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NEW COMBINATORIAL INTERPRETATIONS OF RAMANUJAN'S
PARTITION CONGRUENCES MOD 5, 7 AND 11

F. G. GARVAN

Abstract. Let p(n) denote the number of unrestricted partitions of n. The
congruences referred to in the title are p(5n + 4), pCln + 5) and p(lln + 6) = 0
(mod 5, 7 and 11, respectively). Dyson conjectured and Atkin and Swinnerton-Dyer
proved combinatorial results which imply the congruences mod 5 and 7. These are in
terms of the rank of partitions. Dyson also conjectured the existence of a "crank"
which would likewise imply the congruence mod 11. In this paper we give a crank
which not only gives a combinatorial interpretation of the congruence mod 11 but
also gives new combinatorial interpretations of the congruences mod 5 and 7.
However, our crank is not quite what Dyson asked for; it is in terms of certain
restricted triples of partitions, rather than in terms of ordinary partitions alone.

Our results and those of Dyson, Atkin and Swinnerton-Dyer are closely related to
two unproved identities that appear in Ramanujan's "lost" notebook. We prove the
first identity and show how the second is equivalent to the main theorem in Atkin
and Swinnerton-Dyer's paper. We note that all of Dyson's conjectures mod 5 are
encapsulated in this second identity. We give a number of relations for the crank of
vector partitions mod 5 and 7, as well as some new inequalities for the rank of
ordinary partitions mod 5 and 7. Our methods are elementary relying for the most
part on classical identities of Euler and Jacobi.

1. Introduction. Let p(n) denote the number of unrestricted partitions of n.
Ramanujan discovered and later proved

(1.1) p(5n + 4) = 0       (mod5),
(1.2) p(7n + 5) = 0       (mod 7),
(1.3) p(lln + 6) = 0       (modll).
For elementary proofs of (1.1) and (1.2) see Ramanujan [20]. The most elementary
proof of (1.3) is due to Winquist [24]. Much more is known than (1.1)—(1.3). In fact,
for a ^ 1
(1.4) p{5an + 85a) = 0       (mod5a),

(1.5) />(7"n + 87<a) = 0        (mod7'(a + 2)/2l),

(1.6) p{llan + <5lla) = 0       (modlla).
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48 F. G. GAR VAN

Here 8la is the reciprocal modulo ta of 24. (1.4) and (1.5) were first proved by G. N.
Watson [23] in 1938. For an elementary proof of (1.4) see Hirschhorn and Hunt [16]
and for an elementary proof of (1.5) see Garvan [14]. (1.6) was proved by A. O. L.
Atkin [11] in 1967.

In 1944 F. J. Dyson [13] discovered empirically some remarkable combinatorial
interpretations of (1.1) and (1.2). Dyson defined the rank of a partition as the largest
part minus the number of parts. For example, the partition 4 + 4 + 3 + 2 + 1 + 1
+ 1 has rank 4 - 7 = -3. Let N(m,n) denote the number of partitions of n with
rank m and let N(m,t,n) denote the number of partitions of n with rank congruent
to m modulo t. Dyson conjectured that

(1.7) #(0,5,5«+ 4) = #(1,5,5«+ 4)= ••• = #(4,5,5« + 4) = p^5n + ^

and

(1.8) N{0,7,7n + 5) = #(1,7,7/1 + 5)= ••• = #(6,.7,7w + 5) = P^" + 5\

(1.7) and (1.8) were later proved by A. O. L. Atkin and H. P. F. Swinnerton-Dyer [7]
in 1953. These are the combinatorial interpretations of (1.1) and (1.2). Atkin and
Swinnerton-Dyer's proof is analytic, relying heavily on the properties of modular
functions. No combinatorial proof is known. All that is known combinatorially
about the rank is that

(1.9) N{m,n) = N{-m,n),

which follows from the fact that the operation of conjugation reverses the sign of the
rank. A trivial consequence is that

(1.10) N{m,t,n) = N{t - m,t,n).
Atkin and Swinnerton-Dyer's paper contains proofs of other conjectures of Dyson
for the rank such as

(1.11) #(l,5,5w +1) = #(2,5,5« + 1).
As well they calculate the generating functions for N(a,t,tn + k) — N(b, t,tn + k)
for t = 5,7 and all possible values of a, b and k. Later, Atkin and Hussain [8] do
the same for / = 11 and in 1965 O'Brien [19] does the same for t = 13.

It is worth noting that Atkin [9] has generalized Dyson's rank. Any partition may
be represented as a set of nested right angles of nodes. The partition 7 + 7 + 5 + 3
+ 3 + 1 + 1 is represented by three such right angles:
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RAMANUJAN'S PARTITION CONGRUENCES 49

If it is a partition, Atkin defines <i,(w) as the number of nodes in the horizontal part
of the j'th right angle in the graph of it minus the number of nodes in the vertical
part of the right angle, so that dx(-r) is Dyson's rank and d¡(ir) = 0 if ir does not
have an z'th right angle. The d¡(*r) are called the successive ranks of tt. Atkin gives
alternate combinatorial interpretations of (1.1) and (1.2) that are analogous to (1.7)
and (1.8). Namely, if we denote by N*(m,n) (resp. N*(m,t,n)) the number of
partitions it of n in which dx(m) - 2d2(*r) = m (resp. the number of partitions m of
« in which dx(*r) - 2d2(ir) = m (mod t)) then

(1.12)
#*(0,5,5« + 4) = #*(1,5,5« + 4) = • • • = #*(4,5,5« + 4) = P^5n_+ *'

and

(1.13)
#*(0,7,7« + 5) = #*(l,7,7«+ 5) = ■•• = #*(6,7,7« + 5) = P"n + 5' .

Atkin defines an operation C, of i-conjugacy which acts on partitions and satisfies

(1.14) d1{Ci-r) = d1{-T)-2di{-r).

Hence,

(1.15) #*(w,«) = N{m,n)

and (1.12) and (1.13) follow trivially from (1.7) and (1.8). Atkin's successive ranks
have been studied further by Andrews [2, §9.3].

The result analogous to (1.7) and (1.8) for the prime 11 does not hold. Dyson
conjectured the existence of what he called the "crank" that satisfies

(1.16) M{m,t,n) = M{t - m,t,n),

(1.17) Af(0,11,11« + 6) = M{1,11,11« + 6) = ■ • •

= M(10,ll,ll« + 6) =p{lln + 6)/ll

and as well as other relations for the crank modulo 11, where M{m, t, n) denotes the
number of partitions of n with crank congruent to m modulo t. Many have searched
in vain for Dyson's crank. We provide a combinatorial interpretation of (1.3). No
combinatorial interpretation of (1.3) has hitherto been found. We also provide new
interpretations of (1.1) and (1.2) (see (1.27) and (1.28) below). We have not
discovered Dyson's elusive crank. Our main result (see (1.29) below) does not
actually divide up the partitions of 11« + 6 into 11 equal classes but rather it gives a
combinatorial interpretation of pClln + 6)/ll in terms of the crank of what we call
vector partitions.

To describe our main result we need some more notation. For a partition, w, let
#(*t) be the number of parts of it and o(tt) be the sum of the parts of -r (or the
number it is partitioning) with the convention #(<i>) = o(<p) = 0 for the empty
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50 F. G. GAR VAN

partition, <í>, of 0. Let

^ = {( "1 > "2 > "3 ) I "1 's a partition into distinct parts
and 7T2, 7T3 are unrestricted partitions}.

We shall call the elements of V vector partitions. For it = (ir1; ir2, it3) in V we define
the sum of parts, s, a weight, u, and a crank, r, by

(1.18) s(ir) - fffo) + o(»2) + o(v3),

(1.19) «(it) = (-l)***'1,
(1.20) r(n)= #(*2)-#(»3).

