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	e goal of this paper was the design, development, and characterization of some new composites, based on collagen and dextran as
natural polymers and zinc oxide as antimicrobial, to be used in wound healing. Collagen hydrogels with various concentrations of
dextran and zinc oxide were investigated in terms of rheological analysis. 	e spongious composites, obtained by freeze-drying of
hydrogels, were evaluated by morphology (SEM), water uptake, and biological (enzymatic biodegradation) analysis. All the results
were strongly in
uenced by the nature and concentration of composite components. Based on the performances of the hydrogels,
stationary rheometry, porous structure, morphology, and biological behavior, the antimicrobial spongious composite based on
collagen and dextran with 50% ZnO were the most promising for future applications in wound dressing and a biomaterial with
high potential in skin regeneration.

1. Introduction

Wound healing is a signi�cant problem for health-care
systems worldwide, accounting over 1.5% of the world pop-
ulation [1]. 	e most a�ected by chronic wounds, as ulcers,
are elderly and diabetic people.Moreover, an untreated or not
correctly treated wound can lead to large area of necrosis and
to systemic infection [2]. To avoid such complications, the
best solution is the use of antibacterial biomaterials to treat
or prevent infection of the tissues.

Collagen is one of themost used polymers in biomaterials
�eld, due to its excellent properties in biocompatibility,
biodegradability, with well-established structure, biologic
pro�le, and in vivo response [3]. It is a bioactive medical

device used in di�erent types of injuries (varicose ulcer,
burns, wounds, opened surgery, etc.) as haemostatic and
medical dressing [4]. Being a natural protein, collagen itself
cannot heal the infected tissue because bacteria use it as a
substrate [5–7]. Another natural polymer, dextran, a polysac-
charide was proven to stimulate wound healing, control the
proliferation of bacteria, and a�ect the metabolism of tumor
cells, smooth muscle cells, and endothelial cells [8]. Dextran-
based hydrogel containing chitosan microparticles loaded
with growth factors [9] and silk �broin nano�brousmaterials
with dextran [10] were also successfully used in wound
healing, but some simpler solutions were not exploited yet.

In order to induce antimicrobial activity, the polymeric
sca�olds have to be more bioactive by decoration with
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antimicrobials like antifungals, antivirals, antiparasitics, or
nonpharmaceutical (like essential oils). Zinc oxide (ZnO)was
widely related to exhibit antimicrobial activity and higher
stability than organic molecules [11, 12]. Also, it was used to
accelerate the healing of both chronic and acute wounds [13]
because of its epithelialization and bacteriostatic properties.
ZnO represents today one of the most reliable choices in
obtaining composites with potential applications in wounds
care [14, 15].

	e aim of this study is to develop new simple solutions
for wound dressings based on collagen and dextran. 	e
sca�old was designed by using dextran for wound healing
and ZnO for antimicrobial properties. 	e systems are
prepared by lyophilization method in order to obtain e�-
cient absorbent properties for wound dressings and porous
structures. 	e composites in form of hydrogels were eval-
uated by rheological analysis and the spongious forms were
investigated by water uptake, biodegradability in collagenase
solution, and SEM.

2. Materials and Methods

2.1. Materials and Reagents. Type I �brillar collagen gel
having a concentration of 2.46% (w/w) was extracted from
calf hide using the technology currently available at the
Research-Development Textile Leather National Institute
Division Leather and Footwear Research Institute—Collagen
Department [3]. Dextran from Leuconostoc spp. (Mw 15,000–
25,000) was purchased from Fluka (USA) and zinc oxide
nanopowder (<50 nm particle size) was from Sigma-Aldrich
(USA). Sodiumhydroxide and hydrochloric acid were of ana-
lytical grade. Type I collagenase obtained from Clostridium
histolyticum was purchased from Sigma-Aldrich (Germany)
and glutaraldehyde was fromMerck (Germany).

2.2. Preparation of Composite Collagen Hydrogels. Dextran
and zinc oxide in the concentration given in Table 1 were
added to initial collagen gel followed by adjusting collagen
concentration at 1% and pH 7.4 and then cross-linked with
0.25% glutaraldehyde (related to collagen dry substance).

	e composite collagen hydrogels obtained, coded as G1–
G8, were characterized by rheology and then conditioned by
freeze-drying.

