1301.3113v1 [gr-gc] 14 Jan 2013

arxXiv

New coherent states and modified heat equations

Antonio Pittelli® and Lorenzo Sindoni®

® Ungversita degli Studi di Trieste
Via A.Valerio 2, 84127 Trieste, Italy
> Maz Planck Institute for Gravitational Physics,
Albert Einstein Institute,
Am Miihlenberg 1, 14476 Golm, Potsdam, Germany

Abstract

We clarify the relations between certain new coherent states for loop quantum gravity and the analytically continued heat
kernel coherent states, highlighting the underlying general construction, the presence of a modified heat equation as well as
the way in which the properties of the heat kernels are automatically inherited by these new states.

1 Introduction

In [1], extending previous work on semiclassical states in Loop Quantum Gravity (LQG) [2 3} 4] [5, 6], a new family
of coherent states (for the group SU(2)) has been introduced. Both choices present some advantages: for instance,
SL(2, C) heat kernels have got very simple convolution properties; on the other hand, flux coherent states provide
correction-free expectation values for the flux operator E. Therefore these states might provide an alternative,
possibly more transparent, semiclassical treatment of the quantum operators associated to the classical phase
space on which Loop Quantum Gravity [7] is based.

These new states are also naturally formulated in the flux representation of LQG, introduced in [8], where,
using the concept of non-commutative Fourier transform [9] [10], a representation of the LQG building blocks based
on functions over (several copies of) the su(2) Lie algebra flux variables is developed.

The purpose of this paper is very specific: we want to reconsider the results of [I], with emphasis on the
relationship with the coherent states they were originated from [2] [6] using the techniques of complexifiers and the
analytic continuation of heat kernel states on SU(2). We will present the results in the group representation, so
that the connection is even more clear. We will show, in particular that the states introduced in [I] are indeed
heat kernels on their own right, associated to a different choice of heat equation, in particular a different Laplace
operator. Not only this observation makes more transparent the results discussed in [I], but also shows how to
construct further generalizations.

In this paper we will restrict the attention to the classical phase space of a single holonomy/flux pair, whether
this is associated to a single link of a graph or to a more extended structure [I1], 12]. The holonomy flux algebra
is given by

{Ei,ﬁ} — ih(87GY) R > b, [EEJ} — ih(8TGy)ed BF, (1)

where h(87Gy) = 87rlf;y has the dimension of a length squarecﬂ and R’ is the i-th right invariant vector field on
SU(2). For the present discussion we will not be concerned with dimensionful quantities, and hence we will use
rescaled flux operators such that all the relevant variables are dimensionless.

1We are using units in which ¢ = 1.
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Wavefunctions for kinematical states can be constructed by suitable choices of representations of several copies
of this algebra (and by imposition of all the gauge invariances associated to gravity), thus leading to the concept
of cylindrical functions [7] (see also [I3] for a discussion of the feasibility of the construction within the flux
representation). We will not embark in the construction of general states. Rather, we will focus on a single copy
of this algebra of operators.

We will then construct wavefunctions as square integrable functions on one copy of the group, or, alternatively,
on the Lie algebra su(2). We will work in the group representation, with the following representation for the flux
operators:

E7(f(h)) = lim [iif (eig]fh)} . 2)
e—0 | de

Heat kernels are the most natural generalization of the Gaussian functions to the case of more general (Rie-

mannian) spaces. They are defined in terms of the heat equation

Ot (zsy) = Dapl(zyy);  p0(x5y) = (—g(2) " /26(x — y), (3)

where the Laplacian operator A depends on the metric tensor, and ¢ is an evolution parameter. Obviously, SU(2)
can be seen as a Riemannian space (indeed, as S3 with the canonical metric on it). Therefore, it is possible to
naturally define a heat kernel on the group [14], as solutions of the heat equation

iK' (995 ") = Dsue K (990 );  K™%(995") = (990 ) (4)
where we are using the Laplace-Beltrami operator on SU(2),
Agy(z) = —6i;E'EY. (5)

The Dirac delta on the group, providing the initial condition for the differential equation, completes the definition
of these functions. The heat kernel K* can be used to construct coherent states, with the appropriate identification
of ¢ with the spread of the wavefunction and of gy with the peak, its maximum. By construction,

<EZ> =0, (6)

on these states, and therefore we need an additional step in order to define a state that is coherently peaking on a
generic phase space point, labeled by go € SU(2) and by zo € su(2).

