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Abstract

We obtain new combinatorial formulae for modified Hall–Littlewood polynomials,
for matrix elements of the transition matrix between the elementary symmetric
polynomials and Hall-Littlewood’s ones, and for the number of rational points
over the finite field of unipotent partial flag variety. The definitions and exam-
ples of generalized mahonian statistic on the set of transport matrices and dual
mahonian statistic on the set of transport (0,1)–matrices are given. We also review
known q–analogues of Littlewood–Richardson numbers and consider their possi-
ble generalizations. Some conjectures about multinomial fermionic formulae for
homogeneous unrestricted one dimensional sums and generalized Kostka–Foulkes
polynomials are formulated. Finally we suggest two parameter deformations of
polynomials Pλµ(t) and one dimensional sums.

Dedicated to Richard Askey on the occasion of his 65th birthday

Résumé

Nous obtenons des nouvelles formules combinatoires concernant les polynômes de
Hall-Littlewood modifiés, la matrice de transition entre les functions symétriques
élémentaires et celles de Hall-Littlewood, et le nombre de points rationnels sur
la sous-variété de points fixes d’un élément unipotent d’une variété de drapeau
sur un corps fini. On définie la notion de statistique mahonienne généralisee sur
l’ensemble des matrices de transport, ainsi que son duale, et on en fournit des
exemples. Ces definitions généralisent naturellement la définition de statistique
mahonienne introduite par D. Foata.
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§0. Introduction.

In this paper certain combinatorial and algebraic applications and generalizations of
fermionic formulae for unrestricted one dimensional sums, obtained in [HKKOTY], are
studied. The main applications of the fermionic formulae for unrestricted one dimensional
sums considered in [HKKOTY] are related to the fermionic formulae for the branching
functions and characters of some integrable representations of the affine Lie algebra ŝl(n).

Among applications considered in the present paper are the following ones:

• New combinatorial formula for modified Hall–Littlewood polynomials Q′λ(Xn; t)
(Theorem 3.1). Let λ be a partition, l(λ) ≤ n, then

Q′λ(Xn; t) =
∑
µ

Pλµ(t)mµ(Xn), (0.1)

where mµ(Xn) denotes the monomial symmetric function corresponding to partition µ,
Xn = (x1, . . . , xn), and

Pλµ(t) =
∑
{ν}

tc(ν)
n−1∏
k=1

∏
i≥1

[
ν

(k+1)
i − ν

(k)
i+1

ν
(k)
i − ν

(k)
i+1

]
t

, (0.2)

summed over all flags of partitions ν = {0 = ν(0) ⊂ ν(1) ⊂ · · · ⊂ ν(n) = λ′}, such that

|ν(k)| = µ1 + · · ·+ µk, 1 ≤ k ≤ n, and c(ν) =
n−1∑
k=0

∑
i≥1

(
ν

(k+1)
i − ν

(k)
i

2

)
.

• New combinatorial formula for the transition matrix M(e, P ) (Theorem 3.4). Let
λ, µ be partitions, then

M(e, P )λµ =
∑
η

KηλKη′µ(t) := Rµλ(t), where

Rλµ(t) =
∑
{ν}

r−1∏
k=1

∏
i≥1

[
ν

(k+1)
i − ν

(k+1)
i+1

ν
(k)
i − ν

(k+1)
i+1

]
t

, (0.3)

summed over all flags of partitions {ν} = {0 = ν(0) ⊂ ν(1) ⊂ · · · ⊂ ν(r) = λ′} such that
ν(k)/ν(k−1) is a horizontal µk–strip, 1 ≤ k ≤ r, r = l(µ).

• New combinatorial formula for the number of rational points Fλµ (Fq) over the finite
field Fq of the unipotent partial flag variety Fλµ (Section 1.4):

Fλµ (Fq) = qn(λ)Pλµ(q−1), (0.4)

where polynomial Pλµ(t) is given by (0.2).
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• New interpretation of the number αλ(S; p) of chains of subgroups

{e} ⊆ H(1) ⊆ · · · ⊆ H(m) ⊆ G

in a finite abelian p–group of type λ such that each subgroup H(i) has order pai , 1 ≤ i ≤ m

(Subsection 1.6):
pn(λ)αλ(S; p−1) = Pλµ(p). (0.5)

Here S = {a1 < a2 < · · · < am} is a subset of the set [1, |λ| − 1], and µ := µ(S) =
(a1, a2 − a1, . . . , am − am−1, |λ| − am).

• New interpretation of the Schilling–Warnaar t–supernomial coefficients
[
L
a

]
t

and

T (L, a), [ScW], and Example 1, Subsection 3.1. Let λ = (λ1, . . . , λk) be a partition, then[
L
a

]
t

=
∑
η

KηµK̃ηλ(t) = tn(λ)Pλµ(t−1), (0.6)

where Li = λ′i − λ′i+1, 1 ≤ i ≤ k, λk+1 = 0, µ =
(

1
2
|λ| − a,

1
2
|λ|+ a

)
, and

[
L
a

]
q

=
∑

j1+···+jk=a+
|λ|
2

t

k∑
l=2

jl−1(Ll + · · ·+ Lk − jl) [
Lk
jk

] [
Lk−1 + jk
jk−1

]
. . .

[
L1 + j2
j1

]
.

T (L, a) := t
1
4L

tC−1
k
L− a2

k

[
L
a

]
1/t

= t−BPλµ(t), (0.7)

where B =
1
2
n(λ) +

1
k
n(µ′)− 1

4k
(
|λ|2 − (k + 2)|λ|

)
=

1
4
LtC−1

k L+
1
k

(
n(µ′) +

|µ|
2

)
;(

C−1
k

)
ij

:= min(i, j)− ij

k
, 1 ≤ i, j ≤ k− 1, stands for the inverse of the Cartan matrix Ck

of the Lie algebra of type Ak−1.
We introduce also the SU(n)–analogue of t–multinomial coefficients (0.6) and (0.7)

(Definition 3.2).

• Definition and examples of the generalized mahonian statistics on the set of transport
matrices Pλµ (Section 2). This is a natural generalization of notion of mahonian statistic
on the set of words introduced and studied by D. Foata in particular case λ = (1n), [F],
see also [Ma], [An], [ZB], [FZ], [GaW].

• Connection between the rigged configurations polynomials RCλR(t) for a sequence
of rectangular partitions R = (R1, . . . , Rp), cf. [Ki1], and the classically restricted one
dimensional sums f cl

R (bTmax ;µ) corresponding to the tensor product of ”rectangular”crystals
BR1 ⊗ · · · ⊗BRp (Section 7).
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• Definition, examples and properties of the two parameter deformation Bλµ(q, t) of
the unrestricted one dimensional sum Pλµ(t) (Section 8).

The paper is organized as follows:
In Section 1 we recall the definition of modified Hall–Littlewood polynomials, and

explain a connection between the character of level 1 basic representation of the affine Lie
algebra ŝl(n), and the limit N →∞ of the modified Hall–Littlewood function correspond-
ing to partition µ = (1N ), see [Ki2]. This result was extended to more general cases in
[Ki2], [NY] and [HKKOTY]. In Subsections 1.4 and 1.5 we explain a connection between
the modified Hall–Littlewood polynomials and the unipotent partial flag varieties [HS],
[LLT], [Sh], the Demazure characters [Ka2], [HKMOTY1,2], and the number of chains of
subgroups in a finite abelian p–group, [Bu1,2,3], [F], [St].

In Section 2 we introduce the generalized mahonian and dual mahonian statistics on
the set of transport matrices and on the set of (0,1)–transport matrices, respectively, and
give few examples of such statistics.

In Section 3 we state the fermionic formulae for polynomials Pλµ(t) =
∑
η

KηµKηλ(t)

(Theorem 3.1) and Rλµ(t) =
∑
η

KηµKη′λ(t) (Theorem 3.4), and study their special cases.

In particular, we show that polynomials Pλµ(t) and tn(λ)Pλµ(t−1) give a natural general-
ization of generalized p–binomial coefficients introduced and studied by F. Regonati [R],
L. Butler [Bu1], S. Fishel [F], . . ., and supernomial and multinomial coefficients introduced
by A. Schilling and S.O. Warnaar, [Sc], [ScW], [W], and A.N. Kirillov [Ki2].

In Section 4 we give algebraic proofs of main results, formulated in Section 3, namely
proofs of Theorems 3.1 and 3.4. A combinatorial proof of these theorems will appear
elsewhere.

The main purpose of Section 5 is to show frequent apparitions of the one dimensional
sums related to the tensor product of crystals BR1 ⊗ · · · ⊗ BRp in different branches of
Mathematics such as: representation theory, combinatorics, algebraic geometry, theory of
finite abelian groups, and integrable systems. In our opinion, the fundamental role played
by one dimensional sums in Mathematics and Mathematical Physics may be explained by
the fact that one dimensional sums can be considered as a natural q–analog of the tensor
product multiplicities. In the literature there exist at least 4 or 5 ways to define a q–analog
of the Littlewood–Richardson numbers, see, e.g., [GoW], [BKMW], [CL], [LLT], [KLLT],
[KS], . . ..

In Section 6 we overview several known ways to define the q–analogues of the tensor
product multiplicities, and formulate conjectures (Conjectures 6.4, 6.5, 6.8 and 6.9) which
relate the classically restricted one dimensional sums f cl

R (bTmin ;µ) := CKµR(t), the ribbon
Kostka polynomialsK(p)

λµ (t), introduced by A. Lascoux, B. Leclerc and J.-Y. Thibon, [LLT],
and the generalized Kostka polynomials KλR(t), introduced by M. Shimozono and J. Wey-
man. We expect that only in the case of dominant sequence of rectangular partitions R
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the crystal CKµR(t), the ribbon K(p)
(R)µ(t) and the generalized Kostka polynomials KµR(t)

give the equivalent q–analogues of the tensor product multiplicities. We also formulate
some unsolved problems.

In Section 7 we formulate few conjectures about multinomial fermionic formulae for
homogeneous unrestricted one dimensional sums, and generalized Kostka–Foulkes polyno-
mials corresponding to a sequence of rectangles.

In Section 8 we suggest two parameter deformations of polynomials Pλµ(t) and one
dimensional sums.

Acknowledgments. This paper presents an extended version of my talk ”Fermionic
formulae for the branching functions of the affine Lie algebra ŝl(n)” delivered at PhD
Centennial Conference, Department of Mathematics, University of Wisconsin–Madison,
May 22–24, 1997. I would like to thank Richard Askey and Georgia Benkart for invitation
to this conference. I am thankful to Goro Hatayama, Atsuo Kuniba, Franklin M. Maley,
Masato Okado, Mark Shimozono, Taichiro Takagi, Jean–Yves Thibon and Yasuhiko Ya-
mada for very fruitful discussions and suggestions. I wish to thank L. Vinet for hospitality
at the CRM, University of Montreal, where this work was completed.

§1. Modified Hall-Littlewood polynomials.

1.1. Definition.

Let λ be a partition, l(λ) ≤ n, Qλ(Xn; q) and Pλ(Xn; q) be the Hall–Littlewood
polynomials corresponding to λ, see e.g. [M], Chapter III.

Definition 1.1. A modified Hall–Littlewood polynomial Q′λ(Xn; q) is defined to be

Q′λ(Xn; q) = Qλ(Xn/(1− q); q) := Qλ(X ′
n; q), (1.1)

where the variables X ′
n are the products xqj−1, j ≥ 1, x ∈ Xn := (x1, . . . , xn).

The Q′λ(X; q) serve to interpolate between the Schur functions sλ and the complete
homogeneous symmetric functions hλ, because

Q′λ(X; 0) = sλ(X)

as it is clear from (1.1), and
Q′λ(X; 1) = hλ(X)

as it is clear from Cauchy’s identity (1.3) below.

Proposition 1.2.

Q′λ(X; q) =
∑
µ

(∑
η

KηµKηλ(q)

)
mµ(X) =

∑
η

sη(X)Kηλ(q). (1.2)
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Proof. Let us remind that the Hall-Littlewood polynomials Qλ and Pλ satisfy the
following orthogonality condition (see, e.g. [M], Chapter III, (4.4))∑

λ

Qλ(X; q)Pλ(Y ; q) =
∏

x∈X, y∈Y

1− qxy

1− xy
.

Hence, (cf. [M], Example 7a on p.234)∑
λ

Q′λ(X; q)Pλ(Y ; q) =
∏
k≥0

∏
x∈X, y∈Y

1− qk+1xy

1− qkxy
=

∏
x∈X, y∈Y

(1− xy)−1

=
∑
λ

sλ(x)sλ(y). (1.3)

Here we have used the Cauchy identity for Schur functions, [M], Chapter I, (4.3). It
remains to remind the definition of the Kostka–Foulkes polynomials:

sλ(Y ) =
∑
µ

Kλµ(q)Pµ(Y ; q). (1.4)

1.2. Modified Hall–Littlewood polynomials for partition λ = (1N ).

Corollary 1.3. Let µ = (µ1, . . . , µn) be a composition, |µ| = N . Then∑
λ

KλµKλ(1N )(q) = qn(µ′)

[
N

µ1, . . . , µn

]
q

, (1.5)

where
[

N
µ1, . . . , µn

]
q

=
(q; q)N

(q; q)µ1 . . . (q; q)µn

is the q–analog of gaussian multinomial coeffi-

cient, and (a; q)n :=
n−1∏
j=0

(1− aqj).

Proof. First of all we have to compute Q′(1N )(X; q). For this goal, let us remark that
([M], Chapter III, (2.8))

Q(1N )(X; q) = (q; q)NeN (X), (1.6)

where em(X) is the elementary symmetric function of degree m in the variables X. Hence∑
λ

sλ(X)Kλ(1N )(q) = Q(1N )(X/((1− q); q) = (q; q)NeN (X/(1− q)).