We say ir is a vector partition of « if 5(11) = «. For example, if 11 = (5 + 3 + 2,2
+ 2 + 1,2 + 1 + 1) then s(m) = 19, u(it) = -1, /-(ir) = 0 and 11 is a vector
partition of 19. The number of vector partitions of « (counted according to the
weight w) with crank m is denoted by Nv(m, «), so that

(1.21) Nv(m,n) =    £    u(ir).
ire|/

j(it) = h
r( it ) = m

The number of vector partitions of « (counted according to the weight w) with
crank congruent to k modulo t is denoted by Nv(k, t, «), so that

00

(1.22) Nv(k,t,n)=    £   Nv(mt + k,n)= £   w(ir).
m = -oc nG K

s(it) = /j
r(it) = k (modi)

By considering the transformation that interchanges tt2 and m3 we have

(1.23) Ny{m,n) = Nv{-m,n)

so that

(1.24) Nv(t - m,t,n) = Nv(m,t,n).

We have the following generating function for Nv(m, «):

(1.25) I    £#,(«>,«W= Ely:-l,   ' j _,.,-
m—oo » = 0 "-1  (1  - z1   )(1  "z   V )

By putting z = 1 in (1.25) we find

(1.26) £   #„(»!,«) = />(«).
m = -oo

Our main results are

(1.27) #,,(0,5,5« + 4) = Ny(l,5,5n + 4) =  • ■ •

= #„(4,5,5« + 4) = />(5« + 4)/5,
(1.28) #„(0,7,7«+ 5) = #„(1,7,7«+ 5) = •••

= #„(6,7,7« + 5) = p(ln + 5)/7,
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RAMANUJAN'S PARTITION CONGRUENCES 51

(1.29) #„(0, 11, 11« + 6) = #„(1, 11, 11« + 6) =
= #„(10,11,11« + 6) =p{lln + 6)/ll.

We give a direct proof of these results in §2.
Incredible as it may seem, (1.7) and (1.27) follow from two identities (see (1.30)

and (1.31) below) that appear in Ramanujan's "lost" notebook. For an introduction
to the "lost" notebook see Andrews [3]. We state these two identities as they appear:

(1.30) F{q>A) = A(q) - 4^/scos2 ^LB{q) + 2q2/5cos ~LC(q)

-2<73/5cos ^D{q),

and

(1.31) f(q^) = [A(q) - 4ûn2^{q)) + q^B{q) + 2q^cos ^C(q)

-29V5cos2«Z|/)(?) + 4sin2 2^

where « = 1,2 and

(1.32) F(q)= (L-fXl-f'Hl-f')
(l - 2^cos^ + q2)(l - 2^cos^ + q4)

(1.33)     /(f)-1' + /,      „ 2«w        ,\
1 - 2<7cos—;—I- q

(1.34) A(q) =

(1.35) B(q) =

(1.36) C(q) =

(1.37) D(q) =

+_¿_
/, -, 2«77 ,\/, „     -, 2«7T1 - 2<7cos—r-1- q      1 - 2(7 cos—z-h q

1 -q2-q3 + q9+ ■■■

(I - q)2{l - q4)\l - qof

{I - q>){l - q™){l - q") ■

(l-g5)(l-f"»)(l-f15)-
{l - q2){l - q3){l - q2) ■

1 - g - q4 + q1 + • • •

(1 - q2)\l - q3)\l - jf
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52 F. G. GAR VAN

1        , _iL
(1.38)    </>(<?) = -! +

(1.39)    *(9) = -l +

1 - f     (1 - f )(1 - f4)(l - f6)

_g»_
+ (1 - f)(l - q4){1 - q«){l - 9»)(1 - ,») + "

-^ +_¿_
1 - f2      (1 - (72)(1 - f3)(1 - q1)

_J»_
+ (1 - <72)(1 - q3){l - q2){l - f»)(l - f12) + "

We note the appearance of the functions A(q), B(q), C(q), D(q) in both (1.30)
and (1.31). There seems no simple explanation for this curious fact. In §3 we prove
(1.30). In §4 we show how (1.30) leads to the following relations for the crank of
vector partitions:

(1.40) #„(1,5,5«) = #„(2,5,5«),
(1.41) #„(0,5,5« + 1)+ #„(1,5,5« + 1) = 2#„(2,5,5« + 1),

(1.42) #„(0,5,5« + 2) = #„(1,5,5« + 2),

(1.43) #„(0,5,5« + 3) = #„(2,5,5« + 3).
In §§5 and 6 we derive identities similar to (1.30) but involving 7 respectively 11

instead of 5. This enables us to obtain the following relations for the crank of vector
partitions:

(1.44) #„(1,7,7«) = #„(2,7,7«) = #„(3,7,7«),
(1.45) #„(0,7,7« + 1) + #„(1,7,7« + 1) = 2#„(2,7,7« + 1),
(1.46) #„(2,7,7« + 1) - #„(3,7,7« + 1),

(1.47) #„(0,7,7« + 2) = #„(1,7,7« + 2) = #„(3,7,7« + 2),
#„(0,7,7«+ 3) = #„(3,7,7«+ 3),

^'    ' #„(1,7,7« + 3) = #„(2,7,7« + 3),

(1.49) #„(0,7,7« + 4) = #„(2,7,7« + 4) = #„(3,7,7« + 4),

(1.50)
#„(0,7,7« + 6) = #„(2,7,7« + 6),
#„(1,7,7« + 6) = #„(3,7,7« + 6),

(1.51) #„(1,11,11«) = #„(2,11,11«) = #„(3,11,11«)
= #„(4,11,11«) = #„(5,11,11«),

(1.52) #„(0,11,11« + 1) + #„(1,11,11« + 1) = 2#„(2,11,11« + 1),
(1.53) #„(2,11,11« + 1) = #„(3,11,11« + 1)

= #„(4,11,11« + 1) = #„(5,11,11« + 1),
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(1.54)      #„(0,11,11« +2) = #„(1
= #„(4

1.55) #„(0,11,11« +
1.56) #„(1,11,11« +3) = #„(2

= #„(4

1.57) #„(0,11,11« + 4) = #„(2
1.58) #„(1,11,11«+ 4) = #„(3
1.59) #„(0,11,11«+ 5) = #„(1

= AV(3

1.60) #„(2,11,11« +
1.61) #„(0,11,11«+ 7) = #„(2

= #„(3

1.62) #„(1,11,11« +
1.63) #„(0,11,11« + 8) = #„(2

1.64) #„(1,11,11« +8) = #„(3
1.65) #„(0,11,11« +
1.66) #„(1,11,11« +9) = #„(2

= #„(3

(1.67)    #„(0,11,11« +10) = #„(1
= #„(4

11,11« + 2) = #„(3,11,11« + 2)
11,11« + 2) = #„(5,11,11« + 2),

3) = #„(3,11,11«+ 3),

11,11« + 3)
11,11« + 3) = #„(5,11,11« + 3),
11,11« + 4) = #„(4,11,11« + 4),

11,11« + 4) = #„(5,11,11« + 4),

11,11« + 5)
11,11« + 5) = #„(5,11,11« + 5),

5) = #„(4,11,11« + 5),

11,11« + 7)

11,11« + 7) = #„(5,11,11« + 7),
7) = #„(4,11,11« + 7),

11,11« + 8) = #„(5,11,11« + 8),

11,11« + 8) = #„(4,11,11« + 8),
9) = #„(4,11,11«+ 9),
11,11« + 9)
11,11« + 9) = #„(5,11,11« + 9),

11,11« + 10) - #„(2,11,11« + 10)
11,11« + 10) = #„(5,11,11« + 10).

In §7 we derive other forms for the generating functions for N(m,n) and
#„(w, n). In §8 we show not only how (1.7) follows from (1.31) but also we are able
to show that (1.31) is actually equivalent to the main result of Atkin and Swinner-
ton-Dyer's paper [7, Theorem 4]. As well as we are able to prove the following
inequalities for the rank of ordinary partitions:

(1.68) #(1,5,5«)> #(2,5,5«)    for«>l,
(1.69) #(2,5,5« +3)> #(0,5,5« + 3)    for « > 3,
(1.70) #(0,7,7«) + #(1.7,7«) > 2#(2,7,7«)    for « > 0,
(1.71) #(3,7,7« +2)> #(2,7,7« +2)    for « > 8,
(1.72) #(0,7,7« + 6)> #(3,7,7« + 6)    for « > 5.

