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New Compound Upper Bound on MIMO Channel
Capacity

Sergey Loyka, Member, IEEE,and Ammar Kouki, Senior Member, IEEE

Abstract—MIMO channel capacity may be severely degraded
due to correlation between individual sub-channels of the matrix
channel. Several models, which are limited to some specific sce-
narios, have been developed to date to account for this effect. In this
letter, we derive a new upper bound on the mean (ergodic) MIMO
capacity, which is not limited to a particular scenario and accounts
for both transmit (Tx) and receive (Rx) end correlations in such a
way that their impact can be estimated separately and compared.
Thus, a conclusion can be made as to which end contributes more
to capacity reduction. In general, the higher correlated end has a
dominant effect on the capacity.

Index Terms—Channel capacity, correlation, MIMO.

I. INTRODUCTION

M ULTIPLE-INPUT multiple-output (MIMO) commu-
nication architecture has recently emerged as a new

paradigm of spectrum-efficient wireless communications in rich
multipath environment [1]. Unprecedented wireless spectral
efficiencies, ranging from 20–40 bit/s/Hz, have been demon-
strated in a laboratory environment [2] with this architecture.
Even higher spectral efficiencies may be achieved in certain
environments when the system design is optimal. However,
under real-world conditions the MIMO channel capacity may
be limited due to several factors. One of the most important
such factors is the correlation between sub-channels of the
matrix channel [3], [4]. For a completely uncorrelated matrix
channel, the MIMO capacity reaches its maximum and scales
roughly linearly as the number of antennas. The correlation
between individual receive and/or transmit branches results in
capacity reduction. Several models have been used to study
and quantify this phenomenon but have always been limited to
some specific scenarios [3], [9], [11]. In particular, the one-ring
scattering model has been used in [3] to derive the lower and
upper bounds on the mean MIMO capacity. While providing
useful insight, these bounds are limited to the case of one-end
(i.e., either Tx or Rx) correlation only. A more general MIMO
capacity analysis in a correlated channel, which is basically a
generalization of the earlier work by Telatar [8], [13], has been
reported in [11]. The analysis in [11] accounts for both Tx and
Rx end correlations using the eigenvalue decomposition tech-
nique. However, crucial limiting assumptions of the analysis
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above are that the channel correlation matrix can be factorized
into a product of Tx and Rx end correlation matrices (resulting
in separate eigenvalues for the Tx and Rx ends) and that the
number of antennas is large (ideally infinite). This is not the
case in many practically-important scenarios (e.g., indoor or
measured channels or any system with a moderate number of
antennas). Besides, the eigenvalue decomposition techniques is
used in [11] that limits the physical insight provided because
no simple analytical models are available for the eigenvalues
and the resulting estimation is rather complex mathematically
and can be implemented only through numerical analysis.

In this letter, we derive a universal upper bound on the mean
(ergodic) MIMO channel capacity, which is independent of
the scenario considered and accounts for both the Tx and Rx
end correlations, using Jensen’s inequality and concavity of
the function. No assumption of the channel correlation
matrix factorization is made. The bound is expressed in terms
of the Tx and Rx correlation matrices in such a way that the
comparison of the Tx and Rx end contributions to the capacity
reduction can be made in a general case. The well-known cor-
relation matrix models developed for the diversity combining
systems can also be applied to the MIMO system analysis using
our approach [12].

The main goal of this paper is to study general properties
of the MIMO capacity rather than to estimate it accurately in
some specific scenarios. In particular, we show— to the best of
our knowledge—for the first time, that the direct application of
Jensen inequality does not capture the transmit end correlation,
and we propose a method to accomplish this.

II. MIMO C HANNEL CAPACITY

For a fixed linear matrix channel with additive white
Gaussian noise and when the transmitted signal vector is com-
posed of statistically independent equal power components each
with a Gaussian distribution and the receiver knows the channel,
the channel capacity is [1]

bits/s/Hz (1)

where and are the numbers of transmit and receive antennas
respectively, is the average signal-to-noise ratio,is
identity matrix, is the normalized channel matrix, which is
considered to be frequency independent over the signal band-
width, and “ ” denotes transpose conjugate. When the channel
is random (stochastic), then the capacity is random, too. The
mean (ergodic) capacity can be defined in this case as [8], [13]

(2)
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where is “instantaneous” correlation matrix (i.e., for a given
channel realization)

(3)

is Kroneker’s delta, is the expectation over the channel
matrix, and denotes the components of( is the transfer
factor between th transmit antenna andth receive antenna).
Note that Eq. (2) does take into account correlation occurring at
both the transmit and receive ends. This equation can be used for
statistical simulations to evaluate for some specific models
of the channel matrix. However, these matrix numerical com-
putations can be very lengthy, especially when the number of
antennas is very large. Thus, a computationally efficient tech-
nique is desirable. Another difficulty with (2) is that it includes
the impact of receive and transmit end correlation in an inte-
grated form. Hence, it is not easy to decide in general which
end contributes more to capacity reduction.

