vulnerability and therefore, are

employed in the assessment.

Multiple studies have used the equal weight method to calculate vulnerability (e.g., Collins

et al. 2009; Tomlinson et al. 2011; Vescovi et al. 2005; Dong et al. 2014). To compare the

influence of the weight variance of vulnerability factors on heat risk, we computed the global

mean risk under the condition that the weight of Aged ranges from 0.1 to 0.9 (step: 0.1) by the

ratio of weight (GDP) and weight (edu) ranges from 0.1 to 0.9 (step: 0.1) and 1 to 10 (step: 1).

The results show that although the weight variance of vulnerability factors affects the

vulnerability significantly (Supplementary Fig. 6), it has marginal influence on the final risk

(with the mean risk variance at the 0.001–0.01 magnitude level) compared to the 0.1

magnitude level of global mean risk (Supplementary Figs. 6–8), because vulnerability has

been normalized temporally and spatially.

4.3 Statistical analysis of historic heat waves and the estimated heat risk

The European heat wave of 2003 is selected to validate our heat-risk assessment method. Data

of historic heat-wave related deaths of fourteen European countries are extracted from the

Emergency Events Database (EM-DAT: http://www.emdat.be/). Statistical results show that

Fig. 4 Comparison of the influences of different heat definitions on risk
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the death toll and the estimated risk are significantly correlated (Supplementary Fig. 9). The R

square of linear regression of 90P6D, 95P3D and 30C3D is 0.86, 0.72, and 0.49, respectively.

A further correlation analysis shows that the various weights of vulnerability factors have no

significant influence on the correlation, as we expected from the results of Section 4.2

(Supplementary Fig. 10).

It should be noted that high mortality in historical heat waves was not fully due to

high temperatures. Anderson and Bell (2009) showed that acclimatization, individual

susceptibility, and community characteristics all have heat-related impacts on mortality.

Furthermore, heat-related mortality is affected not only by the intensity and duration of

heat waves, but also by other indirect social factors (Anderson and Bell 2010). In this

paper, heat intensity and duration are modeled in hazard while some social factors (age,

education, and GDP) are measured in vulnerability to assess the heat risk. However,

other factors, including air humidity and air pollutants, are beyond the scope of this study

and merit future investigation.

5 Conclusions

This paper assessed global heat health risk during the 21st century using new climate and

socio-economic scenarios. Hazard, vulnerability and risk were analyzed at the global and

regional scale. The results show that under RCP8.5-SSP3 scenarios, the world will be at

the highest heat health risk with rapidly increasing hazard levels and vulnerability

through 2100. Less developed or developing regions, such as Africa, Southeast Asia,

South Asia and Middle America, are at the highest risk. The RCP2.6-SSP1 scenarios

show a rise first and then a falling level of risk, resulting in the lowest heat health risk

level. RCP6.0-SSP2 falls between these two scenarios. The proportion of global popu-

lation that is at very high risk increases, while the population at low and very low risk

decreases over the century.

Significant differences are observed in the hazards, vulnerability, risk and populations

at different levels of risk across regions. The heat-wave area expands to high latitudes

and the number of heat-wave days grows. Africa, Asia, Europe and Middle America

show a relatively higher vulnerability, while North America, North Asia and Australia

exhibit lower levels. Under three RCP-SSP scenario combinations, Africa, Asia, North

America and South America proceed with higher and rapidly growing heat-health risk,

while Australia experiences lower risk. Europe falls in between these two outcomes.

Furthermore, Africa and Asia will experience a rapidly increasing population at the very

high risk level, upwards of billions of people by the end of the century. Other regions,

except Australia, will also experience a growing population considered to be at very high

risk.

Heat health risk will increase over this century under all RCP-SSP scenarios, and the

extent varies depending on socio-economic variables. Although uncertainties exist, the

sustainability of global human health requires attention and action from both policy

makers and individuals.
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