2.3. Rheological Analysis and Data Modeling. 	e station-
ary shear 
ow was carried out at 37∘C using a rotational
viscometer MultiVisc-Rheometer Fungilab. 	e measuring
system was equipped with a standard spindle TR 9 and a
	ermoHaake P5 Ultrathermostat to maintain the sample
temperature at 37 ± 0.1∘C during the experiment. 	e exper-
imental conditions for rheological analysis were previously
described [16]. Brie
y, before each measurement, the hydro-
gel was mechanically equilibrated at the aforementioned
temperature for about 10 minutes. 	e 
ow properties for
collagen hydrogels with di�erent concentrations of zinc oxide
were assessed applying a rotational speed over the range from
0.3 to 60 rpm that corresponds to a shear rate between 0.1 and
20.4 s−1.	e shear stress as a function of shear rate-up curves

Table 1: Codi�cation and composition of composite collagen hydro-
gels.

Code of gels Collagen, % Dextran, %∗ Zinc oxide, %∗∗

G1 1 0 0

G2 1 0 25

G3 1 0 50

G4 1 0 75

G5 1 5 0

G6 1 5 25

G7 1 5 50

G8 1 5 75
∗Related to gel volume; ∗∗Related to dry substance of collagen.

was obtained. 	e rheological data were analyzed applying
di�erent models: Bingham (1), Casson (2), Ostwald-deWaele
(3), and Herschel-Bulkley (4) [16, 17], and the determination

coe�cients (�2) values were used as an indicator to select the
one that best �tted the upward 
ow pro�les:

� = �0 + � ⋅ �̇, (1)

�0.5 = �00.5 + �0.5 ⋅ �̇0.5, (2)

� = � ⋅ �̇�, (3)

� = �0 + � ⋅ �̇�, (4)

where � is shear stress (Pa), �̇ is shear rate (s−1), � is plastic
viscosity (Pa⋅s), �0 is yield stress (Pa) related to the minimum
stress to be applied for determining the start of hydrogel 
ow,
� is consistency index (Pa⋅sn) associated with the hydrogel
viscosity, and 	 is 
ow behavior index indicating the 
ow
pro�les [18–20].

	e Table Curve 2D so�ware was used to evaluate the �2
values and rheological parameters speci�c for each model.

2.4. Preparation of Spongious Collagen Composites. All the
composite hydrogels obtainedwere freeze-dried using aDelta
2–24 LSC lyophilizer (Martin Christ, Germany) and the
lyophilization program previously described [21] and porous
composites in spongious formswere obtained.	e spongious
samples were namedM1 for the one obtained fromG1,M2 for
the one obtained from G2, and so on until M8.

2.5. Water Absorption. In order to determine the water
absorption, the sca�olds were �rst immersed inwater at 37∘C.
At scheduled time intervals, the samples were withdrawn
and weighed. 	e water adsorption was calculated using the
following equation:

water uptake = 
� −
�
�
g/g, (5)

where 
� denotes the weight of the swollen samples at
immersion time � and 
� denotes the weight of the dry
samples (initial samples). All the samples were studied in
triplicate.
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Table 2: 	e determination coe�cients’ values for di�erent rheological models tested at 37∘C.

Rheological models/hydrogels G1 G2 G3 G4

Casson 0.9832 0.9481 0.9418 0.9397

Bingham 0.9233 0.8432 0.8308 0.8168

Ostwald-de Waele 0.9838 0.9904 0.9913 0.9954

Herschel-Bulkley 0.9959 0.9936 0.9931 0.9976

Table 3: Herschel-Bulkley model �tting parameters for collagen hydrogels with di�erent concentrations of ZnO.

Rheological parameters/hydrogels G1 G2 G3 G4

Yield stress (Pa) 4.707 9.704 13.559 16.406

Consistency index (Pa⋅s�) 5.251 22.282 30.920 33.787

Flow index 0.445 0.287 0.218 0.212

2.6. In Vitro Degradation by Collagenase. In order to investi-
gate the enzymatic degradation of collagen sca�olds, mass
loss was monitored as function of exposure time to a colla-
genase solution. Pieces of 1 × 1 cm collagen composites were
immersed in a collagenase solution and incubated at 37∘C.
At predetermined intervals, the swollen pieces were removed
from the collagenase solution and weighed. 	e percent of
degradation was calculated using the following equation:

%weight loss = 
� −
�
�
× 100, (6)

where 
� is the initial weight and 
� is the weight of the
samples a�er a time �. All the samples were studied in
triplicate.