Now let us put E(X) =
∑
N≥0

eN (X)tN =
∏
x∈X

(1 + tx). Then we have

E (X/(1− q)) =
∏
x∈X

(−tx; q)∞,
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and using the Euler identity

(x; q)∞ =
∞∑
n=0

xnq
n(n−1)

2

(q; q)n
, (1.7)

we obtain the following result

E (X/(1− q)) =
∑
N≥0

∑
µ`N

qn(µ′)

(q; q)µ
mµ(X)

 tN , (1.8)

where for a composition µ = (µ1, µ2, . . . , µn) we set (q; q)µ :=
n∏
j=1

(q; q)µj . Finally, from

(1.6) and (1.8) we obtain immediately that

Q′(1N )(Xn; q) =
∑
λ

sλ(Xn)Kλ(1N )(q) =
∑
µ`N

qn(µ′)

[
N

µ1, . . . , µn

]
mµ(Xn). (1.9)

1.3. Hall-Littlewood polynomials and characters of the affine Lie algebra ŝl(n).

We consider the identity (1.9) as the finitization of the Weyl–Kac–Peterson character
formula (WKR–formula for short, see, e.g. [Kac], (12.7.12)) for the level 1 basic represen-
tation L(0) of the affine Lie algebra ŝl(n). Indeed, the WKP–formula for the character
chL(0) may be recovered as an appropriate limit of (1.9). More exactly, let us consider the
following form of (1.9):

q−
(N2−N)n

2

∑
λ

sλ(x1, . . . , xn)
(x1 . . . xn)N

Kλ(1nN )(q) =

∑
k ∈ Zn

|k| = 0, ki ≥ −N, ∀i

xk11 · · ·xkn
n q

1
2k

2
i

[
nN

k1 +N, . . . , kn +N

]
q

. (1.10)

First of all, limN→∞ RHS(1.10) =

1
(q; q)n−1

∞

∑
m∈Zn, |m|=0

xmq
1
2

∑
m2

i =
1

(q; q)n−1
∞

∑
k∈Zn−1

zk11 · · · zkn−1
n−1 q

1
2kAn−1k

t

,

where zi =
xi
xi−1

, 1 ≤ i ≤ n− 1, x0 := xn. On the other hand,

lim
N→∞

LHS(1.10) =
∑

λ=(λ1≥λ2≥···≥λn)∈Zn, |λ|=0

sλ(x1, . . . , xn)bλ(q), (1.11)
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where bλ(q) is defined to be

bλ(q) := lim
N→∞

q−
n(N2−N)

2 KλN (1|λN |)(q) =
qn(λ′)

(q; q)n−1
∞

∏
1≤i≤j≤n

(1− qλi−λj−i+j), (1.12)

and for a given weight λ we set λN := λ+ (Nn). The last equality in (1.12) follows from
the hook–formula (see, e.g. [M], Example 2 on p.243):

Kλ(1N )(q) =
qn(λ′)(q; q)N∏
x∈λ(1− qh(x))

,

where h(x) := λi+λ′j− i−j+1 is the hook–length corresponding to the box x = (i, j) ∈ λ.
Finally, it follows from (1.10)–(1.12) that∑

λ

sλ(x1, . . . , xn)bλ(q) =
(x)

(q; q)n−1
∞

, (1.13)

summed over all partitions λ such that l(λ) ≤ n, and |λ| ≡ 0(mod n), and where

(x) =
∑

m=(m1,...,mn)∈Zn, |m|=0

xmq
1
2 (m2

1+···+m
2
n)

is the theta–function corresponding to the basic representation L(0) of ŝl(n), [Kac], §12.7.
It is well-known that the RHS(1.13) is equal to the character of the level 1 basic represen-
tation L(0). Hence, bλ(q) coincide with the branching functions ([Kac], §12.2) for the level
1 basic representation L(0) of the affine Lie algebra ŝl(n) (cf. [Ki2]).

For further results concerning a connection between modified Hall–Littlewood func-
tions and characters, and branching functions of the affine Lie algebra ŝl(n), see [Ki2],
[NY], and [HKKOTY].

1.4. Modified Hall–Littlewood polynomials and unipotent flag varieties.

Polynomials Pλµ(q) :=
∑
η

KηµKηλ(q) have the following geometric interpretation due

to [HS] and [Sh]. Let V be an n–dimensional vector space over an algebraically closed field
k, and let µ, l(µ) = r, be a composition of n. A µ–flag in V is a sequence F = {V1, . . . , Vr}
of subspaces of V such that V1 ⊂ V2 ⊂ · · · ⊂ Vr = V , and dimVi = µ1 + · · ·+µi, 1 ≤ i ≤ r.
Let Fµ denote the set of all µ–flags in V . The group G := GL(V ) acts transitively on Fµ,
so that Fµ may be identified with G/P , where P is the subgroup which fixes a given flag,
and therefore Fµ is a non–singular projective algebraic variety, the partial flag variety of
V .

Now let u ∈ G be a unipotent endomorphism of V of type λ, so that λ is a partition
of n which describes the Jordan canonical form of u, and let Fλµ ⊂ Fµ be the set of all
µ–flags F ∈ Fµ fixed by u. The set Fλµ is a closed subvariety of Fµ.
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It has been shown by N. Shimomura ([Sh], see also [HS]), that
• if k = C is the field of complex numbers, the variety Fλµ admits a cell decomposition,

involving only cells of even real dimensions, and

t2n(λ)Pλµ(t−2) :=
∑
η

KηµK̃ηλ(t2) =
∑
i

t2idimH2i(Fλµ ,Z) (1.14)

is the Poincare polynomial of Fλµ/C, where K̃ηλ(t) := tn(λ)Kηλ(t−1);
• if k contains the finite field of q elements, Fq, the number Fλµ (q) of Fq–rational

points of Fλµ is equal to qn(λ)Pλµ(q−1).

1.5. Modified Hall–Littlewood polynomials and Demazure characters.

Let g be a symmetrizable Kac–Moody algebra. Recall that for every dominant integral
weight , there exists a unique (up to isomorphism) irreducible module V = V () of highest
weight . The character of V , denoted by chV , is the formal sum

chV =
∑
′

(dimV′) e
′
,

summed over all weights ′, where V′ is the weight subspace of V of weight ′, and where e
′

is a formal exponential. This sum makes sense because each V′ is finite–dimensional. For
definitions and further details, see [Kac].

Let b be the Borel subalgebra of g and let w be an element of the Weyl group W . The
b–module generated by the one dimensional extremal weight subspace Vw() is denoted by
Vw() and called a Demazure module. They are finite–dimensional subspaces which form a
filtration of V which is compatible with the Bruhat order of W , i.e. Vw() ⊆ Vw′() whenever
w ≤ w′ with respect to the Bruhat order, w,w′ ∈W , and

⋃
w∈W

Vw() = V (), see, e.g., [Ka2].

From now let us assume that g = ŝl(n). Let i and ri, 0 ≤ i ≤ n − 1, denote the
fundamental weight and simple reflection with respect to the simple root αi, of ŝl(n). It
is convenient to define i and ri for all i ∈ Z using the agreement i = i+n, ri = ri+n.

Now we are ready to explain an interpretation of the modified Hall–Littlewood polyno-
mial Q′(lL)(Xn; q) corresponding to a rectangular partition (lL) as the character of certain
Demazure’s module. This result is due to [KMOTU2]:

Let L ≥ 1 be an integer, and w := wL,n = rLn−1rLn−2 · · · rL+2rL+1rL be an element
of the affine Weyl group W (A(1)

n−1) of type A(1)
n−1. Then

e−l0chVw(lL) = q−E0Q′(lL)(Xn; q), (1.15)

where E0 = l

[
L

n

](
L− n

2

([
L

n

]
+ 1
))

.

1.6. Modified Hall–Littlewood polynomials and chains of subgroups in a finite abelian
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p–group.

Let p be a prime number. It is well–known (see, e.g. [H]) that any abelian group G

of order pn is isomorphic to a direct product of cyclic groups

G ≈ Z/pλ1Z× · · · × Z/pλlZ

where λ1 ≥ λ2 ≥ · · · ≥ λl > 0, λ1 + · · ·+ λl = n. The partition λ is called the type of G.
For any partition ν ⊆ λ, let us denote by αλ(ν; p) the number of subgroups of type ν

in a finite abelian p–group of type λ.
More generally, for any flag of partitions {ν} = {ν(1) ⊆ ν(2) ⊆ · · · ⊆ ν(m) ⊂ λ} denote

by αλ(ν(1), . . . , ν(m); p) (or αλ({ν}; p) for short) the number of chains of subgroups

{e} ⊆ H(1) ⊆ H(2) ⊆ · · · ⊆ H(m) ⊆ G

in a finite abelian p–group G of type λ such that the type of H(i) is ν(i).
The problem of counting the number of subgroups of type ν in a finite abelian p–group

of type λ has a long history and goes back at least to the beginning of 1900’s, see e.g.,
papers by G.A. Miller [Mi] and by H. Hiller [Hi]. In 1934 G. Birkhoff [Bi] has discovered
an interesting connection between the set of subgroups of finite abelian p–group and that
of so–called standard matrices of G. Birkhoff. In 1948 three mathematicians, S. Delsarte
[De], P. Dyubyuk [Dy], and Yenchien Yeh [Y] published formulae for the number αλ(ν; p)
of subgroups of type ν in a finite abelian p–group of type λ:

αλ(ν; p) =
∏
j≥1

pν
′
j+1(λ

′
j−ν

′
j)

[
λ′j − ν′j+1

ν′j − ν′j+1

]
p

, (1.16)

where λ′ is the conjugate of λ, and ν′ is the conjugate of ν.
In order to explain a connection between the numbers αλ(ν; p) and αλ({ν}; p) and

unrestricted one dimensional sums Pλµ(t), it is convenient to introduce the following poly-
nomials pn(λ)αλ(ν; p−1) and pn(λ)αλ({ν}; p−1).

Proposition 1.4. i) For any partitions ν ⊆ λ,

pn(λ)αλ(ν; p−1) =
∏
j≥1

p

(
λ′j − ν′j

2

)
+

(
ν′j
2

) [
λ′j − ν′j+1

ν′j − ν′j+1

]
p

. (1.17)

ii) Let {ν} = {0 = ν(0) ⊂ ν(1) ⊂ · · · ⊂ ν(m) ⊂ ν(m+1) = λ} be a flag of partitions. Then

pn(λ)αλ({ν}; p−1) = pc(ν)
m∏
i=1

∏
j≥1

[
(ν(i+1))′j − (ν(i))′j+1

(ν(i))′j − (ν(i))′j+1

]
p

, (1.18)
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where c(ν) =
m∑
i=0

∑
j≥1

(
(ν(i+1))′j − (ν(i))′j

2

)
.

Proofs of (1.17) and (1.18) easily follow from the formula (1.16).

Definition 1.5 (see, e.g., [Bu1]). Let p be a prime number, λ be a partition of n, and
S = {1 ≤ a1 < · · · < am < n} be a subset of [1, n − 1]. Let us denote by αλ(S; p) the
number of chains of subgroups

{e} ⊆ H(1) ⊆ · · · ⊆ H(m) ⊆ G

in a finite abelian p–group G of type λ, where each subgroup H(i) has order pai .

It follows from Definition 1.5, that

αλ(S; p) =
∑
{ν}

αλ({ν}; p), (1.19)

summed over all flags of partitions {ν} = {0 = ν(0) ⊂ ν(1) ⊂ · · · ⊂ ν(m) ⊂ ν(m+1) = λ}
such that |ν(k)| = ak, 1 ≤ k ≤ m.

Proposition 1.6. Let λ be a partition, and S = {1 ≤ a1 < · · · < am < |λ|} be a
subset of [1, |λ| − 1]. Then

pn(λ)αλ(S; p−1) = Pλµ(p), (1.20)

where µ := µ(S) stands for the composition µ = (a1, a2 − a1, . . . , am − am−1, |λ| − am).

Proof follows easily from (1.19) and (0.2).

Corollary 1.7. Let λ and S be as in Proposition 1.6. Then

αλ(S; p) =
∑
η

Kηµ(S)K̃ηλ(p), (1.21)

where µ(S) = (a1, a2 − a1, . . . , am − am−1, |λ| − am), and K̃ηλ(p) = pn(λ)Kηλ(p−1).

Below we will give few examples of application of the formula (1.21).

• Follow to [R], [Bu1], [Fi], let us define the generalized p–binomial coefficient
[
λ′

k

]
to be the number of subgroups of order pk of a finite abelian group of type λ. If λ = (1n),

then λ′ = (n), and
[
λ′

k

]
coincides with p–binomial coefficient

[
n
k

]
p

. Note also that

[
λ′

k

]
=
∑
ν`k

αλ(ν; p) =
∑
ν`k

pc(ν)
∏
j≥1

[
λ′j − ν′j+1

ν′j − ν′j+1

]
p

, (1.22)
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where c(ν) =
∑
j≥1

ν′j+1(λ
′
j − ν′j).

It follows from formulae (1.22) and (3.3) that[
λ′

k

]
=
[
L
a

]
p

,

where Li = λ′i − λ′i+1, 1 ≤ i ≤ l(λ′), L = (Li), a =
n

2
− k, and

[
L
a

]
t

stands for the

Schilling–Warnaar t–supernomial coefficient (0.6).
It is easy to see from Corollary 1.7, that[

λ′

k

]
= αλ({k}; p) =

∑
η

Kηµ(k)K̃ηλ(p),

where µ(k) = (k, n − k). On the other hand, it is clear that the Kostka–Foulkes number
Kη,(k,n−k) = 0 unless η = (η1, η2) and η1 ≥ k; in the later case Kη,(k,n−k) = 1. Thus,[

λ′

k

]
=
∑
l≥k

K̃(l,n−l),λ(p),

and [
λ′

k

]
−
[

λ′

k − 1

]
= K̃(k,n−k),λ(p).

This result is due to Lynne Butler [Bu3].
• Let λ be a partition, |λ| = n, and S = {a1, . . . , am} be a subset of [1, n− 1]. Follow

[St], [Bu1], [Bu2], consider the following polynomial

βλ(S; p) =
∑
T⊆S

(−1)|S−T |αλ(T ; p).

It is known, [St], [Bu1], [Bu2], that βλ(S; p) is equal to the top (and only non–vanishing)
Betti number of a certain simplicial complex λ(S) = λ(S; p); we refer the reader to [St] for
definition of the simplicial complex λ(S) and further details.

Let us show that polynomial βλ(S; p) has nonnegative coefficients. Indeed,

βλ(S; p) =
∑
T⊆S

(−1)|S−T |αλ(T ; p) =
∑
η

∑
T⊆S

(−1)|S−T |Kηµ(T )

 K̃ηλ(p).

Our nearest aim is to show that the number

∑
T⊆S

(−1)|S−T |Kηµ(T )

 ≥ 0. For this

goal let us show that the latter number counts the number of Littlewood–Richardson

12



tableaux of a certain skew shape b(S) and weight η. More precisely, for a given subset
S = {a1 < a2 < · · · < am} of the set [1, n− 1], the skew shape b(S) is the border strip with
a1 squares in row 1, a2 − a1 squares in row 2, . . . , n − am squares in row m + 1. For the
reader’s convenience, let us remind that

• a skew shape is called a border strip if consecutive rows overlap by exactly one
square (see, e.g., [M], p.5);

• a skew tableau T is called Littlewood–Richardson tableau, if the word w(T ) corre-
sponding to the tableau T is a lattice permutation (see, e.g. [M]. Chapter I, §9).

