
Open Access. © 2019 M. Tahir Gulluoglu, published by De Gruyter. This work is licensed under the Creative Commons Attribution
4.0 License

Open Phys. 2019; 17:823ś830

Research Article

Mehmet Tahir Gulluoglu*

New Complex Solutions to the Nonlinear Electrical
Transmission Line Model
https://doi.org/10.1515/phys-2019-0074

Received Sep 11, 2019; accepted Oct 10, 2019

Abstract: In this paper, with the help of an analytical ap-

proach, new complex singular and travelling dark solu-

tionsto the nonlinear electrical transmission line are suc-

cessfully constructed. 2Dand 3Dfigures alongwith contour

figures are plotted. Finally, at the end of manuscript, gen-

eral conclusions about these novel findings, which differ

from existing results, are given.
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1 Introduction

Energy is one of the most important requirementsof peo-

ple from all over the world. łThe demand for energy and

natural resources is increasing rapidly in conjunction with

rising population, industrialization, and urbanization as

well as the growth in production and commercial opportu-

nities resulting from globalization [1].ž Furthermore, net-

works, which are related to energy, are another require-

ment for people. Therefore, they are an outstanding con-

nection tool among people in the modern day. These two

concepts,energy and networks, are used in many fields of

science and real world problems arising in all aspect of

daily life.Research conducted on these fields has attracted

the attention of scientists from all over the world, and con-

tinues to be studied in the literature.

H. Reda et al. have investigated the wave propaga-

tion in pre-deformed periodic network materials based on

large strains homogenization [2]. Wave emitting and prop-

agation on neural networks have been investigated by J.

Ma et al. in 2015 [3]. Z. Rostami et al. have studied a deep
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searchfor propagating waves in a neural network using

magnetic radiation [4]. Denys Dutykh and Jean-Guy Ca-

puto have observedwave propagation on the wave dynam-

ics on networks [5]. Atte Aalto and Jarmo Malinen have in-

troduced that wave propagation on networks solvable (for-

ward in time) and energy passive or conservative with the

help of a theoretical approach [6]. Therefore, many novel

models have been presented to the literature by many sci-

entists [14ś32].

One such novel model, voltage wave propagation of

electrical transmission lines, has been presented by E.

Tala-Tebue as

vtt − α
(︁

v2
)︁

tt
+ β
(︁

v3
)︁

tt
− ϖ2

0δ
2
1vxx − ϖ

2
0
δ41
12

vxxxx (1)

− ω2
0δ

2
2vyy − ω

2
0
δ42
12

vyyyy = 0,

where α, β, ϖ0, δ1, ω0, δ2 are real, non-zero constants

while v = v (x, y, t) is the voltage in the transmission

lines [7, 8]. This nonlinear electrical transmission line

model (NETLM) has been used to symbolize thewave prop-

agation on the network system [7, 8].

Thismanucript is composed of the following three sec-

tions. In section 2, we present the Improved Bernoulli Sub-

Equation function method (IBSEFM) in a detailed manner.

Weapply IBSEFM tofindnewcomplex travellingwave solu-

tion in section 3. In the last section of paper, we introduce

a comprehensive conclusion.

2 General properties of IBSEFM

The general properties of IBSEFM are given as follows:

Step 1. The following nonlinear model in two variables

and a dependent variable u can be considered:

P
(︀

vx , vy , vt , vxyt , · · ·
)︀

= 0, (2)

and taking the travelling wave transformation

v (x, y, t) = V (ξ ) , ξ = k (x + y − ct) , (3)

inwhich k, c are real constants andnon-zero. Sub-

stituting Eq. (3) in Eq. (2) yields a nonlinear ordi-
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nary differential equation (NLODE) as follows;

N
(︀

V , V ′, V ′′, · · ·
)︀

= 0, (4)

where V = V (ξ ) , V ′ = dV
dξ
, V ′′ = d2V

dξ2
, · · · .