2.7. Scanning Electron Microscopy (SEM). SEM analyses were
performed on a HITACHI S2600N electron microscope, on
samples coveredwith silver layer for each collagen composite.

3. Results and Discussion

	e in
uence of ZnO concentration on upward 
ow curves
plotted as shear stress as a function of shear rate for hydrogels
G1 ÷ G4 is presented in Figure 1.

	e upward rheograms presented in Figure 1 indicated
that the hydrogels G1 ÷ G4 showed a non-Newtonian
character, the shear stress increase with shear rate increase.

Table 2 summarizes the values obtained for determina-
tion coe�cients by �tting the experimental data to various
rheological models ((1)–(4)) described in Section 2.

As can be seen from Table 1, the Herschel-Bulkley model
best �tted the rheological data shear stress as a function of
shear rate.

	e dependence of ZnO concentration on the 
ow
descriptors characteristic to Herschel-Bulkley model is given
in Table 2.

	e data presented in Table 3 show that the hydrogels
G1 ÷ G4 exhibit a pseudoplastic behaviour with yield stress
facilitating their 
ow and allowing their good manipulation
[16, 22]. 	e values of 
ow index between 0.212 and 0.445
indicate a high degree of pseudoplasticity, especially for
G2–G4. 	e presence of ZnO in formulation determined
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Figure 1: 	e up 
ow curves for collagen hydrogels with di�erent
ZnO concentrations tested at 37∘C.

an increase of consistency index and yield stress, the highest
values being recorded for the hydrogel containing a con-
centration of 75% ZnO related to collagen dry substance.
	e values of the aforesaid descriptors increase with ZnO
concentration, more obvious for the hydrogels with 25% and
50% concentration. 	us, the presence of a lower concen-
tration of ZnO (G2) determined the doubling of yield stress
value and also a marked increase of consistency index value
(about 4.24 times) compared to sample G1. Moreover, the
doubling of ZnO concentration from 25% to 50% determined
a more important increase of the rheological parameters for
G3 related toG2 (40% for yield stress and 38% for consistency
index) compared to G4 related to G3, increase from 50% to
75%, respectively (21% for yield stress and 38% for consistency
index).

Similar patterns as recorded for G1 ÷ G4 were obtained
for the hydrogels G5 ÷ G8 with dextran, the 
ow curves
being also described by the Herschel-Bulkley model. 	e
addition of dextran in formulations does not signi�cantly



4 Journal of Nanomaterials

0

9

18

27

36

45

M1 M2 M3 M4 M5 M6 M7 M8

W
at

er
 u

p
ta

k
e 

(g
/g

)

Collagen composites

2 days

4h

Figure 2: Water uptake for collagen composites.

modify rheological parameters speci�c to the above model
for collagen-zinc oxide hydrogels.

	e results of the rheological analysis showed that the
concentration of zinc oxide is the main factor in
uencing
the 
ow properties of the designed hydrogels. 	us, beside
the own pharmacological e�ect, zinc oxide concentration
signi�cantly a�ects the 
ow parameters.

	e G1 ÷ G8 hydrogels were freeze-dried and spongious
collagen composites (M1 ÷ M8) were obtained and char-
acterized by water absorption, enzymatic degradation, and
morphology by SEM.

	e water uptake capacity is a very important property
for an ideal wound dressing in order to maintain a moist
environment and to keep the excessive exudates. Figure 2
presents the water absorption a�er 4 hours and 2 days for the
collagen composites obtained.

	e control sample based on cross-linked collagen, M1,
had higher water uptake capacity, compared to the ones
which contain dextran or zinc oxide. 	e water uptake
decreased as zinc oxide concentration increases from 25% to
75% (to collagen content). 	is behavior could be due to the
presence of an increased concentration of zinc oxide which
favors a more dense composite structure. 	e addition of
dextran to the samples M1 ÷M4 decreases the water uptake
capacity.