Proposition 1.8 (R. Stanley [St]). Let S = {a1 < · · · < am} be a subset of the set
[1, n − 1], and b(S) stands for border strip with a1, squares in row 1, a2 − a1 squares in
row 2, . . . , n− am squares in row m+ 1. Then

βλ(S; p) = K̃b(S),λ(p),

where K̃b(S),λ(p) stands for the cocharge Kostka–Foulkes polynomial corresponding to the
skew shape b(S), see, e.g., [Ki1], [Bu1].

Indeed,

βλ(S; p) =
∑
η

∑
T⊆S

(−1)|S−T |Kηµ(T )

 K̃ηλ(p) =
∑
η

#|Tab0(b(S), η)|K̃ηλ(p)

= K̃b(S),λ(p).

To deduce the second equality we used the following formula∑
T⊆S

(−1)|S−T |Kηµ(T ) = #|Tab0(b(S), η)|, (1.23)

where Tab0(b(S), η) stands for the set of all Littlewood–Richardson tableaux of skew shape
b(S) and weight η. The formula (1.23) can be obtained using the results from [KKN].

Finally, let us describe (see [Bu1], Definition 1.3.1) the statistic value, denoted by v

on the set of tabloids. This statistic generates the generalized mahonian statistic VAL on
the set of transport matrices, see Section 2.

Definition 1.9 ([Bu1]). Let T be a tabloid of any shape and weight, and x ∈ T be an
entry of T . Then the value v(x) of the entry x in T is the number of smaller entries in
the same column and above x, or in the next column to the right and below x. The value
v(T ) of T is the sum of the values of the entries in T : v(T ) =

∑
x∈T

v(x).

Example. Consider

T = 1 2 1 2
2 2 1 3
3 2 2
3 2 3

∈ T (4433, 374),
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Then v(T ) = (0 + 1 + 3 + 2) + (1 + 0 + 0 + 0) + (0 + 0 + 2 + 3) + (0 + 1) = 13. Note that
the Shimomura statistic d(T ) (see Section 2) of the tabloid T is equal to 10, see Example
in Subsection 2.3.

Proposition 1.10 ([Bu1]). Let λ be a partition, |λ| = n, and S = {a1 < a2 < · · · <
am} be a subset of [1, n− 1]. Then

αλ(S; p) =
∑
T

pv(T ),

summed over all tabloids T of shape λ and weight µ := µ(S).

§2. Generalized mahonian statistics.

2.1. Mahonian statistics on the set M(µ).

We start with recalling the definition of mahonian statistic on words, [F]. A word
is a finite sequence of letters, w = w1 . . . wN , where each letter is in the set {1, . . . , n}.
Let µ = (µ1, . . . , µn) be a composition, |µ| = N , denote by M(µ) the set of all words
w = w1 . . . wN of weight µ, i.e. µi is the number of occurrences of i in the word w. It is
well–known (see, e.g. [An]) that the cardinality of the set M(µ) is equal to the multinomial

coefficient
(

N
µ1, . . . , µn

)
.

Definition 2.1 ([F]). A function ϕ on the set M(µ) is called mahonian statistic, if∑
w∈M(µ)

qϕ(w) =
[

N
µ1, . . . , µn

]
q

.

Examples. 10 (Inversion number, [Ma]). Let w ∈M(µ) be a word, define the number
of inversions for the word w to be

INV (w) =
∑

1≤i<j≤N

χ(wi > wj).

where χ(A) = 1 if A is true and 0 otherwise.
20 (Major index, [Ma]). Define the major index of the word w to be

MAJ(w) =
N−1∑
m=1

mχ(wm > wm+1).

30 (Modified major index, [Ki2]). Define the modified major index of the word w to
be

M̃AJ(w) =
N−1∑
m=1

mχ(wm ≥ wm+1)− n(µ′), where n(µ′) =
n∑
i=1

(
µi
2

)
.
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40 (Zeilberger’s index, [ZB]). For given w ∈M(µ) let wij be the subword of w formed
by deleting all letters wm such that wm 6= i or j. For example, if w = 2411213144321 ∈
M(5323), then w12 = 21121121, w13 = 1113131, w14 = 41111441, w23 = 22332, w24 =
242442, w34 = 43443.

• Zeilberger’s index, or Z–index, of a word w is defined to be the sum of major indices
of all 2–letter subwords wij of w:

Z(w) =
∑

1≤i<j≤n

MAJ(wij).

• Modified Zeilberger’s index, or Z̃–index, of a word w is defined to be the sum of
modified major indices of all 2–letter subwords wij of w:

Z̃(w) =
∑

1≤i<j≤n

M̃AJ(wij).

Next example will require some definitions. First, for a word w let denote w the non–
decreasing rearrangement of the letters of w. Second, if a and b are positive integers, with
a ≤ n, let

C[a, b] =
{

[a+ 1, a+ 2, . . . , b], if a ≤ b;
[1, 2, . . . , b, a+ 1, a+ 2, . . . , n], if a > b.

50 (Denert’s index, M. Denert, see e.g., [FZ], [GaW]). Define the Denert index of a
word w to be

DEN(w) =
∑

1≤i<j≤n

χ(wi ∈ C[wj , wj ]).

For example, if w = M(5323) as above, then INV (w) = 29, MAJ(w) = 47, M̃AJ(w) = 42,
Z(w) = 46, Z̃(w) = 31, DEN(w) = 46.

Theorem 2.2 ([Ma], [ZB], [Ki2], [FZ]). The statistics INV, MAJ, M̃AJ , Z, Z̃, DEN
are mahonian.

2.2. Dual mahonian statistics.

Now we are going to extend the notion of mahonian statistic to the set of transport
matrices. Let us denote by Pλµ (respectively Rλµ) the set of all matrices of non–negative
integers (respectively the set of all (0,1)–matrices) with row sums λi and column sums µj .
It is clear that if λ = (1N ) then the both sets P(1N )µ and R(1N )µ can be naturally identified
with the set M(µ).

Definition 2.3. A function ψ on the set Rλµ is called dual mahonian statistic if∑
m∈Rλµ

qψ(m) =
∑
η

KηµKη′λ(q).
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Let us give a few examples of the dual mahonian statistics.
10. The first example is due to A. Zelevinsky, see [M], Chapter III, §6, Example 5,

p.244. Let λ and µ be compositions of the same integer n, and m = (mij) ∈ Rλµ. For
each element a = mij of the matrix m we denote by i(a) := i, and j(a) := j its first and
second coordinates. We denote by supp(m) = {mij ∈ m | mij 6= 0} the set of all nonzero
entries of m. If a = mij ∈ supp(m) we define the height of a to be ht(a) =

∑
1≤k≤i

mkj . For

each a ∈ supp(m) let us define

i+(a) =
{
i(b), if ∃b ∈ supp(m) such that j(a) = j(b) and ht(b) = ht(a) + 1;
+∞, if such b doesn’t exist.

Follow A. Zelevinsky [ibid], for each m ∈ Rλµ we define Z̃EL(m) =
∑

a∈supp(m)

z̃(a), where

z̃(a) is equal to the number of b ∈ supp(m) such that
i) j(b) < j(a),
ii) ht(b) = ht(a),
iii) i(a) < i(b) < i+(a).

Theorem 2.4 (A. Zelevinsky).

Rλµ(q) =
∑

m∈Rλµ

qZ̃EL(m),

in other words, the statistic Z̃EL is dual mahonian.

There exists a bijection between the set Rλµ and that of all column strict tabloids of
shape λ′ and weight µ. Let ν and µ be compositions of the same integer n. A tabloid of
shape ν and weight µ is a filling of the diagram of boxes with row lengths ν1, ν2, . . . , νr, such
that the number i occurs µi times, and such that each column is nondecreasing. A tabloid
of shape ν and weight µ is called a column strict if each column is strictly decreasing. For
example,

1 2
1 3 1
2
4 3

and 1 1
2 2 1
3
4 3

are tabloid and column strict tabloid of weight (3221) and shape (2312). We denote by
T (ν, µ) (respectively, T̃ (ν, µ)) the set of all tabloids (respectively, the set of all column
strict tabloids) of shape ν and weight µ.

Now we are ready to describe a bijection Rλµ ↔ T̃ (λ′, µ) in the case when λ is a
partition. Namely, consider a matrix m = (mij) ∈ Rλµ. Let us fill the shape λ′ by positive
integers according to the following rule: if mij 6= 0, put the number i in the box of the
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shape λ′ with coordinates (i, j). As a result we obtain the tabloid T of shape λ′ and weight
µ. For example, consider λ = (3221), µ = (2231), and

m =


1 0 1 0
0 1 1 0
1 1 0 1
1 0 0 0

 ∈ Rλ,µ.

The corresponding column strict tabloid is 1 2 1 3
3 3 2
4

.

It is easy to see that the correspondence m → T defines a bijection. Let us continue
and define a statistic Z̃EL on the set of all column strict tabloids. Namely, for any column
strict tabloid T of shape ν, let Z̃EL(T ) denote the number of pairs (x, y) ∈ ν × ν such
that y lies to the left from x (in the same row) and T (x) < T (y) < T (x↓). We have used
here the following notations: if a box x has coordinates (i, j), then x↓= (i + 1, j) and
~x = (i, i+ 1); for any x ∈ ν, T (x) is the integer located in the box x of the tabloid T ; if x↓
does not belong to the shape ν, then we put T (x↓) = +∞. It is clear that if a composition
ν contains only one part, then T̃ (ν, µ) = M(µ), and Z̃EL coincides with statistic INV .

Theorem 2.5 (A. Zelevinsky).

Rλµ(q) =
∑

T∈T̃ (λ′,µ)

qZ̃EL(T ).

20. Let λ be a partition and µ be a composition of the same integer n, and m ∈ Rλµ.
There is an explicit one–to–one correspondence, due to Knuth [Kn], between the set of
(0,1)–matrices with row sums λi and column sums µj , and pairs of semistandard tableaux
of conjugate shapes and weights λ, µ, (Knuth’s dual correspondence):

Rλµ
∼=

∐
η SST(η, µ)× SST(η′, λ)

m ↔ (P,Q).

Let us define the charge CH of a matrix m ∈ Rλµ to be the Lascoux–Schützenberger
charge ([LS]) of the corresponding semistandard tableaux Q of weight λ:

CH(m) = c(Q).

It follows from the results of Lascoux and Schützenberger [LS], and Knuth [Kn], that

Rλµ(q) =
∑

m∈Rλµ

qCH(m).
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It is an interesting problem to find a bijective proof that the statistics Z̃EL and CH
have the same distribution on the set Rλµ.

2.3. Generalized mahonian statistics.

Definition 2.6. A function ϕ on the set of transport matrices Pλµ is called generalized
mahonian statistic if ∑

m∈Pλµ

qϕ(m) = qE0
∑
η

KηµKηλ(q),

for a certain constant E0 := E0,ϕ.

There is a well–known bijection between sets Pνµ and T (ν, µ). To describe this bijec-
tion, let m ∈ Pνµ, and D(ν) be the diagram of the composition ν. To obtain a tabloid, let
us fill the first m1j boxes of the j-th row of D(ν) by the number 1, the next m2j boxes of
same row by the number 2, and so on. As a result we obtain the tabloid of shape ν and
weight µ. This construction defines the bijection under consideration. To go further, let us
recall the Shimomura cells decomposition [Sh] of the fixed point variety Fλµ of a unipotent
u of type λ (λ is a partition) acting on the partial flag variety Fµ. The cells in Shimomura’s
decomposition are indexed by tabloids of shape λ and weight µ. The dimension d(T ) of
the cell cT indexed by T ∈ T (λ, µ) is computed by algorithm described below ([Sh], [LLT]),
and defines the mahonian statistic d̃(T ) = n(λ) − d(T ) (=codimension of the cell cT ) on
the set Pλµ:

Pλµ(t) =
∑

T∈T (λ,µ)

td̃(T ).

The dimensions d(T ) are given by the following algorithm ([LLT], Section 8.1).
1) If T ∈ T (λ, (n)) then d(T ) = 0;
2) If µ = (µ1, µ2) has exactly two parts, and T ∈ T (λ, µ), then d(T ) is computed as

follows. A box x of T is called special if T (x) is the lowest 1 of the column containing x.
For a box y such that T (y) = 1, put d(y) = 0; if T (y) = 2, set d(y) equals to the number
of nonspecial 1’s lying in the row of y, plus the number of special 1’s lying in the same
row, but from the right side of y. Then d(T ) =

∑
d(y), summed over all y ∈ T such that

T (y) = 2.
3) Let µ = (µ1, . . . , µk) and µ∗ = (µ1, . . . , µk−1). For T ∈ T (λ, µ), let T1 be the

tabloid obtained from T by changing the entries k into 2 and all the other ones by 1. Let
T2 be the tabloid of weight µ∗ obtained from T by erasing all the entries k, and rearranging
the columns in the appropriate order. Then d(T ) = d(T1) + d(T2).

Example. Consider

T = 1 2 1 2
2 2 1 3
3 2 2
3 2 3

∈ T (4433, 374),
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then
T1 = 1 1 1 1

1 1 1 2
2 1 1
2 1 2

T2 = 2 1 1 2
2 1 2
2 2
2

where the special entries are printed in bold type. Thus, d(T ) = d(T1)+d(T2) = (3+2+1)+
(2 + 1 + 1) = 10.

There is a variant of this construction due to A. Lascoux, B. Leclerc and J.-Y. Thibon
[LLT], in which the shape λ is allowed to be an arbitrary composition. Such a variant has
already been used by I. Terada [T] in the case of complete flags (i.e. µ = (1N )).

Let ν be a composition, and T ∈ T (ν, µ). Follow to [LLT], define an integer e(T ) by
the following rules:

i) for T ∈ T (ν, (n)), e(T ) = d(T ) = 0;
ii) for T ∈ T (ν, (µ1, µ2)), e(T ) = d(T );
iii) otherwise e(T ) = e(T1) + e(T2) where T1 is defined as above, but this time T2 is

obtained from T by erasing the entries k, without reordering.
Let us define ẽ(T ) = n(λ)− e(T ).

Proposition 2.7 ([LLT]). Let ν be a composition and λ = ν+ be the corresponding
partition. Then ∑

T∈T (λ,µ)

td̃(T ) =
∑

T∈T (ν,µ)

tẽ(T ) = Pλµ(t).