Step 2. Taking the trial solution for Eq. (4) as follows [9ś

13]:

V =

n
∑︀

i=0

aiF
i

m
∑︀

j=0

bjF j
(5)

=
a0 + a1F + a2F

2 + · · · + anF
n

b0 + b1F + b2F2 + · · · + bmFm
,

and

F′ = pF + dFM , (6)

where F = F (ξ ) is a Bernoulli differential polyno-

mial and p ≠ 0, d ≠ 0, M ∈ − {0, 1, 2}. Putting
Eqs. (5, 6) into Eq. (4) produces an equation of

polynomial Ω (F)of F as follows:

Ω (F) = ρsF
s + · · · + ρ1F + ρ0 = 0. (7)

We can obtain a relationship between n,m andM

under the rules of the balance principle.

Step 3. Setting the coefficients of Ω (F) all equal to zero

gives an algebraic system of equations;

ρi = 0, i = 0, · · · , s. (8)

Solving this system,weobtain the values of a0, a1,

· · · , an and b0, b1, · · · , bm

Step 4. When we solve Eq. (6), we obtain the following

two situations according to the values of p and d;

F (ξ ) =

[︂

−d

p
+

E

ep(M−1)ξ

]︂
1

1−M

, p ≠ d, (9)

F (ξ ) =

⎡

⎣

(E − 1) + (E + 1) tanh
(︁

p(1−M)ξ
2

)︁

1 − tanh
(︁

p(1−M)ξ
2

)︁

⎤

⎦

1
1−M

, (10)

p = d, E ∈ .

Substituting Eq. (5) into Eq. (4), we can find the

polynomial of F. Considering all the coefficients

of the same power of F to be zero gives an alge-

braic system of equations. By solving this system

with the help of various computational programs,

we can find some new values of parameters. This

process gives many solutions to themodel consid-

ered. For a better understanding of the solutions

obtained in this manner, we plot 2D, 3D and con-

tour graphs of results with the suitable values of

parameters.

3 Application of the IBSEFM

In this section, IBSEFM has been successfully considered

to the NETLM to find additional novel complex solutions.

Example: Let’s consider the travelling wave transforma-

tion as following;

v = v (x, y, t) = V (ξ ) , ξ = k (x + y − ct) , (11)

where k, c are real constants and non-zero. Substituting

Eq. (11) into Eq. (1) produces the following NLODE;
[︁

c2 − ω2
0δ

2
2 − ϖ

2
0δ

2
1

]︁

k2V ′′ − 2αk2c2
[︀

VV ′]︀′ (12)

+ 3βk2c2
[︁

V2V ′
]︁′
−
[︁

ϖ2
0δ

4
1 + ω

2
0δ

4
2

]︁ k4

12
V (4) = 0.

Integrating twice and considering the zero for both con-

stants, Eq. (12) can be rewritten as

12
[︁

c2 − ϖ2
0δ

2
1 − ω

2
0δ

2
2

]︁

V + 12βc2V3 − 12αc2V2 (13)

− k2
[︁

ϖ2
0δ

4
1 + ω

2
0δ

4
2

]︁

V ′′ = 0

With the balance principle for V ′′ and V3, we obtain the

relationship among n, m and M as

M + m = n + 1. (14)

Case 1: Choosing M = 3, n = 3 and m = 1, we can find V

and its derivatives from Eq. (5) as follows:

V =
a0 + a1F + a2F

2 + a3F
3

b0 + b1F
=
Υ

Ψ
, (15)

V ′ =
Υ ′Ψ − ΥΨ ′

Ψ2
, (16)

V ′′ =
Υ ′′Ψ − ΥΨ ′

Ψ2
−

(︀

ΥΨ ′)︀′Ψ2 − 2Υ
(︀

Ψ ′)︀2Ψ

Ψ4
, (17)

...

where F′ = pF + dF3, a3 ≠ 0, b1 ≠ 0, p ≠ 0, d ≠ 0. When

we use Eq. (17) in Eq. (13), we obtain a system of algebraic

equations. By solving this system of equations with the

help of software programs, we find the coefficients, which

give the complex solutions to the NETLM as follows.