In order to use them to construct semiclassical states peaking on a given point of the single link classical phase
space, in [2 B, [4 [5l [6] these functions (seen as functions of the peak element gg) were analytically continued,
turning the heat kernel [@) into a function on SL(2,C),

K{,)(h) = K*(hgy "), g0 € SU(2) = Kig,(h), Go € SL(2,C). (7)

We refer to the literature for a detailed discussion of the properties of the states defined in such a way. See also
[15, 16, 7] for further discussions on related results.

The approach discussed so far gives particular relevance to the natural isomorphism between the phase space
constructed on a single copy of SU(2), T*SU(2), and the analytic continuation of SU(2) itself, namely SL(2,C). In
[1] a different path has been followed, exploiting the point of view given by the definition of a Fourier transform on
the group [9], [10] (see also [18] for a discussion of possible extensions to more general Lie groups). We will denote
this operation as .# : L?(SU(2)) — L?(su(2),*), mapping square integrable functions on the group onto square
integrable functions on the Lie algebra su(2), endowed with the ordinary Lebesgue measure but with a x—product
replacing the ordinary commutative product of functions.

As shown in [I], by modifying heat kernels with the multiplication by a plane wave,

Hgo20)(9) = €4(x0)K (g, (9), (8)

one obtains states that have essentially the properties of coherent states, with respect to averages, peakedness
properties, completeness and overlap. Here, plane waves are defined as complex valued functions over SU(2) x su(2):

(9:7) € SU(2) x 5u(2) > ¢y (2) < exp (—%T&fugm ) . gl = sign(x(@)g. (9)



where the group element g is assumed to be represented by its fundamental representation matrix acting on su(2),
in order for the expression above to make sense.

The results of [I] are based on the fact that a) the states originate from a heat kernel and b) that in terms of
the Fourier transform, this state is just the ordinary heat kernel translated by x( in the Lie algebra representation,

- T (Hpay) () = 7 (K (&= 0). (10)

The results were established by means of an explicit analysis of the various integrals which are involved in the
calculations of the various expectation values and overlap functions. However, it was not clear whether it is possible
to extend the results of the complexifier construction and the proof of the existence of an annihilation operator
to this particular case, even though equation (I0) suggests that this might be the case. In the next sections we
will give a detailed derivation of these states ¢/ go.z0) S heat kernels of suitably defined Laplace operators, thus
making manifest the correspondence with the structure of the standard heat kernel coherent states, a cleaner and
more automatic derivation of the results of [I] and a recipe for further generalizations.

2 Remarks on translations

As we have seen, one of the key ideas is to use the multiplication with a plane wave in order to achieve a translation in
momentum space. Here we will give a more abstract description of this operation, which will give us the opportunity
to better grasp the structure of the reasoning, of the results and to offer a path for possible future generalizations.
Given zo € su(2), define the linear map

Uy, : LA(SU@)) = L2SUR)): o (f)(h) = en(ao) (). (11)

This map is obviously unitary. Indeed, it is invertible, with inverse U, L' =U_,,, since it preserves the canonical
scalar product of L?(SU(2))

(Uzo [11Uzo f2) = (f1lf2), (12)

and its adjoint is the inverse:
Ul =U_s, =U..% (13)

Therefore, if we have an orthonormal basis for L?(SU(2)), f, with n in some index space, the functions

i = Usofa (14)

will be an orthonormal basis for L?(SU(2) tocE In particular, the Peter—Weyl theorem ensures us that the set of
Wigner matrices is such a basis. Hence, also

: - 1
Dib(h) = (UIODib)(h’)a J 2075715"' (15)

are an orthonormal set of functions. Indeed, while orthonormality is automatically guaranteed by unitarity, their
role as basis functions is also clear from elementary considerations. For any F' € £2(SU(2)), by construction, also
U;)lF belongs to this space. Therefore,

(Uso F) ( ZMJ Di,(9) =Y _ M,U.'D] (9) = U, ZMJ D ( (16)
J

or

ZMJ D ( (17)

for some matrices M7, (of course, the sum might be, in fact, a series).

2The key of the argument is that, given the unitarity of U, Cauchy sequences are mapped onto Cauchy sequences, since the scalar
product, and hence the norm and the distance derived from it are all conserved.