Example (cf. [LLT], Example 8.4). Take λ = (321), µ = (42) and ν = (312). The
set T (λ, µ) consists of the following tabloids

T 1 1 2
1 2
1

1 2 1
1 2
1

1 1 2
1 1
2

1 1 1
1 2
2

1 1 1
2 1
2

d̃(T ) 2 1 2 4 3

The set of tabloids of shape ν and weights µ contains the following ones

T 1 2 1
1 2
1

1 1 2
1 2
1

1 2 1
1 1
2

1 1 1
1 2
2

1 1 1
2 1
2

ẽ(T ) 1 2 2 4 3
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Let us give yet another example of generalized mahonian statistic denoted by VAL.
This example is due essentially to Lynne Butler [Bu1].

Let λ be a partition and µ be a composition, |λ| = |µ|. On the set T (λ, µ) of tabloids
of shape λ and weight µ one can define the statistic value v, see [Bu1], Definition 1.3.1, or
Subsection 1.6,

Definition 2.8. Let us define VAL(T ) = n(λ)− v(T ).

Example. Take λ = (321) and µ = (42), Consider the set of tabloids T (λ, µ) in the
same order as in the previous Example. Then the values of statistic VAL on the set T (λ, µ)
are the following 3,4,2,1,2, and ∑

T∈T (λ,µ)

tVAL(T ) = Pλµ(t).

Proposition 2.9 ([Bu1]). Let λ be a partition and µ be a composition. Then∑
T∈T (λ,µ)

tVAL(T ) = Pλµ(t).

Problem 1. Find a bijective proof that if λ is a partition, then the Shimomura
statistic d̃, LLT–statistic ẽ, statistic VAL, and the energy function E are equidistribute on
the set of transport matrices Pλµ.

§3. Main results.

3.1. Combinatorial formula for modified Hall-Littlewood polynomials.

Theorem 3.1. ([HKKOTY]) Let λ be a partition, and µ, l(µ) = r, be a composition
of the same integer n, then

Pλµ(t) :=
∑
η

KηµKηλ(t) =
∑
{ν}

tc(ν)
r−1∏
k=1

∏
i≥1

[
ν

(k+1)
i − ν

(k)
i+1

ν
(k)
i − ν

(k)
i+1

]
t

, (3.1)

summed over all flags of partitions ν = {0 = ν(0) ⊂ ν(1) ⊂ · · · ⊂ ν(r) = λ′}, such that
|ν(k)| = µ1 + · · ·+ µk, 1 ≤ k ≤ r; and

c(ν) =
r−1∑
k=0

∑
i≥1

(
ν

(k+1)
i − ν

(k)
i

2

)
.

where for any real number α we put
(
α
2

)
:= α(α− 1)2.

Proof of Theorem 3.1 will be given in Subsection 4.2.
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Remark. It is well–known ([Kn]; [M], Chapter I, Section 6) that Pλµ(1) is equal to
the number of matrices of non–negative integers with row sums λi and column sums µj .
This number is equal also to that of pairs of semistandard tableaux of the same shape and
weights λ and µ, [Kn].

Examples. 10. Let us take a length two composition µ = (µ1, µ2), and a partition
λ. Let λ′ = (λ′1, . . . , λ

′
k) be the conjugate partition. Then the identity (3.1) takes the

following form ∑
η

KηµKηλ(t) =
∑
ν`µ1

tc(ν)
k∏
i=1

[
λ′i − νi+1

νi − νi+1

]
t

, (3.2)

summed over all partitions ν of µ1, l(ν) = k, and c(ν) =
k∑
i=1

(
λ′i − νi

2

)
+

k∑
i=1

(
νi
2

)
.

Let us put Li = λ′i − λ′i+1 and ji = λ′i − νi, 1 ≤ i ≤ k, jk+1 = 0. Then we have

k∑
i=1

ji = µ2,

[
λ′i − νi+1

νi − νi+1

]
t

=
[
Li + ji+1

ji

]
t

,

and

c(ν) =
k∑
i=1

(
λ′i
2

)
+

k∑
i=1

ji(ji − λ′i)

=
k∑
i=1

ji(ji − Li − Li+1 − · · · − Lk) +
1
2

∑
1≤i,j≤k

min(i, j)LiLj −
1
2
|µ|.

Thus, RHS(3.2)= tA
[
L
a

]
1/t

, where

A =
1
2

∑
1≤i,j≤k

min(i, j)LiLj −
1
2
|µ|, and a = −µ1 − µ2

2
;[

L
a

]
t

, stands for the Schilling–Warnaar t–supernomial coefficients (0.5), see [ScW], (2.9).

It follows from the formulae above that[
L
a

]
t

=
∑
η

KηµK̃ηλ(t), (3.3)

where K̃ηλ(t) = tn(λ)Kηλ(t−1), µ =

(
1
2

(
k∑
i=1

iLi

)
− a,

1
2

(
k∑
i=1

iLi

)
+ a

)
,

and λ′i = Li + · · ·+ Lk, 1 ≤ i ≤ k.
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Now let us assume additionally that λ′1 = · · · = λ′k = N , or equivalently, λ = (kN ).
Then the RHS(3.2) can be rewritten in the following form

∑
ν`µ1

tc(ν)
[

N
N − ν1, ν1 − ν2, . . . , νk−1 − νk, νk

]
t

, (3.4)

where c(ν) = k

(
N
2

)
− Nµ1 +

k∑
i=1

ν2
i . The sum in (3.4) is taken over all partitions ν of

µ1 such that l(ν) = k.
If we put mi = k(ν1 + · · · + νk−i) − (k − i)µ1, 1 ≤ i ≤ k − 1, (and, consequently,

kνi = mk−i − mk−i+1 + µ1, 1 ≤ i ≤ k − 1), then the sum (3.4) coincides with the
RHS(2.49), [Ki2], Theorem 14 (in [Ki2] we have used q instead of t).

Let us remark that the sum (3.4) is closely related to the special value p = 0 of the

Schilling and Warnaar q–multinomial coefficient
[
L
a

](p)
k

([Sc], §2, and [W], Definition 1).

More precisely, we state that sum (3.4) is equal to t
k

(
N
2

) [
N
µ1

](0)
k

(t−1). This statement

is equivalent (cf. (3.3)) to the following one:[
N
µ1

](0)
k

=
∑
η

KηµK̃η,(kN )(q). (3.5)

Formulae (3.3) and (3.5) suggest the following definition:

Definition 3.2. Let λ be a partition and µ be a composition, |λ| = |µ|. Define the

t–multinomial coefficient
[
λ
µ

](0)
to be

[
λ
µ

](0)
=
∑
η

KηµK̃ηλ(t).

Thus, see Corollary 1.7, if t = p is a prime number and l(µ) = m + 1, then the

t–multinomial coefficient
[
λ
µ

](0)
counts the number of chains of subgroups

{e} ⊆ H(1) ⊆ H(2) ⊆ · · · ⊆ H(m) ⊆ G

of a finite abelian p–group G of type λ such that each subgroup H(i) has order pµ1+···+µi .
It follows from (3.3) that if a composition µ = (µ1, µ2) consists of two parts then the

t–multinomial coefficient
[
λ
µ

](0)
coincides with the t–supernomial coefficient

[
L
a

]
t

, where
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a = −µ1 − µ2

2
, and if λ′ = (λ′1, . . . , λ

′
k) is the conjugate partition, then L := (L1, . . . , Lk)

with Li = λ′i − λ′i+1, 1 ≤ i ≤ k.
More generally, let B be a crystal (see, e.g., [Ka1], [KMOTU1], [HKKOTY]), and

b ∈ B. Define the (unrestricted) t–multinomial coefficient T (b)(λ;µ) to be

T (b)(λ;µ) = t−Emin
∑

p∈Pµ(b,λ)

tE(p),

where Pµ(b, λ) is the set of paths p = b⊗ b1⊗ · · ·⊗ bm ∈ B⊗B(µ1)⊗ · · ·⊗B(µm) such that
wt(b1) + · · ·+ wt(bm) = λ; E(p) is the energy of a path p (see, e.g., [HKKOTY]).

Similarly, one can define classically restricted and restricted t–multinomial coefficients.
We intend to consider the properties (including recurrence relations, bosonic formulae,
multinomial analogue of Bailey’s lemma, and applications to polynomial identities and
q–series) of these t–multinomial coefficients in a separate publication.

20. If µ = (1n), then (3.1) coincides with the formula for modified Green’s polynomials
Xλ

(1n)(t) from [M], Example 4 on p.249.
Let us describe two generalized mahonian statistics on the set M(λ). The first one is

the Lascoux–Schützenberger charge c defined on the set of dominant weight words w, i.e.
w ∈M(λ), where λ is a partition, see [LS]; [M], Chapter III, §6, p.242. The second one is
the LP statistic (see, e.g., [GaW]) which can be defined for arbitrary words.

Definition 3.3. Let w be a word, define lpi(w) to be the number of distinct letters
to the left of position i and having the same multiplicity as the letter in position i in the
truncated word w1 . . . wi. Let LP (w) =

∑
i≥2

lpi(w).

For example, LP (3422231413) = 0 + 2 + 0 + 0 + 1 + 1 + 0 + 2 + 0 = 6. One can show
that if ν is a composition, λ = ν+ is the corresponding partition, then

Pλ(1n)(q) =
∑

w∈M(ν)

qLP (w) =
∑

w∈M(λ)

qc(w).

30. If λ = (1N ), then the RHS(3.1) coincides with that of (1.5).
40. Let µ be a composition of length n, and λ = (2N ), so that |µ| = 2N . In this case

we have
• ν(k) = (ν(k)

1 , ν
(k)
2 ), |ν(k)| = µ1 + · · ·+ µk, 1 ≤ k ≤ n;

• 0 ≤ ν
(k−1)
2 ≤ ν

(k)
2 ≤ ν

(k)
1 ≤ ν

(k+1)
1 ≤ N , if 1 ≤ k ≤ n− 1, and ν(n) = (N,N).

If we define mi = 2ν(i)
1 − µ1 − · · · − µi ≥ 0, 0 ≤ i ≤ n− 1, and

βi =
µi +mi−1 −mi

2
∈ Z≥0, 1 ≤ i ≤ n, m0 = mn = 0,

then the RHS(3.1) takes the following form∑
m∈Zn−1

≥0

tc(m)

[
N

β1, . . . , βn

]
t

n−1∏
k=1

[
βk+1 +mk+1

mk

]
t

, (3.6)
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summed over all sequences m = (m1, . . . ,mn−1) ∈ Zn−1
≥0 such that mi + mi−1 + µi ≡

0(mod 2), 1 ≤ i ≤ n, m0 = mn = 0, and c(m) =
n∑
i=1

(
µi
2

)
+

1
4
mCn−1m

t, where Cn−1 is

the Cartan matrix of type An−1.
It is well–known that the LHS(3.1) does not depend on the permutations of compo-

nents of the composition µ. Hence, the same is valid for the RHS(3.1) as well. This is not
obvious at all because the number of terms in the right hand side sum (3.1) do depends on
the composition µ, but not only on the corresponding partition µ+. For example, let us
take µ = (1221) and λ = (23). The summands in the RHS(3.1) correspond to the following
flags of partitions ν = {ν(1) ⊂ ν(2) ⊂ ν(3) ⊂ ν(4)}:

2
1

c(ν) = 2,

1 1
1 1

c(ν) = 0.

Hence, the RHS(3.1)= 1 + 4t+ 7t2 + 7t3 + 4t4 + t5 + t2(1 + 2t+ 3t2 + 2t3 + t4) = 1 + 4t+
8t2 + 9t3 + 7t4 + 3t5 + t6.

On the other hand, for the partition µ+ = (2211) the contribution to the RHS(3.1) is
given by the following flags of partitions:

1

c(ν) = 2,

1
1 1

c(ν) = 1,

1 1

c(ν) = 0,

1 1

c(ν) = 1.

Hence, the RHS(3.1)= t2(1 + t+ t2) + t(1 + 3t+ 5t2 + 5t3 + 3t4 + t5) + (1 + 2t+ 2t2 + t3) +
t(1 + 2t+ 2t2 + t3) = 1 + 4t+ 8t2 + 9t3 + 7t4 + 3t5 + t6.

We see that Pλµ(t) = Pλµ+(t), but the corresponding sums of the products of t–
binomial coefficients have different structures.
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3.2. New combinatorial formula for the transition matrix M(e, P ).

Now we are going to describe the fermionic formula for the following sum

Rλµ(t) =
∑
η

KηµKη′λ(t).

This sum is the (λ, µ)–entry of the matrix transposed to the transition matrix between
elementary and Hall–Littlewood polynomials, namely, if

eλ =
∑
µ

M(e, P )λµPµ, then

M(e, P )λµ =
∑
ν

KνλKν′µ(q) = Rµλ(q).

It is well–known ([Kn]) that Rλµ(1) counts the number of (0,1)–matrices with row
sums λi and column sums µj . This number is equal also to the number of pairs of semi-
standard tableaux of conjugate shapes and weights λ and µ, see, e.g. [M], Chapter I,
Section 6.

Theorem 3.4. ([HKKOTY]) Let µ be a composition, l(µ) = r. Then

Rλµ(t) =
∑
{ν}

r−1∏
k=1

∏
i≥1

[
ν

(k+1)
i − ν

(k+1)
i+1

ν
(k)
i − ν

(k+1)
i+1

]
t

, (3.7)

where the sum is taken over all flags of partitions ν = {0 = ν(0) ⊂ ν(1) ⊂ · · · ⊂ ν(r) = λ′}
such that ν(k)/ν(k−1) is a horizontal strip of length µk, 1 ≤ k ≤ r.

Proof of Theorem 3.4 will be given in Subsection 4.1.

Remark. The last condition on the flag ν means that ν defines a semistandard
tableau of shape λ′ and weight µ. Thus, the number of terms in the RHS(3.7) is equal to
that of semistandard tableaux of shape λ′ and weight µ.

Examples. 10. It is clear that if µ = (1n), then

Rλµ(q) = Pλµ(q) = Xλ
(1n)(q).

20. If λ = (1N ), and µ = (µ1, . . . , µn), |µ| = N then

Rλµ(t) =
[

N
µ1, . . . , µn

]
t

.