We introduce some standard notation.

(1.73) {a)n = {a; q)„ = (1 - a){l - aq) ■ ■ ■ (l - of""1),

(1.74) (a)x = (a;q)x =  lim (a),„   where |f|<l.
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In §7 we need the basic hypergeometric function

(1.75) bu...,bn
y    iai) j(a2)j ■■■{am)Jz->

£o(l>i)Al>2)J---{bn)j{q)/

where \z\ < 1, \q\ < 1 and b¡ =7 q~n for any nonnegative integer «.

2. A direct proof of the main result. We first note that (1.27)—(1.29) can be written
more compactly as

(2.1)

#„(0, t, tn + 8,) = #„(1, t,tn + 8,)=  ■■■  = Nv(t - 1, /, tn + 8,) = P^" +   ''

for r = 5,7,11 where 8, is the reciprocal of 24 modulo t. We need the following
elementary but fundamental lemma:

Lemma (2.2). For t prime, (2.1) is equivalent to the coefficient of q'"+s' in

(23) n_&^_

being zero, where

(2.4) f, = exp(2^/0.
Proof. Let t be prime. First we write (2.3) in terms of Nv(k, t, «). Substituting

z = f, into the left-hand side of (1-25) we have
00 oo t— 1 00

£     ZNv(m,n)^qn=Z     £     £ M »», « ) £"f "
m = - oo h = 0 k = Q   m = k   n = 0

(modi)

= Etfff £ *„(««,«))f»
(modr)

r-1        oo

=  HtfI,Nv{k,t,n)qn,    by (1.22).
A: = 0      77 = 0

Hence we have
r-l        oo

£ if £ -
(?(9)oo(f(   9)oo        A: = 0      n = 0

(2-5) ,„   ^A00-,  n L!ïLMk,t,n)q»

and we find that
7-1

£#K(M,'«+ «,)£,*
¿=o

is equal to the coefficient of <7r"+s< in (q)x/(Ç,q)00(Çf1q)x- Now, suppose (2.1) is
true then the coefficient of q'n + s- in (f )00/(i'rf )00(fr1f )« is

i-i i-i
£ Ny(k, t, tn + «,)£* = #„(0, f, i« + 8,) £ f * = 0,

¿-0 /c = 0
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as required. Conversely, suppose that the coefficient of q'n+s' in (q)0O/(C,q)0O(C¡~lq)x
is zero, then

r-l
(2.6) £#„(*,*,/« + «,)?* = 0.

A: = 0

We note that the left-hand side of (2.6) is a polynomial in f, over Z. It follows that
(2.7) #„(0, t, tn + 8,) = Nv{l,t, tn + 8,) = ■■■ = Nv{t - 1, t, tn + 8t)
since / is prime and the minimal polynomial for f, over Q is

(2.8) p{x) = 1 + x + x2 + ••• +x'-\
Finally, from (1.26) and (2.7) we have

t-i
p(tn + 8,)=  £ Nv(k, t, tn + 8,) = i#„(0, t, tn + 8,)

k = 0

and (2.1) follows.   D
We can now proceed with the proof of (2.1) (for t = 5,7,11). There are three

cases. The cases t = 5 and 7 depend only on classical identities of Euler and Jacobi.
The proof for the case t = 11 is analogous but depends on an identity due to
Winquist [24].

Case 1. t = 5. We need
OO 00

(2.9) Il (!-<?")=    £   (-1)V(3-1)/2
n-1 « = -00

00

= 1 + £ (-1)V(3"~1)/2(1 + q")    (Euler)
n = l

and
» oo / -,   _     2« + l \

(2.10) n a - f ")(i - *f)(i - *-v ■) - £ (-i) v(n+i)/v"    t . ,
n-\ „ = 0 V      l ~ Z      I

The latter follows easily from Jacobi's triple product identity:
00 00

(2.11)        Y\(l-q")(l-zq"){l-z-\"-l)=    £   (-l)"z V<" + 1>/2.
M-l n—oo

Now, from (2.9) and (2.10) we have
(2.12)

(f), (fLKfL^fL^fL)
(fsf)»^"^)»    (<i)Msq)M-lq)M¡q)Á^2q)x

g-,(-i)"f(3-lva£S-o(-i)"g,"(,"+l)/2(f»-2)"(i -(r52)2m+1)/(i - r52)

(f5;f5L

since 1 -x5=   fi (l -?5*x)

_ E^-00ES=o(-i)"+mgn(3"-1)/2+m(m+in5-2"'((i - ¿:52(2w+1))/(i - U))

(f5;f5)
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Since «(3n - l)/2 = 0,1,2 (mod 5) and m(m + l)/2 = 0,1,3 (mod5), the power
of q is congruent to 4 modulo 5 only when «(3« - l)/2 = 1 and m(m + l)/2 = 3
(mod 5) in which case m = 2 (mod 5) so that 2w + 1 = 0 (mod 5) and the coeffi-
cient of q5n+A in (2.12) is zero, as required.

Case 2. t = 1. Similarly,
(2.13)

(g), {(qU&)M;2g)x}{(qUVq)J^q)J
ttvfU^f),    (q)^yq)J^q)Mk)J^2q)J^q)J^3qL

I    1   _  r2Cln + l)    \   /    I   _  J-3(2m + l)
V /    l\" + mûn(n + l)/2+m(m+l)/2v-2n-3ml

i - £ ?     M      i - tf
(fWL

Since «(« + l)/2 s 0,1,3,6 (mod7), the power of q is congruent to 5 modulo 7
only when «(« + l)/2 = m(m + l)/2 = 6 (mod7) in which case n = m = 3
(mod 7) and the coefficient of <77n+5 in (2.13) is zero, as required.

Case 3. / = 11. We need Winquist's identity
(2.14)

n (i - <T)2(i - vf"-0(1 - y-lq")(i - ^"-1)(i - z~xq")
n-rl

(i -^-v')(i-rV)(i -^f"_1)(i -r^"V)
00 oo

= £   £ (-l)'+J {(y-3i - yv+:s)(z-v - zV*1)
i = 0 j = - oo

+ (y-3/+l  _ y37 + 2Wz3i + 2 _ z-3i-lU-3/(/+l)/2+>(3/+l)/2

Substituting v = f n and z = f ,5, in (2.14) yields
(2.15)

(1 - «i)(l - ?i5i)(l - fn)(l - &q)Í(^iq)Jiu2q)J^iq)Mñ5q)x
■(^iq)JSn4q)J^q)Mn3q)x

00 00

= £ £ (-D'+'{(ffi-rir)(tf-«r5)
/' = 0 y — - oo

+ (f6> + 9 _ j5> + 7Uv4/+10 _ V7I + 6U _3i(i + l)/2+y(3y + l)/2

so that
(2.16)

(f)„      _ (g)2oon2^<5(^1f)oo(^)0O

(?nf)oo(íuf)oo   (gJ-nj^oí^fí^ífr/f)»
i

(i-ftXi-ttKwäHi-fiW1:«11).
00 00

£   £ (-i)'+'{(ffi-tö+s)(«(-«r5)
< = 0 j' = - oo

+ (tfi+9 - fiV+7)(iu+,° - ^•)}iw+»^+/o>+1^.
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Since 3i(i + l)/2 = 0,1, 3, 7, 8, 9 (mod 11) and j(3j + l)/2 m 0,1, 2, 4, 5, 7
(mod 11), the power of q is congruent to 6 modulo 11 only when i ■ 5 and j = 9
(mod 11) in which case 6i = 5/ + 5, Ij = Aj + 5,6j + 9 s 5y + 7,4i + 10 = li + 6
(mod 11) and the coefficient of q11"*6 in (2.16) is zero, as required.   D

3. An identity from Ramanujan's "lost" notebook. In this section we derive (1.30).
Throughout this section f = f5 = exp(27r¿/5). After replacing q by q5 we see that
(1.30) is equivalent to