Case 1a.

a0 =
pa2
d

, a1 =
pa2b1
db0

, a3 =
a2b1
b0

, (18)

c =

√︃

2d2b20
(︀

w2
0δ

2
1 + ω

2
0δ

2
2

)︀

−p2βa22 + 2d
2b20

, α =
3pβa2
2db0

,

k =
−ia2

√︀

3β
√︁

w2
0δ

2
1 + δ

2
2ω

2
0

√︁

(︀

p2βa22 − 2d
2b20
)︀ (︀

w2
0δ

4
1 + δ

4
2ω

2
0

)︀

,
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we have

v1 (x, y, t) = (19)

Ea2p
2e

i
2a2

√

3β
√︁

w2
0
δ2
1
+δ2

2
ω2
0

√︁

(p2βa22−2d
2b2

0)(w
2
0
δ4
1
+δ4

2
ω2
0)

⎛

⎝x+y−
√

2t

⎯

⎸

⎸

⎷

d2b2
0(w

2
0
δ2
1
+ω2

0
δ2
2)

−p2βa2
2
+2d2b2

0

⎞

⎠

−b0d
2+pdEb0e

i
2a2

√

3β
√︁

w2
0
δ2
1
+δ2

2
ω2
0

√︁

(p2βa22−2d
2b2

0)(w
2
0
δ4
1
+δ4

2
ω2
0)

⎛

⎝x+y−
√

2t

⎯

⎸

⎸

⎷

d2b2
0(w

2
0
δ2
1
+ω2

0
δ2
2)

−p2βa2
2
+2d2b2

0

⎞

⎠

.

For a better understanding of the physical meaning of the

solution with the help of the complex structure of Eq. (19)

in Eq. (1), and with suitable values of parameters, 2D and

3D figures along with contour graphs may be observed in

Figures 1, 2, 3, 4.

Figure 1: The 3D graphs of Eq. (19) for a2 = 0.9, d = 0.2, b0 = b1 =

0.3, p = 0.25, δ1 = δ2 = 0.5, β = 0.9, E = 0.1, w0 = 0.7, ω0 = 0.8,

y = 0.03, −2 < x < 2, −2 < t < 5.

Figure 2: The 2D graphs of Eq. (19) for a2 = 0.9, d = 0.2, b0 = b1 =

0.3, p = 0.25, δ1 = δ2 = 0.5, β = 0.9, E = 0.1, w0 = 0.7, ω0 = 0.8,

y = 0.03, t = 0.1, −2 < x < 2

Figure 3: The contour graphs of Eq. (19) for a2 = 0.9, d = 0.2,

b0 = b1 = 0.3, p = 0.25, δ1 = δ2 = 0.5, β = 0.9, E = 0.1, w0 = 0.7,

ω0 = 0.8, y = 0.03, −10 < x < 10, −10 < t < 10.
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Figure 4: The compilation of contour graphs of both side of Eq. (19)

for a2 = 0.9, d = 0.2, b0 = b1 = 0.3, p = 0.25, δ1 = δ2 = 0.5,

β = 0.9, E = 0.1, w0 = 0.7, ω0 = 0.8, y = 0.03, −10 < x < 10,

−10 < t < 10.

Case 1b. When

a0 = a1 = 0, a3 =
a2b1
b0

, (20)

c = −

√︁

w2
0δ

2
1

(︀

3 + k2p2δ21
)︀

+ ω2
0δ

2
2

(︀

3 + k2p2δ22
)︀

√
3

,

α =
−3dk2pb0

(︀

w2
0δ

4
1 + δ

4
2ω

2
0

)︀

a2w
2
0δ

2
1

(︀

3 + k2p2δ21
)︀

+ a2ω
2
0δ

2
2

(︀

3 + k2p2δ22
)︀ ,

β =
2d2k2b20

(︀

w2
0δ

4
1 + δ

4
2ω

2
0

)︀

a22w
2
0δ

2
1

(︀

3 + k2p2δ21
)︀

+ a22ω
2
0δ

2
2

(︀

3 + k2p2δ22
)︀ ,

we find the dark solitary wave structure as following;

v2 (x, y, t) = pa2

(︃

−db0 (21)

+ pb0E

√︀

−1 − tanh (−2kpx − 2kpy − 2kptϖ)
√︀

−1 + tanh (−2kpx − 2kpy − 2kptϖ)

)︃−1

,

whereϖ =

√︁

w2
0δ

2
1(3+k2p2δ

2
1)+ω

2
0δ

2
2(3+k2p2δ

2
2)√

3
.With the suitable

values of parameters, 2D and 3Dfigures alongwith contour

graphs may be observed in Figures 5, 6.