Indeed, the RHS(3.7) contains only one product[
µ1 + µ2

µ1

]
t

[
µ1 + µ2 + µ3

µ1 + µ2

]
t

· · ·
[

N
µ1 + · · ·+ µn−1

]
t

.
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30. Let µ be a composition of length n, and λ = (2λ21λ1−λ2), so that λ′ = (λ1, λ2).
In this case the following partitions give the contribution to the RHS(3.7):

• ν(k) = (ν(k)
1 , ν

(k)
2 ), |ν(k)| = µ1 + · · ·+ µk, 1 ≤ k ≤ n;

• 0 ≤ ν
(k)
2 ≤ ν

(k+1)
2 ≤ ν

(k)
1 ≤ ν

(k+1)
1 , 1 ≤ k ≤ n− 1, ν(1)

2 = 0, ν(n) = (λ1, λ2).
If we define mk = ν

(k+1)
1 − ν(k)

1 , 1 ≤ k ≤ n− 1, m0 = µ1, then the RHS(3.7) takes the
following form

∑
m∈Zn−1

≥0

[
λ2

µ1 −m1, µ2 −m2, . . . , µn −mn−1

]
t

n−1∏
k=1

 k∑
i=0

(2mi − µi+1)

mk


t

,

summed over all sequences m ∈ Zn−1
≥0 , such that m1 + · · ·+mn−1 = λ1 − µ1.

Finally, let us assume that n = 3 and λ1 = λ2. Then m2 = 0, m1 = λ1 − µ1 and the
RHS(3.7) takes the form (µ1 + µ2 + µ3 = N)[

N
N − µ1, N − µ2, N − µ3

]
t

.

Hence, the number of (0,1)–matrices of size N×3 with row sums µi, i = 1, 2, 3, and column

sums λi = 2, 1 ≤ i ≤ N , is equal to
N !

(N − µ1)!(N − µ2)!(N − µ3)!
.

40. Consider µ = (1221) and λ = (321). The summands in the RHS(3.7) correspond
to the following flags of partitions ν = {ν1 ⊂ ν(2) ⊂ ν(3) ⊂ ν(4)}:

1 2 2
3 3
4

[
3− 0
1− 0

]
t

,

1 2 4
2 3
3

1,

1 2 3
2 4
3

[
3− 1
2− 1

]
t

,

1 2 3
2 3
4

[
2− 0
1− 0

]
t

.

26



Hence, the RHS(3.7)= (1 + t+ t2) + 1 + (1 + t) + (1 + t) = 4 + 3t+ t2.
Let us remark that RHS(3.7) does not depend on the permutations of components of

the composition µ. This is clear since the LHS(3.7) does. However, the number of sum-
mands in the RHS(3.7) do depends on the composition µ, but not only on the corresponding
partition µ+.

§4. Proofs of Theorems 3.1 and 3.4.

Let fλµν(t) be the structural constants for the Hall–Littlewood functions, i.e.

Pµ(x; t)Pν(x; t) =
∑
λ

fλµν(t)Pλ(x; t). (4.1)

It is well–known (see, e.g., [M], Chapter III, §3, p.215, formula (3.2)) that

fλµ(1m)(t) =
∏
i≥1

[
λ′i − λ′i+1

λ′i − µ′i

]
t

, (4.2)

and therefore fλµ(1m)(t) = 0 unless λ–µ is a vertical m–strip.
Now let T be a pure supertableau of shape λ and weight µ, i.e. T is a sequence of

partitions 0 = λ(0) ⊂ λ(1) ⊂ · · · ⊂ λ(r) = λ, such that each skew diagram λ(i) − λ(i−1)

(1 ≤ i ≤ r) is a vertical µi–strip. For such tableau T , let us define

fT (t) =
∏
i≥1

fλ
(i)

λ(i−1)(1µi )(t).

Then the RHS(3.7) can be rewritten in the following form
∑
T

fT (t), summed over all pure

supertableaux of shape λ and weight µ.

4.1. Proof of Theorem 3.4.

It is well known that the Hall–Littlewood polynomial Pλ(Xn; t), when λ = (1m),
coincides with the m-th elementary symmetric function in the variables Xn:

P(1m)(Xn; t) = em(Xn),

see e.g., [M], Chapter III, (2.8).
Using (4.1) and (4.2) we can write

em(x)Pν(x; t) =
∑
λ

fλν(1m)(t)Pλ(x; t), (4.3)

and more generally using induction,

eµ1(x) . . . eµr (x)Pν(x; t) =
∑
λ

R
(ν)
λµPλ(x; t), (4.4)
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where
R

(ν)
λµ (t) =

∑
fT (t), (4.5)

summed over all pure supertableaux T of skew shape λ− ν and weight µ; in other words,
the sum in (4.5) is taken over all sequences of partitions ν = λ(0) ⊂ λ(1) ⊂ · · · ⊂ λ(r) = λ,
such that each skew diagram λ(i) − λ(i−1) (1 ≤ i ≤ r) is a vertical µi–strip, and

fT (t) =
r∏
i=1

fλ
(i)

λ(i−1)(1µi )(t).

To finish the proof of Theorem 3.4 we need the following formulae (see, e.g., [M],
Table 1 on p.101 and Table on p.241):

eµ1(x) · · · eµr (x) =
∑
η

Kη′µsη(x),

sλ(x) =
∑
µ

Kλµ(t)Pµ(x; t). (4.6)

Thus, we have

eµ1(x) · · · eµr
(x)Pν(x; t) =

∑
λ

∑
η,β

Kη′µKηβ(t)fλνβ(t)

Pλ(x; t),

and consequently,
R

(ν)
λµ (t) =

∑
η,β

Kη′µKηβ(t)fλνβ(t). (4.7)

Finally, if we take ν = ∅ in (4.7), then fλ∅β(t) = δλβ , and formula (3.5) follows.

4.2. Proof of Theorem 3.1.

Proof of Theorem 3.1 is similar to that of Theorem 3.4 and based on the following

Lemma 4.1. Let µ be a partition, l(µ) ≤ n, and

hk(Xn)Pµ(Xn; t) =
∑
λ

gλµ(t)Pλ(Xn; t), (4.7)

where hk(Xn) denotes the complete homogeneous symmetric function of degree k in the
variables Xn = (x1, . . . , xn). Then

gλµ(t) = t

∑
i≥1

(
λ′i − µ′i

2

)
∏
i≥1

[
λ′i − µ′i+1

λ′i − µ′i

]
t

, (4.8)
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and therefore gλµ(t) = 0 unless µ ⊂ λ, |λ/µ| = k.

Let us postpone the proof of Lemma 4.1 to the end of this subsection and show first
how using the formula (4.8) one can deduce the formula (3.1) from Theorem 3.1.

To do this we will need the formula (4.6) and the following one (see, e.g., [M], Table 1
on p.101):

hµ1(x) . . . hµr (x) =
∑
η

Kηµsη(x).

Thus, we have

hµ1(x) . . . hµr
(x)Pν(x; t) =

∑
λ

∑
η,β

KηµKηβ(t)fλνβ(t)

Pλ(x; t). (4.9)

On the other hand, we can compute the LHS(4.9) using Lemma 4.1. Namely,

LHS(4.9) =
∑
λ

P(ν)
λµ (t)Pλ(x; t), (4.10)

where
P(ν)
λµ (t) =

∑
π

gπ(t), (4.11)

summed over all reverse plain partitions π of skew shape λ−ν and weight µ; in other words,
the sum in (4.11) is taken over all sequences of partitions ν = λ(0) ⊂ λ(1) ⊂ · · · ⊂ λ(r) = λ

such that |λ(i)/λ(i−1)| = µi, 1 ≤ i ≤ r, and

gπ(t) =
r∏
i=1

gλ
(i)

λ(i−1)(t).

Thus, it follows from (4.9)–(4.11) that

P(ν)
λµ (t) =

∑
η,β

KηµKηβ(t)fλνβ(t). (4.12)

Finally, if we take ν = ∅ in (4.12), then fλ∅β(t) = δλβ , and formula (3.1) follows.

Proof of Lemma 4.1. We will prove (4.8) by induction on the number |λ/µ|. It is clear

that if |λ/µ| = 1, then gλµ = fλµ,(1) = RHS(4.8). Because of the relation
k∑
r=0

(−1)rerhk−r =

δk,0, it is enough to prove that if ν ⊂ λ, |λ \ ν| > 0, then∑
µ

(−1)|µ−ν|fµ
ν,(1|µ−ν|)

gλµ = 0, (4.13)
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summed over all partitions µ such that ν ⊂ µ ⊂ λ. Now, using (4.8) and (4.2), we can
write

RHS(4.13) =
∑

ν⊂µ⊂λ

(−1)
∑

(µ′i−ν
′
i)t

∑(λ′i − µ′i
2

)∏
i≥1

[
λ′i − µ′i+1

λ′i − µ′i

]
t

[
µ′i − µ′i+1

µ′i − ν′i

]
t

=
∏
i

i(t), (4.14)

where

i(t) =
∑

ν′
i
≤µ′

i
≤λ′

i

(−1)µ
′
i−ν

′
it

(
λ′i − µ′i

2

)
(t; t)λ′

i−1−µ
′
i

(t; t)λ′
i
−µ′

i
(t; t)µ′

i
−ν′

i
(t; t)ν′

i−1−µ
′
i

,

λ′0 = ν′0 = 0, and by definition (t; t)m = 0, if m < 0.
Consider at first 1(t). We have

(−1)λ
′
1−ν

′
1(t)λ′1−ν′11(t) =

∑
ν′1≤µ

′
1≤λ

′
1

(−1)λ
′
1−µ

′
1t

(
λ′1 − µ′1

2

) [
λ′1 − ν′1
λ′1 − µ′1

]
t

=
∑
m≥0

(−1)mt

(
m
2

) [
λ′1 − ν′1
m

]
t

= δλ′1,ν′1 .

The last equality follows from the q–binomial theorem

N∑
m=0

(−z)mq

(
m
2

) [
N
m

]
q

= (z, q)N :=
N∏
i=1

(1− qi−1z).

Thus, if the product (4.14) does not equal to zero, then λ′1 = ν′1, and

(−1)λ
′
2−ν

′
2(t)λ′2−ν′22(t) =

∑
m≥0

(−1)mt

(
m
2

) [
λ′2 − ν′2
m

]
t

= δλ′2,ν′2 .

Repeating these arguments we see that the product (4.14) does not equal to zero only if
λ = ν. But this is a contradiction with our assumption |λ/ν| > 0. This proves (4.13) and
(by induction) Lemma 4.1.

Remark. The similar proofs of Theorems 3.1 and 3.4 can be found in [HKKOTY].
It seems the formula (4.8) is new. The formula (4.12) in the case ν = ∅, probably,

goes back to R. Stanley, unpublished; see, e.g., [Bu2], Lemma 3.1.
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Corollary 4.2. Let λ and µ be partitions, |µ| = n, and fλνµ(t) be the structural
constants for the Hall–Littlewood functions, see [M], Chapter III, or Section 4, (4.1). Then

∑
ν

tn(ν)fλνµ(t) = t

∑
i≥1

(
λ′i − µ′i

2

)∏
i≥1

[
λ′i − µ′i+1

λ′i − µ′i

]
t

. (4.15)

Proof. It follows from Lemma 4.1 that the RHS(4.15)= gλµ(t). Hence,

∑
λ

gλµ(t)Pλ = hnPµ =
∑
ν

K(n)ν(t)PνPµ =
∑
λ

(∑
ν

K(n)ν(t)fλνµ(t)

)
Pλ,

and consequently, gλµ(t) =
∑
ν

K(n)ν(t)fλνµ(t). The identity (4.15) follows from a simple

observation that K(n)ν(t) = tn(ν).

If µ = (1n), then the RHS(4.15)= tn(λ)−n(µ)

[
λ′1
n

]
t−1

, and identity (4.15) is reduced

to that in [M], Chapter III, Example 1.

Exercise. Let µ = (µ1, . . . , µs) and ν = (ν1, . . . , νr) be compositions. For each
partition η, l(η) ≤ n, denote by Kη,µ|ν the multiplicity of the highest weight irreducible
representation V (n)

η of the general linear group gl(n) in the tensor product

V (n)
µ1

⊗ · · · ⊗ V (n)
µs

⊗ V
(n)
(1ν1 ) ⊗ · · · ⊗ V

(n)
(1νr ).

Let λ be a partition, l(λ) ≤ n. Find a fermionic formulae for the following sum∑
η

Kη,µ|νKηλ(q),

which generalizes (3.1) and (3.7).

Conjecture 4.3. Let λ, µ, ν be partitions. Define a family of polynomials gλµ;ν(t) via
decomposition

sν(x)Pµ(x; t) =
∑
λ

gλµ;ν(t)Pλ(x; t).

Then gλµ;ν(t) is a polynomial with nonnegative integer coefficients.

Problem 2. Find a combinatorial formula for polynomials gλµ;ν(t).

The answer on this problem is known when either ν = (1N ), see, e.g., [M], p.215, or
ν = (n), see Lemma 4.1.

§5. Polynomials Pλµ(t) and their interpretations.
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In this Section we summarize the known interpretations and some properties of polyno-
mials Pλµ(t). The main reason for this is the following: we suppose that all generalizations
of polynomials Pλµ(t) considered in the coming sections, should have properties similar to
(5.2)-(5.10).

Polynomials Pλµ(t) admit the following interpretations:
• Transition coefficients between modified Hall-Littlewood polynomials and monomial

symmetric functions
Q′λ(Xn; t) =

∑
µ

Pλµ(t)mµ(Xn). (5.2)

• Inhomogeneous unrestricted one dimensional sum with ”special boundary condi-
tions”:

Pλµ(t) = tn(µ′)
∑

m∈Pλµ

tE(m), (5.3)

summed over the set Pλµ of all transport matrices m of type (λ;µ), i.e. the set of all
matrices of non–negative integers with row sums λi and column sums µj ; E(m) stands for
the value of energy function E(p) of the path p which corresponds to the transport matrix
m under a natural identification of the set of paths Pµ(bmax, λ) (see, e.g., [KMOTU2], or
Subsection 3.1, Example 10) with that of transport matrices Pλµ.

Problem 3. Find a combinatorial rule for computation of the energy function E(m)
of a transport matrix m ∈ Pλµ.

• Generating function of a generalized mahonian statistic ϕ on the set of transport
matrices Pλµ:

Pλµ(t) = tn(µ′)
∑

m∈Pλµ

tϕ(m).

For examples of generalized mahonian statistics, see Section 2.6.

Problem 4. It is natural to ask: are there exist combinatorial analogues of statistics
INV , MAJ , M̃AJ , Z, Z̃ and DEN (see Subsection 2.1), and LP (see Definition 3.3) on
the set of transport matrices Pλµ with generating function Pλµ(t)?