(3.1) F{q)=A{qs)-{r + r")2qB(q5)
+(?2n + r2n)f2c(f5) -a* + r-)<73ö(f5),

where A(q),..., D(q) are defined in (1.34)-(1.37),

(3.2) F(.)-F.(,)-ñ(1_r<1.-f:>rv)    (fromd.32,)
and n = 1,2. First we show that there is no loss of generality if we assume n = 1. If
either side of (3.1) is expanded as a power series about q = 0 it is clear that the
coefficients are elements of Q(f ) and the case « = 2 is obtainable from the case
« = 1 via the Q-automorphism given by Ç -* Ç2. Likewise the case « = 1 follows
from the case « = 2 by considering the Q-automorphism given by f -> f3. For
n = 1 (3.1) is

(3.3) F{q)-A{qi)+{S + r1-l)qB(q5)
-{¡; + r + l)q2C{q>)-{!; + rl)qMq5),

since -(f + r1)2 = ~(f2 + 2 + f"2) = ? + T1 - 1, f2 + T2 = -(? + T1 + 1).
Next we note that each of A(q),..., D(q) can be written in terms of infinite
products. Now, from (1.34)

(34) ^)=(l-,)2(l-l^-^...
ES-,(-l)V(Sw-1)/2

nr=1(i-<,5"-4)2(i-<,5"-1)2

- (1 - g»-»)(l - gs-2)(i - ^")

»-i     (i-^"-4)^-^-1)2

by Jacobi's triple product identity (2.11). Similarly we find that

(3-5) ^-Àc-Af-.--)'
00 (l   -  fl5")

(3.6) C(f)-n-„-, (1 - (75"-3)(l - 95""2)

.-'   (i-«s"-»)2(i-,!"-2)2
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Hence we see that (1.30) is equivalent to

1 • '    I.À (i - fo-)(i - rY)
(1 - <725"~15)(1 - 7725"-10)(l - (j25")= n \2/, ?Sn-S\2-i     (i - q15"-20y{i - q25"-5y

00 (1 - fl25")+(f+ri-i)«n

-u+r + ivn
;-i (i - f 25"-20)(i - <?25"-5)

(1 - q25")

-(f + rvn
.-l {1 - f 2S-1S)(1 - q25"-10)

(1 - q25"-20){l - q25"~5){l - q25")

«-i   (i - <725"-i5hi - (725"-ior

Observation. Since no term involving q5n+4 appears on the right-hand side of
(3.8) we note that (1.27) is a corollary of (3.8) by Lemma (2.2). It was this
observation that led us originally to consider (1.27). (3.8) follows easily from two
lemmas.

Lemma (3.9).

(3.10)
OO -j 00n-= n

;-\ (i - ff-)(i - rv)   »-i (i - <725n-20)(i - q25-5)

+tt + r1)fñ[i.i(l-f2S"-15)(l-fa5"-10)

where f = exp(2w//5).

Proof. We need Jacobi's triple product in a different form:
00

(3.11) £   (Ayz"q"2={zq;q2)Jz-'q;q2)0O{q2;q2)oo.
n = -cc

(3.11) can be obtained from (2.11) by simply replacing q and q2 and z by zq~l.

i (f),a2f)«,(r2f).
(3.12) (frUr'fL   iq)Mq)M-lq)M2q)M-2q)

i £   (-l)TY" +")/2,
(l-r2)(q5;q5)M„--,

by (2.11). Since («2 + «)/2 = 0,1,3 (mod 5) we can write
00

(3.13) £   {-iyS2V2 + ',)/2 = F0{q) + F1{q) + F3(q),
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where F¡(q) contains those terms on the left-hand side of (3.13) in which the power
of q is congruent to i modulo 5.

(3.14)    F0{q)=        £       (-l)W2+r)/2
(r2 + r)/2 = 0

(mod 5)

)/2=    £   (-l)Vrq(r2 + r

r = 0,4
(mod 5)

00 00

_      y     (_l)5"fl07>   (25«2 + 5»)/2 +      y     /_2)5""1flO«-2„(25n2-5«)/2

n = -oo n = -oo

=      £     (-l)"i7(25''2-5'')/2_r2    £     (_l)»í(25^-5B)/2
« = -00 « = -00

(replacing n by -n in the first sum)

= (l-r2)(qi0;q25Uq15;q25Uq25;q25)x,

by replacing f by q25/2 and z by <7~5/2 in (3.11). Similarly we find that
00

(3.15) Fx{q) = (S-t2)q   £   (-1)V25"2"15")/2
H = -00

= a-f2)í(^;^5)oo(^20;í25)oo(f25;í25)oo

and

(3.16) F3(q) = t4q3   £   (-l)y«»2+«»>/*
n = -oo

= 0.
By writing E^_x(-l)"^2"q(n +")/2 in terms of our expressions for the F¡(q) and
substituting this into (3.12) we find that

ñ-i (i - ?f ")(i - rlq ")
»     (l   _ fl25«\   /    oo

n ,,   J{ n a - í25-i5)(i - q25-10)
n = l   (1 - q*")   U-l

= n

.a-*2)
i-r2 «

i

+^T-7^n(i-i25"-2o)(i-f25"-5)!

„Vi (1 - 9»-»)(l - q2-">^)

+(í + rl)qñ
n = i (1 - q25"-15){l - q25"-10)

which is (3.10) since (1 - f "2)(f + f_1) = f - f2. Here we have used

(3.17)    (f5;(75L = (flr'í^Líf^^Líf^^Líf^^Líf25«25)..   □
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The following lemma is well known. It is (2.1) in Watson [23] and it is also a
special case of Lemma 6 in Atkin and Swinnerton-Dyer [7]- It is interesting to note
that (3.19) also follows from an identity of M. Hirschhorn. In fact if we replace q by
f5/2, a by -f3/2 and b by -ql/2 in (2.1) of Hirschhorn [17] we obtain (3.19) after
dividing both sides of the resulting identity by (3.17).

Lemma (3.18).

(3.19)     ft (1 - f ") = ft (1 - f25")
n-l 7i = l

/     00

\L\ (1  - f25"-2°)(l - f25""5)

q q „=l(l-f25"-15)(l-f25"-10)/'

We can now proceed with the proof of (3.8). From (3.10) and (3.19) we have
(3.20)

(f)oe

(ffUrVL
(f15;f25U<,10;f25L .    ,(f20;<?25U<,5;f25U=  („25       25) V*     .1     /„Vf     .1     /oo  _       _     2

VI      '1      /oo      / _20.   _25\      / _5_   _25\ * '
(q20;q25)Jq5;q25L    *   * (<?10; f 25U

1 . /... „_^ 1
(f5;f25Uf20;f25)0

+ (f + rl)^^f2W;f25)J

(f10; f25Uf15;<725U<725;f25L +(f + f_, _ 1)?      (f25;f25)

(f25;<z25L-U + r' + i)?2

-U + rV
(f10;f25)„(f15;f23)oe

(f5;<725U<720;<725U<725;?25)0

which is (3.8).    D

4. Some results for vector partitions modulo 5. We define the following generating
functions:

(4.1) vRh{d) = yRh{d,t) =  £ #„(/>, t, tn + d)q"

and

(4.2) vRh.Âd) = vRh,ÀdA) = yRh{d) - vRc{d).
These functions are analogous to Atkin and Swinnerton-Dyer's Rh(d) and Rhc(d)
(see (8.1) and (8.2) below). For convenience we write

■to »-■        (1-95—')(!- ?'"-')
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(i - Ö
(4.4,    »(()=Ev=n(1.n(1„(M),

00 (l - a5n)
(4.5) C(f)= £cnf"=n

(4.6) D{q) = £ </„*" = n

„To "*       -, (1 - 9*-3)(i - «*-») '
(1 - f 5-<)(l - f *-*)(l - fs")

"o  "*       -T-*i        (1 - f5""3)2(1 - f5""2)2

Theorem (4.7). For t = 5,

(4-8) yR0^{0) = A{q),
(4.9) „*o,i(l) = -2B(q),
(4.10) „*u(l) = B{q),
(4.11) „ÄU(2) = -C(f),
(4-12) „*0,i(3) = -^1>2(3) = D{q),
and all other functions yRhtb+i(d), where b = 0 or 1, are zero.