	e results were con�rmed also by SEM images (Figure 3)
which showed the compositional involvement on the spon-
gious composites morphology. According to SEM obser-
vations all the sca�olds formed a three-dimensional (3D)
porous structure. 	e pores inside the sca�olds were inter-
connected and varied in a large range, depending on zinc
oxide and dextran content. For M1 (reference sample) the
associated morphology (Figure 3(a)) of the structure sug-
gests pore sizes between 80 and 270�m, along with the
increase of zinc oxide concentration the size of pores decrease
to 55–105 �m (Figure 3(b)). Moreover ZnO particles could
be clearly seen on collagen �brils on SEM images. Dex-
tran induced a more homogeneous phase appearance, with

smaller pores, with sizes between 48 and 75�m (Figure 3(c)).
From Figure 3(d) it can be seen that pores forms were more
uniform in the presence of dextran and ZnO nanoparticles
adhered on collagen �brils (Figures 3(d) and 3(e)).

Both the zinc oxide and the dextran a�ected the �nal
porous structures of the sca�olds. Materials obtained from
collagen hydrogel composites with dextran presented a more
“compact” structure and the pore diameter was much smaller
compared to the neat collagen ones.

In vitro biodegradation of collagen composites by collage-
nase solution was assessed to simulate the in vivo behavior of
composites used as wound dressings. High degradation rates
were registered (Figure 4) for collagen samples without zinc
oxide: over 50% a�er 4 hours and totally a�er 2 days.

	e dextran content increased the resistance to collage-
nase and zinc oxide improved the overall stability of the sam-
ples. 	e relative collagen degradation content decreased for
sampleswith 25% and 50%ZnO.When large amounts of ZnO
(75%)were used, the enzymatic degradation slightly increases
compared with 50% ZnO sample. 	e same tendency related
to composition was observed also for the collagen dextran
systems.	ese results can be explained by the higher amount
of minerals which leads to a lower homogenous composite
phase; therefore the collagen network can be more exposed
to the enzymatic degradation (i.e., on the outer shell of
the inorganic particles). Among the composites studied, the
most stable ones at both 4 hours and 2 days were the one
with collagen, dextran, and 50% ZnO. Moreover, taking into
account the 
ow analysis for the corresponding hydrogels, the
use of ZnO concentration higher than 50% was not justi�ed
since it does not lead to a marked increase of the rheological
parameters and to a higher stability for the porous composites
degradation. Considering the wound healing application, the
e�ectiveness of the composite depends on the decreasing
collagen rapid degradability pro�le for prolonged treatment
and healing e�ciency.
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Figure 3: SEM images of collagen composites: (a) M1 (×200); (b) M4 (×200); (c) M5 (×200); (d) M7 (×500); and (e) M7 (×50000).

4. Conclusions

ZnO particles increased the pseudoplastic behavior of the
composites based on collagen in solution phase. Dextran
presence did not signi�cantly in
uence the rheological pro-
�les of the hydrogels. ZnO particles increased the consistency
indexes and reduced the 
ow indexes of solution phases.

	e 
ow parameters indicated the Herschel-Bulkley model

for better describing the rheological behavior.

Water uptake ability for the hydrogel composites with

dextran and collagen was lower, in comparison with neat

collagen ones. ZnO particles were able to reduce the water

uptake for both collagen and collagen/dextran matrixes.
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Figure 4: In vitro enzymatic degradation of collagen composites.

SEM morphology indicated the decrease of pore sizes
and an increase in uniformity when ZnO was used. 	e
inorganic particles were found in a dispersed state decorating
the collagen and collagen/dextran �brils.

Using ZnO particles the in vitro degradation pro�le of the
composites can be adjusted by increasing the length of the
degradation process (enzymatic assisted).	e biodegradabil-
ity of the composites can be tailored by both dextran andZnO
particles. But large amounts of ZnO particles (75%) can lead
to disruption of the composite phase distribution by exposing
more collagen to the enzymatic process.

Based on the performances of the hydrogels stationary
rheometry and of porous structures morphological and bio-
logical investigations, the antimicrobial spongious composite
based on collagen and dextran with 50% ZnO could be
selected for applications to patientwounds, being a promising
biomaterial in skin regeneration.
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