Figure 5: The 2D and 3D graphs of Eq. (21) for a2 = 1, d = 2, b0 = 4,

b1 = 3, p = 5, k = 0.9, δ1 = δ2 = 0.3, E = 2, w0 = 0.7, ω0 = 0.8,

y = 0.03, −2 < x < 2, −2 < t < 2, and t = 0.85 for 2D surfaces.

Figure 6: The contour graphs of Eq. (21) fora2 = 1, d = 2, b0 =

4, b1 = 3, p = 5, k = 0.9, δ1 = δ2 = 0.3, E = 2, w0 = 0.7, ω0 = 0.8,

y = 0.03, −2 < x < 2, −2 < t < 2.
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Case 1c. If we consider

a0 =
3b0

(︀

c2 − w2
0δ

2
1 − ω

2
0δ

2
2

)︀

c2α
, (22)

a1 =
3b1

(︀

c2 − w2
0δ

2
1 − ω

2
0δ

2
2

)︀

c2α
, a3 =

a2b1
b0

,

p =
3db0

(︀

c2 − w2
0δ

2
1 − ω

2
0δ

2
2

)︀

c2αa2
,

k =
−ic2αa2

√︁

3d2b20
(︀

c2 − w2
0δ

2
1 − ω

2
0δ

2
2

)︀ (︀

w2
0δ

4
1 + δ

4
2ω

2
0

)︀

,

β =
2c2α2

9
(︀

c2 − w2
0δ

2
1 − ω

2
0δ

2
2

)︀ ,

Figure 7: The 3D graphs of Eq. (23) for a2 = 0.1, d = −0.2, b0 = b1 =

0.3, c = 0.12, δ1 = δ2 = 0.5, α = 12, E = 0.1, w0 = 0.7, ω0 = 0.8,

y = 0.03, −2 < x < 2, −5 < t < 5.

we obtain another new complex dark solitary wave struc-
ture as

v3 (x, y, t) =
3

α
−
3
(︀

w2
0δ

2
1 + ω2

0δ
2
2

)︀

αc2
(23)

+

√
−1+tanh(2iϖ(x+y−ct))

− αc2

3ζ

√
−1+tanh(2iϖ(x+y−ct))+

Eb0
a2

√
−1−tanh(2iϖ(x+y−ct))

,

where ζ = c2 − w2
0δ

2
1 − ω2

0δ
2
2, ϖ =

√
3db0

√
ζ

κ , κ =
√︁

−d2b20
(︀

w2
0δ

4
1 + δ

4
2ω

2
0

)︀

. For suitable values of parame-

ters, 2D and 3D figures along with contour graphs the com-

plex structure Eq. (23) with Eq. (1) may be observed in Fig-

ures 7, 8, 9, 10.

Figure 8: The 2D graphs of Eq. (23) for a2 = 0.1, d = −0.2, b0 = b1 =

0.3, c = 0.12, δ1 = δ2 = 0.5, α = 12, E = 0.1, w0 = 0.7, ω0 = 0.8,

y = 0.03, t = 5, −6 < x < 6.

Case 1d. Taking

a0 = a1 = 0, a2 =
a3b0
b1

, (24)

p =
3db1

(︀

−c2 + w2
θδ

2
1 + δ

2
2ω

2
θ

)︀

c2αa3

k =
−ic2αa3

√︁

−3d2b21
(︀

c2 − w2
0δ

2
1 − ω

2
0δ

2
2

)︀ (︀

w2
0δ

4
1 + δ

4
2ω

2
0

)︀

,

β =
2c2α2

9
(︀

c2 − w2
0δ

2
1 − ω

2
0δ

2
2

)︀ ,

we find another new complex wave structure as

v4 (x, y, t) = (25)

a3
(︀

3c2 − 3w2
0δ

2
1 − 3ω

2
0δ

2
2

)︀

Eb1
(︀

3c2 − 3w2
0δ

2
1 − 3ω

2
0δ

2
2

)︀

e

−2idb1
√

3
√︁

c2−w2
0
δ2
1
−ω2

0
δ2
2

√︁

d2b2
1(−w

2
0
δ4
1
−δ4

2
ω2
0)

(x+y−ct)

+ c2αa3

.
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Figure 9: The contour graphs of Eq. (23) for a2 = 0.1, d = −0.2,

b0 = b1 = 0.3, c = 0.12, δ1 = δ2 = 0.5, α = 12, E = 0.1, w0 = 0.7,

ω0 = 0.8, y = 0.03, −180 < x < 180, −180 < t < 180.