• The Poincare polynomial of the partial flag variety Fλµ/C:

Pλµ(t) =
∑
i≥0

tn(λ)−i dimH2i(Fλµ ;Z). (5.4)

• The number of Fq–rational points of the partial flag variety Fλµ/Fq:

qn(λ)Pλµ(q−1) = Fλµ (Fq). (5.5)

• The number of chains of subgroups

{e} ⊆ H(1) ⊆ H(2) ⊆ · · · ⊆ H(m) ⊆ G
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in a finite abelian p–group G of type λ, such that each subgroup H(i) has order pµ1+···+µi :

αλ(S; p) = pn(λ)Pλµ(p−1), (5.6)

where S := S(µ) = (µ1, µ1 + µ2, . . . , µ1 + µ2 + · · ·+ µm), and l(µ) = m+ 1.
• String function of affine Demazure’s module Vw(lL) corresponding to the element

w = rLn−1rLn−2 . . . rL+2rL+1rL of the affine Weyl group W (A(1)
n−1):

tE0P(lL)µ(t) =
∑
n≥0

dimVw(lL)µ−nδtn, (5.7)

for some known constant E0; see [KMOTU2], or Subsection 1.6.

• Generalized t–supernomial and t–multinomial coefficients
[
λ
µ

](0)
and T (0)(λ;µ):

[
λ
µ

](0)
=
∑
η

KηµK̃ηλ(t) = tn(λ)
∑
η

KηµKηλ(t−1), (5.8)

T (0)(λ;µ) = t−EminPλµ(t), (5.9)

for some known constant Emin.
As it was shown in Subsection 3.1, the coefficients (5.8) and (5.9) are a natural gen-

eralization of those introduced by A. Schilling and S.O. Warnaar in the case l(µ) = 2, see
[Ki2], [Sc], [ScW], [W].

• ”Fermionic expression”. Let λ be a partition and µ be a composition, l(µ) = n, then

Pλµ(t) =
∑
{ν}

tc({ν})
n−1∏
k=1

∏
i≥1

[
(ν(k+1))′i − (ν(k))′i+1

(ν(k))′i − (ν(k))′i+1

]
, (5.10)

summed over all flags of partitions ν = {0 = ν(0) ⊂ ν(1) ⊂ · · · ⊂ ν(n) = λ}, such that
|ν(k)| = µ1 + · · ·+ µk, 1 ≤ k ≤ n, and

c({ν}) =
n−1∑
k=0

∑
i≥1

(
(ν(k+1)′i − (ν(k))′i

2

)
.

See [HKKOTY] and Sections 3 and 4, where further details and applications of the fermionic
formula (5.10) can be found.

• Truncated form, or finitization of characters and branching functions of (some)
integrable representations of the affine Lie algebra of type A(1)

n−1, and more generally, for
Kac–Moody algebras, W–algebras, . . ..

The observation that certain special limits of polynomials Pλµ(t) and Kostka–Foulkes
polynomials may play an important role in the representation theory of affine Lie algebras
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originally was made in [Ki2]. It was observed in [Ki2] that the character formula for
the level 1 vacuum representation V (0) of the affine Lie algebra of type A(1)

n−1 (see, e.g.,
[Kac], Chapter 13) can be obtained as an appropriate limit N →∞ of the modified Hall–
Littlewood polynomials Q′(1N )(Xn; q). The proof was based on the following formula

P(1N )µ(q) = qn(µ′)

[
N

µ1, . . . , µn

]
q

, (5.11)

see [Ki2], (2.28), or Subsection 1.2, (1.5).
The latter observation about a connection between the character ch(V (0)) and modi-

fied Hall-Littlewood polynomials Q′(1N )(Xn; q) immediately implies that the level 1 branch-
ing functions b0λ(q) can be obtained as an appropriate limit λN → ∞ of the ”normalized”
Kostka–Foulkes polynomials q−ANKλN ,(1N )(q). We refer the reader to [Kac], Chapter 12,
for definitions and basic properties of branching functions bλ(q) corresponding to an inte-
grable representation V () of affine Lie algebra.

It was conjectured in [Ki2], Conjecture 4, that the similar result should be valid for
the branching functions bλ(q) corresponding to the integrable highest weight irreducible
representation V () of the affine Lie algebra ŝl(n). This conjecture has been proved in
[Ki2] in the following cases: ŝl(n) and = 0, ŝl(2) and = l0, and ŝl(n) and = 20. It
had not been long before A. Nakayashiki and Y. Yamada [NY] proved this conjecture in
the case ŝl(n) and = li, 0 ≤ i ≤ n − 1. See also [KKN] for another proof of the result
of Nakayashiki and Yamada in the case i = 0. The general case has been investigated
in [HKKOTY]. It happened that in general the so–called thermodynamical Bethe ansatz
limit of Kostka–Foulkes polynomials gives the branching function of a certain reducible
integrable representation of ŝl(n), see details in [HKKOTY].

Problem 5. Find an interpretation of the branching functions bλ(q) of the inte-
grable highest weight irreducible representation V () of the affine Lie algebra ŝl(n) as the
thermodynamical Bethe ansatz type limit of a certain family of the Kostka–Foulkes type
polynomials.

§6. Generalizations of polynomials Pλµ(t) and Kλµ(t).

In this Section we summarize possible generalizations of polynomials Pλµ(t) and
Kostka–Foulkes polynomials Kλµ(t), their properties, and some special cases. Let us re-
mind that

Pλµ(t) =
∑
η

KηµKηλ(t), (6.1)

where λ is a partition, µ is a composition; summation in (6.1) runs over all partitions
η; Kηλ(t) is the Kostka–Foulkes polynomial (see, e.g., [M], Chapter III, Section 6), and
Kηµ := Kηµ(1) is the Kostka number which is equal to the number of semistandard Young
tableaux of shape η and content µ.
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6.1. Crystal Kostka polynomials.

First let us recall the result of A. Nakayashiki and Y. Yamada [NY] that the Kostka–
Foulkes polynomial Kλµ(t) coincides with the classically restricted one dimensional sum
with special boundary conditions. For another proof, see, e.g., [KKN]; cf. [KMOTU2],
[HKKOTY].

Let n ≥ 2 be a natural integer which is fixed throughout this subsection.

Definition 6.1. Let R = {R1, . . . , Rp} be a sequence of partitions, µ be a partition
such that |µ| = |R1| + · · · + |Rp|. Define the polynomial CPRµ(t) to be the weight µ
unrestricted one dimensional sum corresponding to the tensor product of crystals BR1 ⊗
· · ·⊗BRp

, and boundary condition bTmin , Tmin ∈ STY (λ, λ), where BRi
is the crystal (see,

e.g., [Ka1]) corresponding to the irreducible highest weight Ri representation VRi of the
Lie algebra sl(n).

Definition 6.2. The crystal Kostka polynomial CKλR(q) corresponding to a set of
partitions R = {R1, . . . , Rp} is defined to be the weight λ classically restricted one dimen-
sional sum corresponding to the tensor product of crystals BR1 ⊗ · · · ⊗BRp , and boundary
condition bTmin .

We refer the reader to [LS], [DLT] and [Ki1], where definition and basic properties
of Kostka–Foulkes polynomials can be found, and to [HKMOTU2] and [HKKOTY] for
definitions of unrestricted, classically restricted and restricted one dimensional sums.

Let us remark that

CKλR(1) = Mult[Vλ : VR1 ⊗ · · · ⊗ VRp
], (6.2)

i.e. CKλR(1) is equal to the multiplicity of the highest weight λ irreducible representation
Vλ of sl(n) in the tensor product VR1 ⊗ · · · ⊗ VRp

. Thus, the crystal Kostka polynomial
CKλR(q) may be considered as a q–analog of the tensor product multiplicity (6.2).

6.2. Fusion Kostka polynomials.

The problem of finding a “natural” q–analog of the tensor product multiplicities has a
long story. To our knowledge, there exists at least three natural algebraic ways to define
a q–analog of the tensor product multiplicity (6.2). The first one is based on the so–
called fusion rules for the tensor product of ”restricted” representations of the quantized
universal enveloping algebra Uq(sl(n)) when q is a root of unity, see, e.g., [GoW]; [Kac],
Exercises 13.34-13.36; and [BKMW], where a combinatorial description of the fusion rules
for representations of sl(3) and sl(4) are given. We denote by FKλR(q), and call it fusion
Kostka polynomial, a q–analog of the tensor product multiplicity (6.2) which corresponds
to the fusion rules.

Let us explain informally the meaning of the fusion Kostka polynomials FKλR(q). Let
Fr(n) be the fusion algebra corresponding to the quantized universal enveloping algebra
Uq(sl(n)), when q = exp (2πi/r + n). Each finite dimensional sl(n)–module V defines
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an element [V ] of the fusion algebra Fr(n). This algebra is generated by the so–called
”restricted” representations Vλ, which correspond to partitions λ = (λ1, . . . , λn) such that
λ1 − λn ≤ r. It is well–known that the fusion algebra is commutative and associative. We
denote by ⊗̂ the product in the algebra Fr(n). This product depends on r and n. Let
R = (R1, . . . , Rp) be a sequence of partitions, denote by Mult(r)(Vλ : VR1⊗̂ · · · ⊗̂VRp

)
the coefficient of [Vλ] in the decomposition of the product [VR1 ]⊗̂ · · · ⊗̂[VRp

] in the fusion
algebra Fr(n):

[VR1 ]⊗̂ · · · ⊗̂[VRp
] =

∑
λ

Mult(r)
(
Vλ : VR1⊗̂ · · · ⊗̂VRp

)
[Vλ].

Definition 6.3. The fusion Kostka polynomial FKλR(q) is defined to be

FKλR(q) =
∑
r≥0

(
Mult(r+1)(Vλ : VR1⊗̂ · · · ⊗ VRp)−Mult(r)(Vλ : VR1⊗̂ · · · ⊗̂VRp)

)
qr.

(6.3)

It is well–known that FKλR(q) is a polynomial with nonnegative integer coefficients,
and

FKλR(1) = Mult(Vλ : VR1 ⊗ · · · ⊗ VRp).

Thus, if all partitions Ri have only one part µi, i.e. Ri = (µi), then FKλR(1) = Kλµ(1) is
equal to the number STY (λ, µ) of semistandard Young tableaux of shape λ and weight µ.

Problem 6. Give a combinatorial definition of a statistic on the set STY (λ, µ) which
has the generating function FKλR(t).

Let us give few illustrative examples of the fusion Kostka polynomials for Lie algebras
sl(5) and sl(3).

• Algebra sl(3):

i) if λ = (433), R = {(1)⊗10}, then

FKλR(q) = q + 54q2 + 115q3 + 40q4;

ii) if λ = (422), R = {(1)⊗8}, then

FKλR(q) = 13q2 + 30q3 + 13q4.

• Algebra sl(5):

i) if λ = (65432), R = {(4321), (4321)}, then

FKλR(q) = 4q4 + 10q5 + 2q6;

ii) if λ = (98653), R = {(6531), (6532)}, then

FKλR(q) = 4q6 + 16q7 + 13q8 + 2q9.
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Problem 7. Let us introduce the fusion modified Hall–Littlewood polynomials

FQ′R(Xn; t) =
∑
η

FKηR(t)sη(Xn). (6.4)

where sη(Xn) stands for the Schur function corresponding to a partition η.
Find algebraic, combinatorial, and geometric interpretations of the fusion modified

Hall–Littlewood polynomials FQ′n(Xn; t).

6.3. Ribbon Kostka polynomials.

The second way to define a q–analog of the tensor product multiplicity (6.2) is due to
A. Lascoux, B. Leclerc and J.-Y. Thibon, [LLT], and based on the using of ribbon tableaux.
We refer the reader to [LLT], Sections 4 and 6, for definitions of a p–ribbon tableau T , spin
s(T ) of a p–ribbon tableau, and ”p–ribbon version” Q̃(p)

λ (Xn; t) of modified Hall–Littlewood
polynomials. Here we are only reminding that if λ is a partition with empty p–core, then
by definition

Q̃
(p)
λ (Xn; t) =

∑
T∈Tabp(λ,≤n)

ts̄(T )xw(T ), (6.5)

summed over the set Tabp(λ,≤ n) of all p–ribbon tableaux of shape λ filled by numbers
not exceeding n; s̄(T ) = s(T )−min{s(T ) | T ∈ Tabp(λ,≤ n)} is a normalized spin of the
p–ribbon tableau T , cf. [LLT], (25). It is known, [LLT], Theorem 6.1, that Q̃(p)

λ (Xn; t)
is a symmetric polynomial. Let us define the ribbon polynomials P(p)

λµ (t) and the ribbon

Kostka polynomials K(p)
λµ (t) via decompositions (cf. [LLT]):

Q̃
(p)
λ (Xn; t) =

∑
µ

P(p)
λµ (t)mµ(Xn), (6.6)

Q̃
(p)
λ (Xn; t) =

∑
µ

K
(p)
λµ (t)sµ(Xn). (6.7)

Remark. The functions Q̃(p)
λ (Xn; t) were introduced and studied by A. Lascoux,

B. Leclerc and J.-Y. Thibon in [LLT], and denoted in [LLT] byG(p)
λ (Xn; t). We denote these

functions by Q̃(p)
λ (Xn; t), and call the ribbon modified Hall–Littlewood polynomials in order

to underline a certain similarity with modified Hall–Littlewood polynomials Q′λ(Xn; t). In
fact, it was proved in [LLT], Theorem 6.6, that if λ is a partition, and L ≥ l(λ), then

Q̃
(L)
Lλ (Xn; t) = Q′λ(Xn; t),

where Lλ = (Lλ1, Lλ2, . . . , λLn).

It is well–known and goes back to D. Littlewood, cf. [SW], that

K
(p)
λµ (1) = Mult[Vµ : Vλ(1) ⊗ · · · ⊗ Vλ(p) ], (6.8)
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and P(p)
λµ (1) is equal to the number of weight µ unrestricted paths corresponding to the

tensor product of crystals Bλ(1) ⊗ · · · ⊗ Bλ(p) , where (λ(1), . . . , λ(p)) is the p–quotient of
partition λ (see, e.g., [M], Chapter I, Example 8, for definitions of p–core and p–quotient
of a partition λ).

Now we are going to formulate two conjectures about connections between polynomials
CPRµ(t) and CKλR(t), see Definitions 6.1 and 6.2, and the ribbon polynomials P(p)

λµ (t) and

K
(p)
λµ (t). Namely, let R = {R1 . . . , Rp} be a sequence of partitions. According to the result

of D. Littlewood there exists the unique partition with the following properties (see, e.g.,
[M], Chapter I, Example 8, and [SW]):

i) p−core() = ∅; (6.9)

ii) p−quotient() = (R1, . . . , Rp). (6.10)

Conjecture 6.4. Let CPRµ(t) be the weight µ unrestricted one dimensional sum
corresponding to the tensor product of crystals BR1 ⊗ · · · ⊗ BRp , and boundary condition
bTmin ; let be the unique partition which satisfies the conditions (6.9) and (6.10). Then

CPRµ(t) = tE0P(p)
µ (t),

for a certain constant E0.