Of course, this result can be seen in a easier way when everything is written in terms of noncommutative
functions on su(2), the multiplication by the plane wave being just a translation.

It is clear that the construction of the unitary operator U can be generalized to the case in which the function that
is used to define it is not necessarily a plane wave, but a sufficiently regular phase factor. All the results enumerated
so far will carry over to the general case, with the exception of the picture in the algebra representation, where the
translation will be replaced by a convolution. Define the Fourier transform of a general phase factor:

/ dhen(x) exp(ia(h)) = uq(x). (18)
Su(2)

Then, the Fourier transform of the product of a phase factor with a function on SU(2) will be

[ ae@entamyrm = [ [ @y [ Em@@ama@ 0, 09
SU(2) SU(2) su(2) su(2)
whence we obtain the following convolution of Fourier transforms

FUNE = [ Eyualy)n T o), (20)

su(2)

We can easily conclude, then, that the flux coherent states introduced in [I] are just the image of the heat
kernel coherent statesd under a family of these maps :

H, = Uz, K{y)- (21)

90,%0)

We will now use this to show what are the structures that are behind these new states, and to what extent we can
generalize the construction of coherent states following this path.

3 The new coherent states as heat kernels

In the group representation, the flux operator acts as a derivative operator; especially, it obeys the standard Leibniz
rule

E'(f(h)g(h)) = (E'f(h)g(h) + f(h)(E'g(h)). (22)

In particular, we can compute the action of the fluxes on the plane waves:

B (eyfan)) =ty [i exp (=10 {em nlonab ) | = =S (101w afen o)) = o, (hene), (23)

where

vl (h) = —%Tr (o7 |h|ow) zk. (24)

Again, this is just a special case: the entire discussion can be generalized to phases which are not necessarily plane
waves. In analogy with the case of gauge invariant (U(1)) field theories, we introduce a sort of gauge transformed
version of the flux operator:

gL = E"—v. (h). (25)

These operators are just giving the group representation of the operators corresponding to the translated
fluxes in the algebra representation, with the residual dependence on the group element h being associated to the
noncommutative nature of such a translation, once the structure of su(2) is appropriately taken into account.

These new operators are obviously constructed in such a way that:

S;OUwo (f) = Us, (Elf)v gaico = UoniU:IU' (26)

3Here we are assuming that we are not analytically continuing them.



Using this definition, one immediately realizes that the algebra of the £ is actually the su(2) one,

(£, &9] = U, E'UL

xo’

Uso EPUS | = i€ijuUny EPUS = i€, EF, (27)

as expected from the fact that, in flux space, the £ are just translated fluxes, still belonging to su(2). This
definition allows us to understand better what these new coherent states are. Define the Casimir operator

Dy = —61,E1 EJ (28)

Zo o "

Due to the properties elucidated in the previous section, this operator, a generalized Laplacian, is isospectral to
the Laplace operator on SU(2), with the functions D' providing an orthonormal diagonalizing basis. Indeed:

‘@mopfzb = 5 gmogmopab
= 0ij€5,Uny (B Dyy) = Uy (815 E'E? D) = Uy (Dsu) Dap) = =11+ 1)Usy (Dey)
= —I(+1)D,. (29)
Of course this is an obvious result from the perspective of gauge field theories: we are using a Laplacian obtained
by squaring a covariant derivative, in the case in which the connection one-form is a pure gauge. For this reason,
we can immediately conclude that the flux coherent states are solutions of the heat equation

8t'%/ go mo)( ) @10'%/%)@0)( ) (30)

with initial condition

Hlguiwo) () = 8(hhg )en(xo). (31)

This is the main result of the paper: the flux coherent states that were introduced in [I] are indeed heat kernel
states, with the difference that now the Laplacian entering the heat equation is not the Laplace-Beltrami operator
of SU(2), but a more general operator that includes the effect of the translation in the Lie algebra direction of
the phase space. This is the group representation counterpart of the statement contained in (0. Notice that the
operator & depends on z¢, and hence to obtain coherent states peaked on different Lie algebra elements we have to
use heat kernel associated to different Laplacians. This is a key difference with respect to the analytically continued
heat kernels, that are defined with respect to the same Laplace-Beltrami operator, whatever is the position of their
peak.