Remark. (1.40)-(1.43) follow from Theorem (4.7).
Proof. From (2.5) and (3.2) we can write (3.3) as

(4.13)

£ S" £ #„(*,5,«)f " = ^(f5) +(f + r1 - l)qB(q5)
k = 0      ti = 0

-(í+r' + iWíVíí + rWí5).
where f = exp(27n/5). Picking out those terms in which the power of q is congruent
to 0 modulo 5 we obtain

(4.14) £ f* £ Ny{k,5,5n)q5" = £ a„q5".
k-0      n=0 n=0

Picking out the coefficient of qs" we have
4

(4.15) IiSkNy(k,5,5n) = an
k-0

or

(4.16) (#„(0,5,5«)- an) + #„(1,5,5«)f + #„(2,5,5«)f2
+ #„(3,5,5«)f3 + #„(4,5,5«)f4 = 0.

Since a„ and the Nv(k, 5,5«) are rational integers it follows that
(4.17)
#„(0,5,5«) -a„ = #„(1,5,5«) = #„(2,5,5«) = #„(3,5,5«) = #„(4,5,5«)

Hence we have
00 00

(4.18) £ (#„(0,5,5«)-#„(l,5,5«))f"= La„q"-A{q),
77 = 0 71 = 0
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which is (4.8) and
00

(4.19) yRU2{0) = £ (#7,(1,5,5«) - #„(2,5,5«))<7" = 0.
71 = 0

Similarly the remaining results also follow from (4.13).   D

5. Some results for vector partitions modulo 7. The main result of this section is
Theorem (5.1). It is an identity similar to (1.30) but involving 7 instead of 5. Its
proof is completely analogous to that of Lemma (3.9). This result does not appear in
Ramanujan's "lost" notebook.

Theorem (5.1).
(5.2)

fi (1-f")
" = 1 il - 2cos^V + q2n\

= ft (1 - qln){ *V) +(2cos^- l)qX{q2)Y{qi) + 2cos^q2Y2{q2)

+ (2cos^+l]jq3X{q2)Z{^)

-2cos?fq4Y{q->)Z{qi)-(2œs^ + l)q6Z2{q")),

where
OO 00

(5.3) X(q)=     El    (1-fT1,    Y{q)=     ]J    (1-f")"1,
7,= 1 «=1

nïO. +3 «#0, ±2
(mod 7, (mod 7)

z(f)= n o-f") -i
71 = 1

n#0, ±1
(mod 7)

Observation. Since no term involving qln + s appears on the right-hand side of
(5.2) we note that (1.28) is a corollary of Theorem (5.1) by Lemma (2.2). By using
arguments analogous to that of §4 we find that Theorem (5.1) allows calculation of
the yRhJd, 7) (defined in (4.2)).

Theorem (5.4). For t = 7,
00

(5.5) yROA(0) = X2(q)Tl(l-q"),
n = i

00

(5.6) „Ä0,,(l) = -2Jf(f)y(f) n (1 - f").
« = i

00

(5.7) ^u(i) = A-(f)y(f)n(i-f"),
/7=1

00

(5.8) yRx2{2) = -„/?2,3(2) = -Y2(q) ]1 0 " f),
71=1
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CO

(5.9) „*0il(3) = -VR2,3{3) = X{q)Z{q) U (1 - f "),
77=1

00

(5.10) „*0,i(4) = -^i,2(4) = Y(q)Z(q) fl (1 - f "),
77=1

00

(5.11) VR0J{6) = -„^,2(6) = VR2,3{6) = -Z\q) \\{l - q"),
M=l

w«ere X(q), Y(q) and Z(q) are defined in (5.3), and all other functions yRhih+i(d),
where 0 < b < 2, are zero.

Remark. (1.44)-(1.50) follow directly from Theorem (5.4).

6. Some results for vector partitions modulo 11. The main result of this section is
Theorem (6.7). It is an identity similar to (1.30) but involving 11 instead of 5. We
will provide a sketch of the proof. To describe our results neatly we introduce some
more notation. For / > 1,1 < a < t, let

00

(6.1) P(a, t) = fi (1 - <7U<'"+a-")(l + $"<"—>)(l - qUl")
71 = 1

and for 1 < b < 33, let

(6.2) Q{b) = P{b,33).
We need some preliminary results. The proofs of Lemmas (6.3) and (6.5) are

analogous to that of Lemma (3.9). In this section f refers to any primitive 11th root
of unity.

Lemma (6.3). // ?u - 1, f * 1 then
00

(6.4) na-f-Ki-ff-^Ki-rv)
n-l

= (1 - i)p(5,n)+(r2 - r*)çp(4,ii) +(r2 - wan)
+(f4 - r3)q('Pi2,ii) +(r4 - r5)fl0z>(i,n).

where P(a,t) is defined in (6.1).

Lemma (6.5). // £" = 1, f * 1 r«e«
00

(6.6) n(w<73"-2)(i-ry"i)(i-<13")
;i=l

= (ô(16) + $4q22Q(5)) - ff(0(14) + fVW))

-ri?2(e(i3) + r<733e(2)) - r¥5(ô(7) - rvw))
00

+rv n (1 - f121") + rV(e(io) - r3f33ö(i)).
h=i

where Q(b) is defined in (6.2).
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Theorem (6.7).
(6.8)
fr (!-<?")
" = 1 íl-2cos^V + «72")

= ft (1 - fU")"1{(>loÄo - q3%B4) +(2cos^ - l)f(¿0Bx - q"A%BA)

+ 2cos^-q2(A0B2-q22A9B4)

+ (2cos|^ + l}q3{A3B0- q^A.B,)

+ Í2cos^y+ 2cos^y+ l\q4{A3Bl - q33AsB7)

-(2cos4^ + 2cos^)f5(^j5j - qnA%Bn)

+ Í2cos^ + 2cosy^U7(¿0£7 - qllA3B4)

-(2cos4i[ + 2cos^ + l)f19(^A - q"AsB0)

- (2cos^ + l)f9(¿0¿?0- qnA7B2)

-Icos^q^A^- q22A%B2)},

where
(6.9) ¿o = 0(15),    ¿3 = 0(12),    ¿7 = Ô(6),    ¿8 = Ô(3),    A9 = ß(9),

(6.10) B0 = 0(16) - î22Ô(5),
(6.11) Bl = ß(l4) - f "ß(8),

(6.12) 2>2-ß(13)-f"ß(2),
(6.13) B4 = ö(7) + fnß(4),

(6.14) 57 = ß(10) + f33ß(l).

Observation. Since no term involving qlln+6 appears on the right-hand side of
(6.8) we note that (1.29) is a corollary of Theorem (6.7) by Lemma (2.2).

Proof. We first observe as in Hirschhorn [18] that Winquist's identity (2.14) can
be written as
(6.15)
(«)oo(a-1f)oo(^)oo(^)oo(^)oo(«-1^)oo(^-1)=o(^1^)oo(i)2oo

= (a3;,3)0O(a-V;f3)oo(f3;,3L
• {(*3f ; q3Ub~3q 2; q3) Jq3; q3)x - b{b3q2; q 3)Jr39; q3)Jq3; q 3)00)

-ab-*{b3;q3)x{b-3q3;q3)x{q3;q3)x

■ {{a3q ; q'Ua-Yi q3)Jq3; q3)x - a{a3q2; q3)Ja-3q; q3)Jq3; q3)x).
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We proceed as in Case 3, §2. After substituting a = f9 and b = f5 in (6.15) we find
that

(6.16)

(f)c >— - (i - f T'a - f4)-x(i - r5)"(i - r9)" V; f11)»1(frUr1*).
x {(i5; f 3)jr V ; q3)Jq3; f 3U(fV f 3)Jr V; f 3U<?3; <,3L

-f5aV;f3L(r4f;f3L(f3;f3)00)

- W; * 3)„(rV; q3)Jq3; f 3U(f5<,; f 3)„(r5f2; <z3Uf3; f 3)„

-raV;f3)oo(r5i;f3)oo(f3;f3)J)

By using (6.4) and (6.6) we find, after some simplification, that the right-hand side of
(6.16) reduces to the right-hand side of (6.8).   D

By using arguments analogous to that of §4 we find that Theorem (6.7) allows
calculation of the vRbc(d, 11) (defined in (4.2)).