Conjecture 6.5. Let CKλR(t) be the weight λ classically restricted one dimensional
sum corresponding to the tensor product of crystals BR1⊗· · ·⊗BRp

and boundary condition
bTmin ; let be the unique partition which satisfies the conditions (6.9) and (6.10). Then

CKλR(t) = qE0K
(p)
λ (t),

for a certain constant E0.

6.4. Generalized Kostka polynomials.

The third way to define a q–analog, denoted by KλR(q), of the tensor product multi-
plicity (6.2), in the case R is a sequence of rectangular partitions, is due to M. Shimozono
and J. Weyman, see, e.g., [KS]. By definition the polynomials KλR(q) are the Poincare
polynomials of isotypic components of Euler characteristics of certain C[gln]–modules sup-
ported in nilpotent conjugacy class closures.

To give precise definitions, we need little more notations. Our exposition follows to
[KS]. Let η = (η1, η2, . . . , ηp) be a sequence of positive integers that sum to n. Denote by
Rootsη the set of ordered pairs (i, j) such that 1 ≤ i ≤ η1 + · · · + ηr < j ≤ n for some r.
For example, if η = (1n), then Rootsη = {(i, j) | 1 ≤ i < j ≤ n}.

Let Xn = (x1, . . . , xn) be the set of independent variables. For any sequence of
integer numbers γ = (γ1, . . . , γn) we put xγ = xγ11 · · ·xγn

n . The symmetric group Sn acts
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on polynomials in Xn = (x1, . . . , xn) by permuting variables. Define the operators J and
π by

J(f) =
∑
w∈Sn

(−1)l(w)w(xδf), (6.11)

π(f) = J(1)−1J(f), (6.12)

where J(1) =
∏
i<j

(xi − xj) is the Vandermond determinant, δ = (n− 1, n− 2, . . . , 1, 0).

For the dominant (weakly decreasing) integral weight λ = (λ1 ≥ λ2 ≥ · · · ≥ λn),
the character sλ(Xn) of the highest weight λ gl(n) module Vλ is given by the Laurent
polynomial sλ(Xn) = π(xλ). When λ is a partition (that is λn ≥ 0), sλ is the Schur
function.

Let Bη(Xn; q), Hγη(Xn; q), and Kλ,γ,η(q) be the formal power series defined by

Bη(Xn; q) =
∏

(i,j)∈Rootsη

(1− qxi/xj)−1, (6.13)

Hγη(Xn; q) = π (xγBη(Xn; q)) =
∑
λ

sλ(Xn)Kλ,γ,η(q), (6.14)

where λ runs over the dominant integral weights in Zn. It is known (M. Shimozono and
J. Weyman) that the coefficients Kλ,γ,η(q) are in fact polynomials with integer coefficients.
It is not true in general that the polynomials Kλ,γ,η(q) have nonnegative coefficients.

Now we are going to introduce the generalized Kostka polynomials KλR(q). Namely,
let R = (R1, . . . , Rp) be a sequence of partitions. Denote by η = (η1, . . . , ηp) the sequence
of lengths ηi = l(Ri) of partitions Ri. Let n = |η|, and γ(R) ∈ Zn≥0 denotes the composition
obtained by concatenating the parts of the Ri in order.

Definition 6.6. The generalized Kostka polynomial KλR(q) corresponding to a par-
tition λ and sequence of partitions R is defined by the following formula

KλR(q) = Kλ,γ(R),η(q). (6.15)

It is known (M. Shimozono and J. Weyman) that

KλR(1) = Mult(Vλ : VR1 ⊗ · · · ⊗ VRp
),

i.e. KλR(1) is equal to the multiplicity of the highest weight λ irreducible representation
Vλ of the Lie algebra gl(n) in the tensor product VR1 ⊗ · · · ⊗ VRp

. The generalized Kostka
polynomials are a far generalization of the Kostka–Foulkes polynomials Kλµ(q), the gener-
alized exponents polynomials Fq(Vλ) introduced by B. Kostant and studied by R. Gupta,
W. Hessenlink, S. Kato, J. Weyman, A.Broer, . . ., see, e.g., [G], [DLT]. More precisely:
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1. Let Ri be the single row (µi) for all i, where µ = (µ1, µ2, . . .) is a partition of length
at most n. Then

KλR(q) = Kλµ(q), (6.16)

where Kλµ(q) is the Kostka–Foulkes polynomial. The proof of (6.16) follows from the
following well–known identity:

π

xµ ∏
1≤i<j≤n

(
1− q

xi
xj

)−1
 =

∑
k≥0

en(Xn)−kQ′µ+(kn)(Xn; q). (6.17)

When µ = 0, the LHS(6.17)=
∏

1≤i,j≤n

(1− qxi/xj)
−1 =

∑
k≥0

qkch(Hk), where H =
⊕
k≥0

Hk is

the graded module of harmonic polynomials. Follow [Gu], the generalized exponents poly-
nomial Fq(V ) of a finite–dimensional gl(n)–module V is defined to be Fq(V ) =

∑
k≥0

〈V,Hk〉qk.

It is follows immediately from (6.17) with µ = 0, that Fq(Vλ) = 0, if |λ| 6≡ 0(mod n), and
Fq(Vλ) = Kλ(ln)(q), if |λ| = ln. The last equality originally was proved by W. Hessenlink,
and ”elementary” algebraic proof may be found in [DLT].

2. Let Ri be the single column (1ηi) for all i. Then

KλR(q) = K̃λ′η+(q),

is the cocharge Kostka–Foulkes polynomial, where λ′ is the conjugate of the partition λ

and η+ is the partition obtaining by sorting the parts of η into weakly decreasing order.
3. (M. Shimozono and J. Weyman). Let k be a positive integer and Ri be the

rectangle with k columns and ηi rows, 1 ≤ i ≤ n. Then KλR(q) is the Poincare polynomial
of the isotypic component of the irreducible GL(n)–module of highest weight (λ1−k, λ2−
k, . . . , λn− k) in the coordinate ring of the Zariski closure of the nilpotent conjugacy class
which corresponds to the set of nilpotent matrices with the Jordan canonical form of type
(η+)′.

As it was mentioned, the generalized Kostka polynomials KλR(q) may have negative
coefficients for general λ and R. Nevertheless, for the so–called dominant sequence of
partitions R, one expect

Conjecture 6.7 (A. Broer, [KS]) Let R be a dominant sequence of partitions. Then

KλR(t) ∈ N[t].

Recall that a sequence of partitions R = (R1, . . . , Rp) is called dominant, if for all
1 ≤ i ≤ p, the last part of Ri is at least as large as the first part of Ri+1.

6.5. Summary.

In the previous Subsections we gave definitions of four families of polynomials which
may be considered as the ”natural”q–analogues of the tensor product multiplicities, namely,
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• fusion Kostka polynomials FKλR(t),
• crystal Kostka polynomials CKλR(t),
• ribbon Kostka polynomials K(p)

µ (t),
• generalized Kostka polynomials KλR(t),

where R is a sequence of partitions, λ and µ are partitions, and is a partition without
p–core.

It is natural to ask: what are the relations between these four families of polynomials?
First of all, for each sequence of partitions R = (R1, . . . , Rp) denote by := (R) the

unique partition which has no p–core, and has R as its p–quotient. It is known that
• CKλR(1) = FKλR(1) = K

(p)
(R)λ(1) = KλR(1) =RHS(6.2),

• CKλR(t), FKλR(t) are polynomials with nonnegative coefficients by definition.
It was conjectured in [LLT] that the ribbon Kostka polynomials K(p)

µ (t) have non-
negative coefficients. This conjecture was proved in [CL] in the case p = 2. As for the
generalized Kostka polynomials KλR(t), they do may have negative coefficients in general.
For example, take λ = (2, 2) and R = ((1), (3)), then KλR(t) = t− 1.

It seems a very difficult problem to characterize all sequences of partitions R =
(R1, . . . , Rp) such that KλR(t) ∈ N[t] for all partitions λ. But even if it happens that
the generalized Kostka polynomial KλR(t) do has nonnegative coefficients for some λ and
R, even in this case, KλR(t) 6= K(R)λ in general. For example, take λ = (521) and
R = ((31), (1), (1), (2)). In this case (R) = (32111), and KλR(t) = t5 + 3t6 + 2t7 + t8, but
K(R)λ(t) = 2q3 + 3q4 + 2q5.

Summarizing, it seems that there are no simple connection between the ribbon and
generalized Kostka polynomials in general. Nevertheless, for the so–called dominant se-
quences of rectangular partitions R, one can conjectured (see, e.g., [KS]) that the gen-
eralized and ribbon Kostka polynomials coincide. Recall that a sequence of partitions
R = (R1, . . . , Rp) is called dominant, if for all 1 ≤ i ≤ p− 1, the last part of Ri is at least
as large as the first part of Ri+1.

Conjecture 6.8 ([KS]). Let R = (R1, . . . , Rp) be a dominant sequence of rectan-
gular partitions, and = (R) be the unique partition with empty p–core and p–quotient
(R1, . . . , Rp). Then

KλR(t) = K
(p)
λ (t). (6.18)

More generally, let λ be a partition with empty p–core and p–quotient (λ(1), . . . , λ(p)).
Partition λ is called p–dominant, if there exists a permutation s ∈ Sp such that
R = (λ(s(1)), . . . , λ(s(p))) is the dominant sequence of partitions.

Conjecture 6.9. Let λ be a p–dominant partition, and R := R(λ) be the dominant
sequence of partitions obtained by rearrangement of the p–quotient of λ. Assume that all
partitions in the sequence R have rectangular form, then for any partition µ

K
(p)
λµ (t) = KµR(t). (6.19)
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Problem 8. Let λ be a p–dominant partition, and R := R(λ) be the dominant rear-
rangement of the p–quotient of λ. For which partition µ, the p–ribbon Kostka polynomial
K

(p)
λµ (t) coincides with generalized Kostka polynomial KµR(t)?

As for the fusion Kostka polynomials FKλR(t), their connection with the correspond-
ing crystal, ribbon or generalized Kostka polynomials is unclear.

Finally, let us consider few examples which illustrate the difference between the ribbon,
fusion and generalized Kostka polynomials.

Examples. i) Let R = (R1, R2) be a dominant sequence of partitions. One can show
that in this case

KλR(q) = Mult(Vλ : VR1 ⊗ VR2)q
E0 , (6.20)

for a certain constant E0 := E(λR). However, the corresponding fusion and ribbon Kostka
polynomials contain ”in general” more than one term.

ii) Take p = 4 and λ = (8, 8, 8, 4, 4). Then 4–quotient λ = ((2, 1), (1), (2), (2)) and
4–core (λ) = ∅. Hence, we see that λ is the 4–dominant partition, and R := R(λ) =
((2), (2), (2, 1), (1)). One can check that if µ = (4211), then

K
(4)
λµ (q) = KµR(λ)(q) = q2 + 2q3 + 3q4 + q5.

If we take the same p and λ, but take µ = (4, 2, 2), then

K
(4)
λµ (q) = KµR(λ)(q) = 2q3 + 2q4 + 2q5.

However, if we take p = 4, λ = (8, 8, 8, 4, 4), µ = (4, 2, 2), but take R = ((2, 1), (1), (2), (2))
= p–quotient (λ), then KµR(q) = q6 + 3q7 + q8 + q9 6= K

(4)
λµ (q).

iii) Take p = 2 and λ = (11, 9, 9, 7, 7, 5, 2), then 2–core(λ) = ∅ and 2–quotient of λ
is equal to ((4, 3, 2, 1), (6, 5, 4)); hence, λ is the 2–dominant partition, and R := R(λ) =
((6, 5, 4), (4, 3, 2, 1)). Now let us take µ = (8, 6, 6, 3, 2), then

KµR(q) = 7q5,

FKµR(q) = 2q6 + 4q7 + q8,

K
(2)
λµ (q) = 3q4 + 4q5 = K

(2)
(R)µ(q).

These examples show that for a general p–dominant partition λ with the dominant
rearrangement of the p–quotient R := R(λ), the ribbon and generalized Kostka polynomials
K

(p)
λµ (t) and KµR(t) give unequivalent q–analogues of the tensor product multiplicities.

§7. Fermionic formulae.

By fermionic formulae for polynomial (or series) f(t) ∈ N[t] we roughly mean such ex-
pression for f(t) which is free of signs, admits a quasi–particle interpretation, has an origin
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in the Bethe ansatz, etc. Thanks to the absence of signs, fermionic formulae are suitable
for studying the limiting behavior and serve as a key to establish various formulae for the
characters related to the affine Lie algebras and Virasoro algebra, see [Ki2], [HKKOTY]
for examples illustrating this thesis.

7.1. Multinomial fermionic formulae for one dimensional sums.

The starting point of our investigation is a simple observation that the number of
transport matrices Pλµ(1) of type (λ;µ) is equal to the coefficient of xµ in the product

hλ1(Xn) . . . hλp(Xn),

where λ = (λ1, . . . , λp), p ≤ n, l(µ) ≤ n, and hk(Xn) denotes the complete homogeneous
symmetric function of degree k in the variables Xn = (x1, . . . , xn).

More generally, the number PRµ(1) of weight µ unrestricted paths corresponding to
the tensor product of crystals BR1 ⊗ · · · ⊗ BRp is equal to the coefficient of xµ in the
product of Schur functions sR1 · · · sRp

. This is clear. On the other hand it is well–known
and goes back to D. Littlewood (see, e.g., [CL], [LLT], [SW]) that the latter coefficient is
equal also to the number |Tabp(, µ)| of p–ribbon tableaux of shape and weight µ, where
is the unique partition which satisfies the conditions (6.10) and (6.11).

Problem 9 (cf. Conjecture 6.4). To construct a bijection ψ between the sets PRµ(1)
and Tabp(, µ) which transforms the energy function E on the set PRµ(1) to the modified
spin function s̄ on that Tabp(, µ).

Problem 10. Let P0
Rµ(1) be the set of weight µ classically restricted paths cor-

responding to the tensor product of crystals BR1 ⊗ · · · ⊗ BRp , see, e.g., [KMOTU2],
or [HKKOTY]. It is clear that P0

Rµ(1) ⊂ PRµ(1). Find characterization of the subset
Tab0

p(, µ) ⊂ Tabp(, µ) which corresponds to that P0
Rµ(1) under the above bijection ψ.

In the case p = 2 the set Tab0
2(, µ) was characterized by C. Carre and B. Leclerc [CL]

as the set of Yamanouchi domino tableaux. A weight preserving bijection between the
set of domino tableaux of a fixed shape and that of ordinary tableaux of a related fixed
shape, which maps Yamanouchi domino tableaux to ordinary Yamanouchi tableaux, was
constructed by M. van Leeuwen [Le]. The question whether or not the bijection constructed
by Leeuwen transforms the spin of a domino tableau to the value of the energy function
for corresponding path is still open.