4 Generalizations

The results discussed so far can be made even more clear with a more suggestive notation. Let us introduce ket
vectors, labeled by SU(2) group elements,

[ho) = (Blho) = d(hhg "), (32)
such that the heat kernel coherent states and the flux coherent states, denoted respectively as
|ho)s = €' |ho) , |ho, xo) t = €' 7= Uy, |ho) , (33)
have wavefunctions
K(ho)(h’) = (hlgo)t = (h| exp(tA) |ho) f%/go 20)(h) = (h|ho, xo) t, (34)
Using the relation with the modified/translated flux operator,
Doy Uy = Ugy D, (35)

we obtain immediately:
|ho, z0) t = € Z Uy, |ho) = Usyet® |ho) = Usy|ho)es (36)



which is exactly what we have already obtained, written in a different way. This rewriting allows us to show
immediately how to generalize the results obtained previously to different operators U, , possibly not plane waves,
and to other groups. This rewriting also shows how the expectation values of operators can then be immediately
inferred from the ones of the standard heat kernel, once we remember that hlUs,, = Uy,h and €L = U, E*UJ :

(p(h)) = (ho,zo|te(h)|ho,xo)t = i(holp(h)|ho)e; (37)
(E") = (ho,xo| tE" |ho,z0) t = 1 (ho|UTE'Ulho); = ¢(holEL 4, [ho)t = 0+ (v (20)) host (38)
(B'E7) = (ho, 20| tE"E? |ho,z0) t = ¢(ho|[UTE'E7U|ho)s = ¢(hol€L 4,4y 1ho)t - (39)

Hence, all the statistical properties, and in particular the behaviour with respect to the Heisenberg uncertainty
relations, are consistently imported from the ones determined for the Hall states, as expected.

In [6] it was further considered the construction of the heat kernels in term of complexifiers and the associated
creation/annihilation operators. In particular, it has been shown that it is natural to identify the annihilation
operator with

A=ePhe B, (40)

whose eigenvectors are indeed the heat kernels. In analogy with that case, we can construct similar annihilation
operators for our case by replacing the Laplacian A with the modified one %,,. This is possible because the two
operators possess the same spectrum; indeed, they are related by a unitary transformation. In a similar way, we
can associate to the Laplacian (28)) the annihilation operator

A(xo) = eZhe 7, (41)

that by construction treats the flux coherent states as its eigenvector.

5 Concluding remarks

Let us briefly summarize the previous points. We have elucidated the structural similarities of the proposed flux
coherent states with the complexifier coherent states, by their explicit representation in terms of group variables
and operators acting on L?(SU(2)).

We have explicitly shown the reason of their coherent behavior by tracing it back to their role as heat kernels
for a modified Laplace operator, Z isospectral to Agy(s). In particular, this might be used to reproduce the
complexifier structure introduced for heat kernels. Furthermore, the mapping between these states and the heat
kernels ensures us that the statistical properties of the latter will be imported automatically, allowing us to use
them as coherent states.

At the same time, we have given a general recipe for the construction of coherent states based on a generalized
notion of heat kernel on the group manifold, by highlighting the nature of the operation that is at the basis of the
definition of the new states. Indeed, given any family of unitary maps U, if we define

E=UEU', 9=-6,;6¢, (42)

we can construct arbitrary families of coherent states, provided that i) the map U can be parametrized by su(2)
elements, to which it will be associated the position of the peak of the state in the Lie algebra, ii) that the map
between the coherent states and T*SU(2) defined by the expectation values of hand F is bijective, and iii) provided
that the overcompleteness and overlap properties customarily valid fo coherent states are satisfied.

These indeed are the only conditions to be really checked explicitly as the conditions restricting the maps U
to be of a specific form. For them one really needs to understand the dependence of the operators exp(t%) on the
Lie algebra elements. While the proof of overcompleteness might be only a technical problem to find a measure
with respect to which perform the integration in the Lie algebra elements (taken care of by the star product, in
the specific case of the flux coherent states), the proof of overlap properties requires the understanding of integrals
of the form

£(90, Yo |ho, m0) t = ¢(go|U} Uy |ho)t = +(g0lUzo—yo |ho)¢, (43)



for which of course the explicit form of the operators U is needed. A posteriori, in [I] these were the only two
properties that needed to be verified, the others following in a straightforward manner from the properties of the
heat kernel, already established in the literature.
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