Figure 10: The compilation of contour graphs of both sides of

Eq. (23) for a2 = 0.1, d = −0.2, b0 = b1 = 0.3, c = 0.12,

δ1 = δ2 = 0.5, α = 12, E = 0.1, w0 = 0.7, ω0 = 0.8, y = 0.03,

−180 < x < 180, −180 < t < 180.

2D and 3D figures along with contour graphs for the com-

plex structure Eq. (25) in Eq. (1) may be seen in Figures 11,

12, 13, 14.

Figure 11: The 3D graphs of Eq. (25) for a3 = 0.1, d = −0.2, b0 =

b1 = 0.3, c = 0.25, δ1 = δ2 = 0.5, α = 0.9, E = 0.1, w0 = 0.7,

ω0 = 0.8, y = 0.03, −2 < x < 2, −5 < t < 5.

Figure 12: The 2D graphs of Eq. (25) for a3 = 0.1, d = −0.2, b0 =

b1 = 0.3, c = 0.25, δ1 = δ2 = 0.5, α = 0.9, E = 0.1, w0 = 0.7,

ω0 = 0.8, y = 0.03, t = 0.5, −6 < x < 6.
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Figure 13: The contour graphs of Eq. (25) for a3 = 0.1, d = −0.2,

b0 = b1 = 0.3, δ1 = δ2 = 0.5, c = 0.25, α = 0.9, E = 0.1, w0 = 0.7,

ω0 = 0.8, y = 0.03, −180 < x < 180, −180 < t < 180.

Figure 14: The compilation of contour graphs of both sides of

Eq. (25) for a3 = 0.1, d = −0.2, b0 = b1 = 0.3, δ1 = δ2 = 0.5,

c = 0.25, α = 0.9, E = 0.1, w0 = 0.7, ω0 = 0.8, y = 0.03,

−180 < x < 180, −180 < t < 180.

4 Conclusions

In this paper, complex dark travellingwave structures that

are solutions to Eq. (1) have been extracted by using IB-

SEFM. Many entirely new solutions such as exponential,

rational, dark and the complex exponential have been

successfully obtained. It has been observed that all so-

lutions found in this paper have satisfied the nonlinear

electrical transmission line model. Choosing suitable val-

ues for parameters, better understanding of the physical

meanings of the solutions found, and the three- and two-

dimensional graphs and contour simulations drawn via

computational programs have all been employed.

The perspective view of the solutions Eqs. (19, 21, 23,

25) can be viewed from the 3D, 2D graphs in Figures 1, 5, 7,

11 and Figures 2, 8, 12, respectively. The contour patterns

can be also viewed from Figures 3, 6, 9, 13, separately for

the imaginary and real part of the solutions. As an alter-

native and new perspective to the 3D graph, contour sur-

faces givemore detail on themodel. Moreover, the contour

patterns of combinations of imaginary and real part of the

obtained solutions can be seen in Figures 4, 10, 14. When

we consider these contour surfaces, it can be observed that

the voltage is of high points among intervals in figures as

a physical meanings.

Comparing results produced in this paper with the pa-

per published in [7, 8], it can also be seen that Eq. (21) is

similar hyperbolic type. Furthermore, it can be observed

that the solutions Eqs. (19, 23, 25 are entirely new complex

dark solutionsto the nonlinear electrical transmission line

model. The calculations show that thismethod is a reliable

and efficient scheme that yields many complex results to

the other nonlinear models. To the best of our knowledge,

the application of IBSEFM to Eq. (1) has been not submit-

ted to literature in advance.
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