Theorem (6.17). For t = 11,

(6.18) „Ä0il(0) = J! (1 - q'-r'i^B* - q3A*nBt),
71 = 1

(6.19) „*0il(l) = -2 ft (1 - qny\A%BÏ - q4A*%B*),
77 = 1

(6.20) „*u(l) = ft (1 - qny\A*B* - q4A%B*),
71-1

(6.21) „*u(2) = -yB-iA2) = - ft (1 - qn)'\^B2* - q2A*9Bf),
71 = 1

00

(6.22) „/?o.i(3) = -^2.3(3) = ^3,4(3) = Il (1 - fny\A*3B$ - q2A^),
71 = 1

(6.23) „*0il(4) = -yRia{4) = „tf 2j3(4) = -„*3,4(4) = ^4,5(4)

= ft (1 - qn)~\A*3B* - q3A%B*),
77=1

(6.24) „Ä12(5) = -„Ä2,3(5) = „Ä3,4(5) = -„*4>5(5)

= ft (1 - q")~\A*B* - qA*9B*),
n = l

(6.25) „Ä0>1(7) = -yRia{l) = VR3A{1) = -„Ä4,5(7)

= - ft (1 - q")'\^B* - qA*3BA*),
71-1

(6.26) „Ä0>1(8) = -„/?u(8) = „Ä2,3(8) = -„Ä4,5(8)

= ~q ft (1 - qn)~\AlBr - qAtB*),
71 = 1

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



66 F. G. GARVAN

(6.27)    „Ä0il(9) = -VR3A(9) = „*4,5(9) = - ft (1 - qny\A*B* - qA*Bï),
n = l

(6.28)        „*2.3(10) = -„«3,4(10) = Ei O - q") \A%B* - q2A%Bï),« = i
1/llT, inwhere  A* = ¿,-(f1/u),   B*(q) = Bj(qL/n)   and  the  A,   and Bj   are  defined

(6.9)-(6.14), and all other functions vRh,k+i(d), where 0 < b < 4, are zero.

Remark. (1.51)-(1.67) follow directly from Theorem (6.17).

7. Generating function identifies for the rank and the crank. In this section we
show how Ramanujan's identity, (1.31), is related to the rank of ordinary partitions.
We find generating function identities for N(m,n) and show how these are related
to the results of Dyson, Atkin and Swinnerton-Dyer. We set up the results needed in
the next section and finally we find that the generating function of Nv(m,n) has a
form similar to that of N(m, «).

Euler has proved

q
00 -i 00

-1=11^=  Lp(n)q".
")2 7.-1   1-f „ = 0

(7-1)     £ -
i, = o (I - q)2{l - q2)¿      -(1-f)2      -Vl

By utilizing the concept of the Durfee square, Sylvester [21] has demonstrated (7.1)
combinatorially, For a discussion of his proof and its generalizations see Andrews
[4]. We show Sylvester's argument is easily modified to obtain
(7.2)

00 „2

„Co (1 - zq)(1 - zf2) • ■ • (1 - zf")(l - z-*q){l - z~*q2) ■■■{!- z~\»)
OO 00

=     £      \ZN(m,n)zmq".
t« = - oo n = 0

Note. Here we are taking #(0,0) = 1. This differs from Atkin and Swinnerton-Dyer
who take #(0,0) = 0. Also (7.1) is (7.2) with z = 1.

For each partition v we find the largest square (starting from the upper left-hand
corner) of dots contained in its graphical representation. This square is called the
Durfee square (after W. P. Durfee). For example, if m is the partition 9 + 6 + 4 + 2
+ 2 + 1 + 1, then its graphical representation is

and the 3x3 "Durfee" square is indicated. Thus each partition w with Durfee
square of side s can be written tt = s2 + ttx + tt2 where irx is the partition (whose
parts are all < s) of nodes below the Durfee square and ir2 is the partition (whose
parts are all   < s) gotten by reading off the columns of nodes to the right of theLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Durfee square. The rank of m is the length of the first row minus the length of the
first column or the number of columns to the right of the Durfee square minus the
number of rows below the Durfee square. That is,

rank(w) = #(w,) - #(tt2).
Hence, if we let #s(m, «) denote the number of partitions of « with Durfee square
of side s and rank m we obtain

(7-3)        qS ' (î-zf).-.(i-^) ' (i-z-if)...(i-*-y)
00 00

=   £    £#s(™,«)z'V.
771 = -O0   71 = 0

Thus if we sum over all 5 we obtain (7.2). We now see that Ramanujan's identity,
(1.31), is telling us something about the rank since the left-hand side of (1.31) is the
left-hand side of (7.2) with z = exp(2w//5). This is explored further in the next
section.

The following identity found by Dyson [13] is proved in Atkin and Swinnerton-
Dyer's paper. For m > 0,

00 00 00

(7.4)     £ N{m,n)q" =11(1- f *)"' £ (-l)-1,-»-^*-"^ - q").
h=0 k=1 n=l

It is interesting to note that (7.4) follows from (7.2) and Watson's [22] (7-analog of
Whipple's theorem:

a2qN+2a, q\la~, -q{a ,b,c,d,e,q~N; q, —¡—
(7.5) 8^7 bcde

•fa ,-{a , aq/b, aq/c, aq/d, aq/e, aqN+1

{aq)N{aq/de)N
4*3

aq/bc, d,e,q N; q,q

deq N/a, aq/b, aq/c{aq/d)N(aq/e)N4

In fact, if  |fI < 1,  |fI < |z| < Ifl"1, and we let b = z, c = z"\  a = 1  and let
d,e, N -> 00 we obtain
(7.6)

oc „2

(f)=o£ »-o {zq)Az~lq)„

= 1+  £   (l-z)(l-z-')(A)"q"<3"^2(l+q")

n =1

00

= 1 +   £ (-1)Y(3"-1)/2(1 +q")
n = i

00

= 1 + £ (-i)V(3"~1)/2(l +f"){l

„ = 1 (1 - zq")(1 - z-\")

„x   q"(l - z)(l - z-1)
(I - zq"){l - z~lq")

I - q " \
1 = 1 1 + q" }\l - zq" I - z'lq"

1+ £
n=i

(A)"q"i3"1)/2(l +q")

-m~mn'
( 1  _ /,"    °° 1  — n"x  1 - -—2_ y z*»qnm _ i—q_ y z-n,
\ 1 +f"   ^„     H I + q"   ^.       q\ "      m—Q "      »1=1License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Hence, if we assume m > 0 then by (7.2) and (7.6) we have

oo oo n-

(7.7)     £ #(m, n)q" = coefficient of zm in  £ -*
„-o(*f)n(*    f)„h = 0

El (1 - qk)    £ (-l)""V',(3n-1)/2+m"(l - q"),
k-l n-l

which is the desired result. Similarly we find that

(7.8)      £ #(0, n)q" - 1 + U (l " f *)"* £ (-1)"^ "(3""1)/2(1 - f ").
n = 0 *-l n = l

The following lemma is needed in the next section. It does not appear in Atkin and
Swinnerton-Dyer's paper.