Let us continue and note that there exists yet another way to describe the coeffi-
cient of xµ in the product of Schur functions sR1 · · · sRp

which is based on a combinatorial
formula for Schur functions, see, e.g., [M], Chapter I, (5.11). We consider here only the
so–called ”homogeneous case”R1 = · · · = Rp := λ. The general case can be treated simi-
larly. The starting point for obtaining the multinomial fermionic formulae is the following
combinatorial formula for the Schur functions mentioned above:
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let λ be a partition, l(λ) ≤ n, then

sλ(Xn) =
∑
T

xw(T ),

where the sum runs over the set STY (λ,≤ n) of all semistandard Young tableaux of shape
λ filled by numbers not exceeding n, and w(T ) is the weight of a tableau T .

Let us define the multinomial coefficient
(
L
µ

)
λ

via decomposition

(sλ(Xn))
L =

∑
µ

(
L
µ

)
λ

xµ, (7.1)

where the sum is taken over the set of all compositions µ such that l(µ) ≤ n and |µ| = L|λ|;(
L
µ

)
λ

:=
∑
{kT }

(
L

{kT }

)
, (7.2)

summed over all sequences of nonnegative integers {kT } parameterized by the set of semi-
standard Young tableaux STY (λ,≤ n), such that

∑
T∈STY (λ,≤n)

w(T )kT = µ;(
L

{kT }

)
:=

L!∏
T (kT )!

stands for the gaussian multinomial coefficient.

The multinomial coefficients
(
L
µ

)
λ

can be characterized by the following properties:

•
(

0
µ

)
λ

= δ0,µ (initial data);

•
(
L+ 1
µ

)
λ

=
∑

T∈STY (λ,≤n)

(
L

µ− w(T )

)
λ

(recurrence relations), (7.3)

where we assume that the gaussian multinomial coefficient
(

L
m1, . . . ,mn

)
is equal to 0,

if mi < 0 for some i.

It is natural to ask: what is a q–analog of the multinomial coefficient
(
L
µ

)
λ

, and what

are the q–analogues of relations (7.1), (7.2), and (7.3)? The answers on these questions
are either well–known or conjectured.

More precisely, for each semistandard tableau T ∈ STY (λ,≤ n) let us denote by[
L
µ

](T )

λ

the weight µ unrestricted one dimensional sum with boundary condition bT ∈ Bλ.

Let H : Bλ × Bλ → Z stands for the local energy function corresponding to the crystal
Bλ, see, e.g., [Ka1], [Ka2]. In the sequel we will identify the sets Bλ and STY (λ,≤ n).

It is well–known, see, e.g., [KMOTU2], that one dimensional sums
[
L
µ

](T )

λ

satisfy the

following conditions:
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•
[
L
µ

](T )

λ

|q=1 =
(

L
µ− w(T )

)
λ

,

•
[
L
µ

](T )

λ

= δ0µ (initial datum),

• let T0 ∈ STY (λ,≤ n), then[
L+ 1
µ

](T0)

λ

=
∑

T∈STY (λ,≤n)

qH(T0,T )

[
L
µ

](T )

λ

. (7.4)

(recurrence relations)
For q–analogue of (7.2) and (7.3), we are making the following conjectures:

Conjecture 7.1. There exists a quadratic form Q : Bλ×Bλ → Z, and a set of linear
forms lT : Bλ → Z, T ∈ Bλ, such that[

L
µ

](T0)

λ

=
∑
{kT }

q

∑
T,T ′

Q(T,T ′)kT kT ′+
∑

T
lT0 (T )kT

[
L

{kT }

]
q

, (7.5)

summed over all sequences of nonnegative integers {kT }, T ∈ STY (λ,≤ n), such that∑
T

w(T )kT = µ;
[

L
{kT }

]
q

=
(q; q)L∏
T (q; q)kT

stands for a q–analog of the gaussian multino-

mial coefficient.

Remark. The answer to this conjecture is known or conjectured in the case when
partition λ = (l) consists of one part and for some special values of T ∈ STY ((l),≤ n).

Conjecture 7.2. Let λ = (λ1, . . . , λs) be a partition. For each integer k ≥ 1, denote
by kλ the following partition (kλ1, . . . , kλs). Then

qLn(λ′)P(L)
Lλ,µ(q) =

[
L
µ

](Tmax)

λ

, (7.6)

where Tmax denotes the unique maximal with respect to the lexicographic order element in
the set STY (λ,≤ n).

In other words, let H(L)
λ (Xn; t) be the H–function defined in [LLT], Section 6; see also

[CL] and [KLLT]. Then

H
(L)
λ (Xn; t) = q−Ln(λ′)

∑
µ

[
L
µ

](Tmax)

λ

mµ(Xn). (7.7)

Remark. If partition λ = (l) consists of one part, the multinomial coefficients
[
L
µ

](T )

λ

coincide with those introduced by A. Schilling and S.O. Warnaar after changing q to q−1

and multiplication on some power of q, [Ki2], [Sc], [ScW], [W].
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7.2. Rigged configurations polynomials.

In the previous subsection we explained an origin of a (conjectural) multinomial
fermionic formulae for polynomials P(L)

Lλ,µ(t). In this subsection we are going to to present
yet another example of a (conjectural) fermionic formula for generalized Kostka polynomi-
als corresponding to a collection of rectangles R = (R1, . . . , Rp), where Ra = (ηµa

a ) for all
1 ≤ a ≤ p. Our approach is using the so–called rigged configurations polynomials.

Definition 7.3. Let λ be a partition such that |λ| =
∑
a

µaηa. We define the rigged

configurations polynomial RCλR(q) to be

RCλR(q) =
∑
{ν}

qc({ν})
∏
k≥1

∏
i≥1

[
P

(k)
i (ν) +mi(ν(k))

mi(ν(k))

]
q

, (7.8)

where sum runs over all sequences of partitions ν = {ν(1), ν(2), . . .} such that

• |ν(k)| =
∑
j≥k+1

λj −
p∑
a=1

µaθ(ηa − k);

• P (k)
i (ν) :=

p∑
a=1

min(i, µa)δk,ηa +Qi(ν(k−1))−2Qi(ν(k))+Qi(ν(k+1)) ≥ 0 for i, k ≥ 1.

We have used the following notations:

i) for any partition λ, Qj(λ) =
∑
i≤j

λ′i =
∑
i≥1

min(j, λi);

ii) if x ∈ R, then θ(x) = 1, if x ≥ 0, and θ(x) = 0, if x < 0;
iii) ν(0) = ∅;
iv) mi(λ) = λ′i − λ′i+1 is the number of parts equal to i of the partition λ;

v) c({ν}) =
∑
k≥1

∑
i≥1

(
Aik
2

)
, where Aik = (ν(k−1))′i − (ν(k))′i +

p∑
a=1

θ(ηa − k)θ(µa − i).

Conjecture 7.4 (A.N. Kirillov, M. Shimozono, [KS]). Let λ and R be as above,
and be the unique partition which satisfies the conditions (6.10) and (6.11). Assume that
µ1 ≥ µ2 · · · ≥ µp, then

K
(p)
λ (q) = RCλR(q).

It is known (A.N. Kirillov) that

RCλR(1) = Mult[Vλ : VR1 ⊗ · · · ⊗ VRp
], (7.9)

where for each 1 ≤ a ≤ p, Ra = (ηµa
a ) is a rectangular partition. A combinatorial proof of

(7.9) is based on the construction of rigged configurations bijection (A.N. Kirillov).
Let us illustrate the formula (7.8) by simple example:
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Example. Take λ = (44332) and R =
(
(23), (22), (22), (1), (1)

)
. Then |ν(1)| = 4,

|ν(2)| = 6, |ν(3)| = 5, and |ν(4)| = 2. It is not hard to check that there exist 6 configurations.
They are:

{ν} : 0
0

1 0
0

0 c({ν}) = 10,

{ν} : 0
1

1
1

0

0
1

0 c({ν}) = 8,

{ν} : 0 0 0
2

0 c({ν}) = 8,

{ν} : 0 0 0
0

0 c({ν}) = 12,

{ν} : 0
0

1

0

0

0

1 c({ν}) = 6,

{ν} : 0
0

0

0

0
0

0 c({ν}) = 8,

Thus, the rigged configurations polynomial RCλR(q) is equal to

q10
[

3
1

]
+ q8

[
2
1

] [
2
1

] [
2
1

] [
2
1

]
+ q8

[
3
1

]
+ q12 + q6

[
2
1

] [
3
1

]
+ q8

= q6 + 2q7 + 5q8 + 6q9 + 8q10 + 5q11 + 3q12.

§8. Two parameter deformation of one dimensional sums.

Following [GH], we define the modified Macdonald polynomials in infinite number of
variables by

P̃λ(x; q, t) = Pλ

(
x

1− t
; q, t

)
, J̃λ(x; q, t) = Jλ

(
x

1− t
; q, t

)
(8.1)
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in the λ–ring notation. Let us explain briefly the λ–ring notation in the context of symmet-
ric functions. Given a symmetric function f(x) = f(x1, x2, . . .) in infinite set of variables

x = (x1, x2, . . .), the symbol f
(

x

1− t

)
in the λ–ring notation stands for the symmetric

function f(x̃) obtained by the transformation of variables x̃ = (xitj)i≥1,j≥0. In infinite
number of variables, the symmetric function f(x) can be written uniquely in the form

f(x) = ϕ(p1(x), p2(x), . . .) as a polynomial of the power series pk(x) =
∞∑
j=1

xkj , k = 1, 2, . . ..

Then the symbol f
(

x

1− t

)
represents the symmetric function

f

(
x

1− t

)
= ϕ

(
p1(x)
1− t

,
p2(x)
1− t2

, . . .

)
,

obtained by the transformation pk(x) → pk(x)/(1 − tk), k = 1, 2, . . .. When we con-
sider the modified Macdonald polynomials in n variables Xn = (x1, . . . , xn), each function
P̃λ(Xn; q, t) and J̃λ(Xn; q, t) should be understood as the one obtained from the correspond-
ing symmetric function in infinite number of variables by setting xn+1 = xn+2 = · · · = 0.

An advantage of modified Macdonald polynomials is that they have nice transforma-
tion coefficients with classical Schur functions sλ(x):

J̃λ(x; q, t) =
∑
λ

Kλµ(q, t)sλ(x), (8.2)

where Kλµ(q, t) are the double Kostka coefficients. It is well–known that Kλµ[q, t] ∈ Z[q, t]
for all λ and µ, see, e.g., [KN].

Our next aim is to construct two parameter deformation of polynomials Pλµ(t) us-
ing the modified Macdonald polynomials J̃λ(Xn; q, t) instead of modified Hall–Littlewood
polynomials Q′λ(Xn; t). To this end, let us consider, follow [KN], a family of polynomials
Bλµ(q, t) via decomposition

J̃λ(x; q, t) =
∑
µ

Bλµ(q, t)mµ(x).

It is clear that
Bλµ(q, t) =

∑
η

KηµKηλ(q, t).

Let us formulate some basic properties of polynomials Bλµ(q, t). For further details and
proofs, see [M], Chapter VI, and [KN], Section 8.

Let λ and µ be a partitions of a given natural number N , then

• Bλµ(1, 1) =
(

N
µ1, µ2, . . .

)
= P1Nµ(1);
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• Bλµ(0, t) = Pλµ(t);

• B(N)µ(q, t) = qn(µ′)

[
N

µ1, µ2, . . .

]
q

= P1Nµ(q);

• Bλ′µ(q, t) = qn(λ′)tn(λ)Bλµ(t−1, q−1) (duality).

It follows from duality that

Bλµ(q, t) = qn(λ′)(R̃λµ(t) + o(q−1)),

where R̃λµ(t) =
∑
η

KηµK̃η′λ(t), and K̃η′λ(t) = tn(λ)Kη′λ(t−1).

The properties of polynomials Bλµ(q, t) mentioned above show that they can be con-
sidered as a natural two parameter deformation of the gaussian multinomial coefficients.

Problem 11. Find a “path realization” of polynomials Bλµ(q, t).

Problem 12 (“Parabolic modified Macdonald polynomials”). Find two parameter
deformation of polynomials Q̃(p)

λ (Xn; t) with nice combinatorial, algebraic and geometric
properties.

At the end of this Section we give an example of polynomials Bλµ(q, t).

Example. Take λ = (23), µ = (2212), then

Bλµ(q, t) =
∑
η

KηµKηλ(q, t) = 1 + 4t+ 8t2 + 9t3 + 7t4 + 3t5 + t6

+ q

[
3
1

]
t

(1 + 5t+ 9t2 + 7t3 + 3t4) + q2
[

3
2

]
t

(2t+ 6t2 + 7t3 + 4t4)

+ q3(t2 + 3t3 + 5t4 + 4t5 + 2t6).

Using the fermionic formulae (3.1) and (3.7), one can check that

Pλµ(t) = Bλµ(0, t) = 1 + 4t+ 8t2 + 9t3 + 7t4 + 3t5 + t6,

and

Rλµ(t) = q3t6Bλµ(q−1, t−1)|q=0 =
∑
η

KηµKη′λ(t) = 2 + 4t+ 5t2 + 3t3 + t4.
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of the ŝu(2)M × ŝu(2)N/ŝu(2)M+N conformal coset models, Nucl. Phys. B, 1996,
v.467, p.247-271.

[ScW] Schilling A. and Warnaar S.O., Supernomial coefficients, polynomial identities and
q–series, Preprint q-alg/9701007, 34p.

[Sh] Shimomura N., A theorem of the fixed point set of a unipotent transformation of the
flag manifold, J. Math. Soc. Japan, 1980, v.32, p.55-64.

[St] Stanley R., Supersolvable lattices, Algebra Universalis, 1972, v.2, p.197-217.
[SW] Stanton D. and White D., A Schensted algorithm for rim hook tableaux, J. Comb.

Theory, Ser. A, 1985, v.40, p.211-247.
[T] Terada I., A generalization of the length – Maj symmetry and the variety of N–stable

flags, Preprint, 1993.
[W] Warnaar S.O., The Andrews–Gordon identities and q–multinomial coefficients, Comm.

Math. Phys., 1997, v.184, p.203-232.
[Y] Yeh Y., On prime power abelian groups, Bull. Amer. Math. Soc., 1948, v.54, p.323-

327.
[ZB] Zeilberger D. and Bressoud D., A proof of Andrew’s q–Dyson conjecture, Discrete

Math., 1985, v.54, p.201-224.

52