Lemma (7.9). For \q\ < 1, |f| < |z| < |f|-\ z # 1,

(7.10)
3n(n + l)/2

-i + -^£_i-_-_£- £ (-iyi '   "

l-Zn^o(^)Á^q)n      (íX-.ÍV    ^    I"*«"  '

Proof. From (7.6) we have

(7.11)

»-o (*f ^(^f )„

= (f)„(i+£(-i)f (1 _-,.)(! _x-v)

= (f)»(i+ £ (-1)V(3-1)/2(i + ?")
i     «=i

i-<?" a - f")¿v
(i + f»)(i - zf")   (i + ?")(i - z-y)

= i +Í9)-.1 £ (-írv^-^o - «-){Y^rq-n + rzr^}
(by (2.9))

i + 7^-E'(-i)B~V(3n+1)/2
(f)oo

1-f"
1 -z"V
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Here E' means £"_-„.„ ^o- Replacing z by z * in (7.11) we obtain
(7.12)

l + ^q)-^Í-l)"-lqn(3n+l)/2YzS
„=o {zq )„(z~1q)„

= i + ̂ tíin-tr'Ynír+»-»"Y^n(3n + l)/2
-i/V'/' i\n-if LV'/ i\"q

zq

3n(n + l)/2

n(3n + l)/2

= i + ̂ rJ L'(-i)""1 Tzr^r + £'(-i)V(3"+D/2
Zf"

.3n(n+l,/2

+ i-(f)o0 + £'(-D"5rzi^

3n(« + l,/2

l-Z + ^);'l + E'(-l)"\—î
Zf"

_n(3n + l,/2 \

(l-z) + z(f)-j  l+(l-z)£'(-l) ,,f 3n(n+l,/2

1 -Zf"
Hence,

(by (2.9))

(7.13)       -1 +

-1 +

1

1
1 -z (,-2,+(á:{,+(,-^'(-,)i

3n(n+l)/2

Zf"
1        /       . 3»(n+l)/2\

(i)oo  „

OO

£ (-i)"£

3n(ii+l)/2

1  -Zf"

which is (7.10).    D
Dyson [13] also conjectured that the generating function for the crank should have

a form analogous to (7.4), and indeed it does (see Theorem (7.19) below). We need
the limiting form of Jackson's theorem (Andrews [1, Theorem 3.2]):

(7.14)

*■6V5

z, q\fz,-q\fz,aua2,a3; q, zq/axa2a3

= n (1 - zf")(l - zfll-Vf")(l - zafVg")(1 - zfl2-Vf")
„ = i (l - za¡V)(l - za2-y)(l - zaAq")(l - zaxla2la3lq")
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If we let z -> 1, a3 -* oo, a, = z, a2 = z'1 then (7.14) becomes

(? 15) , +  I  (l-z)(l-z-1)(l)V^)/2(l+f")
„-i (i-zf")(i-z-y)

- n ,.       {\J }   _x „,     (cf-(7.6)).
„=i (i -zf")(i -z y)

We note as in Andrews [5] that (7.15) can also be obtained by calculating the
classical partial fractions decomposition of the right-hand side. We also note that in
the same paper Andrews has used a different form of (7.15) to obtain expansions of
certain infinite products in terms of Hecke modular forms.

We proceed as in (7.6) to obtain

(7.16,      ñ    ('-«,)'„=i(i-zf")(i-z-y)
CO

1+ £(-i)V("-1)/2(i + f")
n = l

1   - nn     °° 1   - n"     °°
i _ i_ï_  y zmanm --—  Y z'mam"
1      1 + f-   V 1+9"    -i~     m=0 ^     m=l

Hence, if m > 1 we find

oo oo j  _      n

(7.17)     £ #„(«i,«)f" = coefficient of zm in Y\ J.-mV-TTV
„-o «-i (i - zq )(! -z qA

nr, OO
\-l   \-<   i    ,\n-ln (i - qkV £ (-i)"-1f"<"-1)/2+""'(i - f").

k-\ „_1

Similarly, we find that
ocOO w -

(7.18)    £ #„(o, «)f - = n (i - qk)   £ (-i)* n(""1)/2(1 - 4")-
,,=o 't=1 «-i

We note the last expression in (7.17) is the same as that in (7.4) except that "3" has
been replaced by "1". In a later paper we shall investigate what happens when "3" is
replaced by an arbitrary odd integer. After combining (7.17), (7.18) and using (1.23)
we have the following theorem.

Theorem (7.19).
oo oo oo

(7.20) £#„(m,«)f"= n(i-?jrIE(-i)""V,"-i,/2+"H(i-î")-
n = 0 k = x « = 1

Remark. We note that (7.20) is a useful form for calculating the coefficients
Nv(m, «). In §10 we give a table for small values of n.
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An examination of this table leads us to conjecture the result:

(7.21) #„(m,n) >0   for (m,«)# (0,1).

This is a surprising result since one would expect the sign of Nv(m,n) to be
random. A proof will appear in a later paper.

8. A second identity from the "lost" notebook and some inequalities for the rank
modulo 5 and 7. In this section we show Ramanujan's identity, (1.31), and the main
result of Atkin and Swinnerton-Dyer's paper [7, Theorem 4] (see Theorem (8.3)
below) are equivalent. As well we derive inequalities, (1.68)-(1.72), for the rank of
ordinary partitions modulo 5 and 7.

Following Atkin and Swinnerton-Dyer we define
00

(8.1) Rh{d) = R„{d,t) = £ N(b,t,tn + d)q"
«=o

and

(8.2) Rhc{d) = R„M-<) = Rb(d) - Rc(d)-
Theorem (8.3) (Atkin and Swinnerton-Dyer). For t = 5,

oo ,      oo 15n(n + l)/2

(8.4) A1,2(0) = fn(l-f5")     £   (-1)"?-jr^,
n=i «=-oo       i ~ q

(8.5) R0¿(0) + 2Rh2Í0) = A{q),
(8.6) R02(l) = B(q),

(8.7) Äli2(l) = 0,

(8.8) Ä0,2(2) = 0,

(8.9) Ä1>2(2) = C(q),
oo .      oo n15n(n + l)/2

(8.10)      Äo,2(3) = -fn(i-^r1 £ (-1)"^—M*
"=l n=-oo        L - q

(8.11) *o,i(3) + *o,2(3) = I>(f),

(8.12) Roa(4) = 0,
(8.13) R12(4) = 0,
where ¿(f), B(q), C(q) and D(q) are defined in (4.3)-(4.6).

Recall that <f>(q) and i|/(f ) are defined in (1.38) and (1.39), respectively. For
convenience we write

oo 1 oo 5„2

(8.14) *(,) = £ <i>„f " = -1 + j4- £ g
«=o L   ^ „-o (f <q)„(q ;q )„

(8,5)   iM,£^..l/1 + _!_?-77-\
1      „V"     1\       1 - ?2 „to («3; i'),W.i'),.
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Theorem (8.16). (1.31) and Theorem (8.3) are equivalent.

Proof. Let f = exp(2wi/5). After replacing q by q5 (1.31) becomes

(8.17)

qf_
m?0 (rq)M-"q)m

= ¿(f5) +(r + r" - 2)</>(f5) + f5(f5) +(r + rn)f2c(f5)

-a- + r-)f3|ß(f5) -a2- + r2- - 2)^^},

for « = 1,2. Without loss of generality we may suppose that « = 1 by using an
argument analogous to that used at the beginning of §3.

We now write the left-hand side of (8.17) in terms of #(/m, «). From (7.2) we have

(8.18)
n2 oo oo

HE  „     *     M   = £     £   N{m,n)rq"
n = 0 (if LiU    q)n        « = 0 m — oo

£   £f*   £   #(m,«)f"=  £   £f*#(A:,5,«)f".
n = 0<; = 0        m = k n = 0 k = 0

(mod 5)

Hence (1.31) is equivalent to

(8.19)
oo        4

£   £r*#(*.5,n)f"
,i = 0 A=0

= ¿(f5) +(f + r1 - 2)*(f5) + f5(f5) +a + rx)f2c(f5)

-(r + r,)iW)-(f, + f-,-2)-*(
f5

Now suppose (1.31) is true. Picking out the coefficient of q5" on both sides of (8.19)
we obtain

(8.20)     £f*#(A:,5,5«) = a„+(f + r1-2)<i»„    (by (4.3) and (8.14)),
A=0

or

(8 21)     (yV(0'5'5M) ~ a" + 2<í>„) +(^(1,5,5«) - *„)£ + #(2,5,5«)f2
+ #(3,5,5«)f3 +(#(4,5,5«) -<,„)f4 = 0.

Since the coefficients of the f * are rational integers it follows that

(8.22) #(0,5,5«)-a„ + 2<f>„ = #(1,5,5«) - <f>„ = #(2,5,5«).
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Hence,

(8.23)    *12(0) = £(#(1,5,5«)- #(2,5,5«))f "
,1 = 0

00

= £<M" = </>(<?)
n = 0

1 oo
--1+7-^1-

5„2

l-f „fo(f4;f5)„(f6;f5)„

oo oo _15n(n + l)/2

-«nil-«5")-1 L (-D-f—^r
n-l n = -oo i        f

(by Lemma (7.9) with q replaced by q5 and z by q),

which is (8.4), and

*o,2(0) + 2Ä1>2(0)
00

= £ (#(0,5,5«) - #(2,5,5«) + 2(#(1,5,5«) - #(2,5,5«)))f"
(8.24)       ":°

=  £ K-2<fc, + 2</>Jf"
n = 0

= A(q),

which is (8.5). Similarly (8.6)-(8.13) follow from (8.19) noting that

(8.25)   m.ii.1+-i-i  rr „
00 oo _15ii(ii + 1,/2

-fnd-f5")-1 £ (-Dnf—s«.
"=i ,,=-oo        L    q

by Lemma (7.9) with q replaced by q5 and z by q2. We see that Theorem (8.3)
follows from (1.31). By reversing the arguments above, (1.31) follows from Theorem
(8.3) and the two are equivalent.   D

We now turn to the inequalities (1.68)—(1.72). From (8.23) we have

a °° a5"2
(8.26) Ria{0,5) = «^(f ) = t4- + £-     4\

1    i   „=i (i -f)(f \q )„{q ;f )„

so that

oo 5n2

(8.27) K,,2(0,5) - j4- = £-     / s1 «     „=i (1 -f)(f ,q )„{q ,q )„
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and since the power series expansion of the right-hand side of (8.27) clearly has
nonnegative coefficients we have (1.68). Similarly (1.69) follows by considering

(8.28)

R  î35ï_^lL=    <?3   ,    g    , y g5"2'1
lA,) " i - « ~ ~ i - g   i - <72   ¿i (i - f2)(f3; f 5)„(<,7; «5)„

(by (8.25) and (8.10))

f4     { 1_
í+l-f2\(l-f3)(l-f7)

„t2(l-f2)(f3;f5)„(f7;f5)n-

(1.70)-(1.72) follow analogously from Atkin and Swinnerton-Dyer [7, Theorem 5]
and Lemma (7.9) by considering the first and last expression in each of the following
equations:

oo oo _21«(« + l)/2

(8.29)    iî0,2(0,7) + JR1,2(0,7) = l + fn(l-97")      E   H)"!-W
« = 1 n = -oo 1 - f

(by [7, (6.23) and (6.24)])

1       °°= —— £
1 - q ~

Í7"2

^t0(f8;f7)„(f6;f7)„

(by Lemma (7.9) with q replaced by q7 and z by f )

(8.30)    Ä3r2(2,7)--ji. <7

8 oo oo 21i,(« + l)/2

T^- + f2n(l-i7")"1   £   H)"!-^7    (by [7, (6.30)])
g      «»i „—oo       i — f

/78 1     Í 1 °° 777"2_2_ + I _1+_L_ y-i-
1-f      q\ l-f3„to(f4;f7)„(f10;f7)„

(by Lemma (7.9) with q replaced by q7 and z by f3)

q6     i 1
l-f3\(l-f4)(l-f10)

?2 + ̂ ?6 + tAÍt;-ïa:-îsx-i-i

+ £ 97n2-l

nt2(l-f3)(f4;f7)„(f10;f7)„'
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f5

21n(n+l)/2
= -T^— + gn(l-qlnr1   £   (-1)"*-^T    (by [7, (6.41)])

l~g    »-i «—oo       i-f/n+2

(by Lemma (7.9) with f replaced by f7 and z by f2)

.3^   <?6   /_L
= q + q+l-q2\(l-

oo „7ti2-1+ E
n=2(l-f2)(f9;f7)„(f5;f7)„

Much more than (1.68)-(1.72) seems to be true. We are able to prove the following
inequalities:

8.32) #(0,5,5« + 1)> #(l,5,5n + 1) for « > 0,

8.33) #(l,5,5« + 2)>#(2,5,5«+ 2) for « > 0,

8.34) #(0,7,7« + 1)>#(1,7,7« +1) for « > 0,

8.35) #(0,7,7« + 3) > #(1,7,7« + 3) for « > 0,

8.36) #(1,7,7« + 4) > #(2,7,7« + 4) for n > 0,

8.37) #„(1,5,5« + 1)>#„(2,5,5« + 1) > #„(0,5,5« + 1)    for « > 0,

8.38) #„(2,5,5« +2)>#„(l,5,5« + 2)    for « > 0,

8.39) #„(1,7,7« + 1)>#„(2,7,7« + 1) > #„(0,7,7« + 1)    for « > 0,

8.40) #„(0,7,7« + 3) > #„(1,7,7« + 3)    for « > 0,

8.41) #„(0,7,7« + 4)t>#„(1,7,7« + 4)    for « > 0.

We leave the details until a later paper. We also conjecture the following inequali-
ties:

Conjecture.

(8.42) #(2,5,5«);* #(0,5,5«)   for « > 0,

(8.43) #(0,5,5« + 3)>#(1,5,5» + 3)    for « > 0,

(8.44) #(0,7,7«)>#(l,7,7n)>#(2,7,7«)    for « > 7,

(8.45) #(1,7,7« + 2) > #(0,7,7« + 2)    for « > 0,

(8.46) #(2,7,7« + 6) > #(1,7,7« + 6) > #(0,7,7« + 6)    for « > 2,
(8.47) #„(0,5,5«)>#„(1,5,5«)   for « > U,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



76 F. G. GARVAN

(8.48)
(8.49)
(8.50)
(8.51)

#„(0,5,5« + 3) > #„(1,5,5« + 3)    for«>2,
#„(0,7,7«) > #„(1,7,7«)    for«>0,

#„(2,7,7« + 2) > #„(0,7,7« + 2)    for « > 0,
#„(1,7,7« + 6)> #„(0,7,7« + 6)    for« > 2.

Note. We can prove special cases for some of the inequalities above. For instance,
we can prove (8.47) for « = 1,4 (mod 5).

9. Conclusion. This paper first arose from studying the two identities, (1.30) and
(1.31), from Ramanujan's "lost" notebook. I would like to thank Professor G. E.
Andrews for pointing out these two identities and for giving me much help and
encouragement.

What makes our method work so well is that the generating function for #„(w, «)
is a simple infinite product (namely (1.25)) and that plugging in z = Çp, a primitive
pth root of unity, results in an analytic function for which the dissection of the
power series according to the residue of the exponent modulo p is relatively easy.
Our methods can be extended to a number of problems where an infinite product
like (1.25) is involved. In particular we have found the correct ranks for two-rowed
plane partitions, which was asked for by Atkin [10] and studied by Gordon and
Cheema [12], and for two-colored generalized Frobenius partitions studied by
Andrews [6] (see Garvan [15] for details).

10. Table. For reference we include a table for #„ ( m, « ) :

#„(«!,«)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

1
-1

0
1
1
1
1
1
2
2
4
4
7
7

11
12
17
19
27
30
41

0
1
0
0
0
1
1
2
2
3
3
5
5
8
9

13
15
21
24
33
38

0
0
1
0
1
0
1
1
2
2
4
4
6
7

10
11
16
18
25
29
39

0
0
0
1
0
1
1
1
1
3
2
4
5
7
8

12
13
19
22
29
34

0
0
0
0
1
0
1
1
2
1
3
3
5
5
8
9

14
15
21
25
34

m
5~Ö
0
0
o
o
1
o
1
1
2
2
3
3
6
6
9

10
15
17
24
28

0
0
0
o
o
o
1
o
1
1
2
2
4
3
6
7

10
11
17
18
26

0
0
0
0
0
0
o
1
o
1
1
2
2
4
4
6
7

11
12
18
20

0
0
0
0
0
0
0
0
1
o
1
1
2
2
4
4
7
7

11
13
19

0
0
0
o
o
o
o
o
o
1
o
1
1
2
2
4
4
7
8

11
13

10

0
o
o
o
o
o
o
o
o
1
o
1
1
2
2
4
4
7
8
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