To this end, Jensen’s inequality can be used to obtain an upper
bound on . According to this inequality and concavity of

function [5], one obtains

(4)

where is the correlation matrix of the Rx branches

(5)

Thus, using (4) and some models of the correlation matrix (see,
for example, [6], [7]), one may evaluate the upper capacity
bound. However, it should be noted that the correlation matrix
in (5) does not capture the correlation of the transmit branches
since represents the Tx antenna index and it is the same for
both factors. Hence, the upper bound in (4) can be close to the
mean capacity when the correlation of the Rx branches is much
higher than that of the Tx branches. However, if the Tx branch
correlation is higher than the Rx one, the upper bound in (4) is
not an accurate approximation of the mean capacity. Therefore,
in order to have an upper bound that is as close as possible
to the mean capacity, one must also account for the transmit
correlation. To this end, the reciprocity of (1) can be used in the
following way. First, we note that the MIMO capacity given
by (1) is invariant under the transformation , where
“ ” means transpose [this follows from the matrix identity

]. This in effect is equivalent
to reversing the direction of information transmission. Thus,
(2) still holds true if we define as

(6)

Hence, one obtains the second upper bound (the transmit bound)

(7)

where is the correlation matrix of the Tx branches

(8)

It is interesting to note that while does not change
the mean capacity, it does change the upper bound in the most
desirable way. It should also be emphasized that the upper bound
in (7) does not capture the Rx branch correlation. Therefore,
this upper bound will be close to the mean capacity when the
transmit correlation is higher than the receive one. However, if
the opposite is true, then this upper bound is not an accurate
approximation of the mean capacity.

From inequalities (4) and (7) it is clear that a tighter upper
bound of the mean channel capacity can be obtained by com-
bining them. Thus, we form the compound upper bound by
taking minimum of the two bounds defined above (because the
effect of correlation is to decrease capacity)

(9)

This upper bound is much tighter than the receive or transmit
bound considered separately when the transmit and receive
branch correlations are significantly different.

It should be mentioned that the Jensen inequality has been
earlier applied to the MIMO capacity analysis in [3]. However,
the method in [3] is limited to the case of one-end (i.e., Tx or Rx
but not both) correlation only. Our method accounts for both Tx
and Rx end correlations without any limiting assumptions (e.g.,
the channel matrix factorization in [11]).

Let us now consider an illustrative example of a correlated
Rayleigh channel with correlation occurring at both the Tx and
Rx ends. The components of are taken to be identically dis-
tributed correlated complex Gaussian variables (real and imag-
inary parts are identically distributed and independent, i.e., the
phase is uniformly distributed over ) with zero mean and
unit variance. The correlation matrix of is assumed to be of
the following form:

(10)

where and are the correlation matrices of the receive
and transmit branches correspondingly. The factorization in (10)
can be justified when the Tx correlation is introduced by local
scatterers around the Tx end and is independent of the Rx cor-
relation, which, in turn, is introduced by local scatterers around
the Rx end [9], [10]. We adopt further the uniform correlation
matrix model for and , which provides the worst-case
estimation [4]

(11)

where . Fig. 1 shows the mean capacity of this
channel, obtained by extensive Monte Carlo simulations (2), and
the receive (4), transmit (7) and compound (9) bounds. In this
example, corresponds to fully uncorrelated Rx branches
and full correlation of the Tx ones; corresponds to full
correlation of the Rx branches and fully uncorrelated Tx ones.
The compound bound provides a good approximation to the
mean capacity when the effect of correlation is significant (i.e.,

and ) while the receive or transmit
bounds alone are not accurate. The compound upper bound is
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Fig. 1. MIMO capacity of a correlated Rayleigh channel form = n = 10

and� = 30 dB.

rather loose when is around 0.5. However, the impact of cor-
relation in this case is small and the MIMO capacity can be es-
timated in a well-known way [1], [8], [13]. The computational
efficiency of upper bound evaluation is a few orders of magni-
tude higher than that of the mean capacity. It is also interesting
to note that the maximum capacity is achieved for .
This indicates that decrease in capacity is usually due to that
end (transmit or receive) which has higher correlation. Thus, a
rough estimation of the capacity may be obtained by considering
only the higher correlated end.

III. CONCLUSION

In this letter, we presented a new compound upper bound on
the mean (ergodic) MIMO channel capacity, which accounts for
both transmit and receive end correlation in such a way that
their impact can be estimated separately and without any ad-
ditional limiting assumptions. Thus, a conclusion can be made
as to which end contributes more to capacity reduction, which is
not easy to do using traditional methods. The compound upper

bound is tighter than the transmit or receive bounds alone and
is not limited to some particular scenarios. It can be used for an
approximate estimation of the MIMO capacity using the corre-
lation matrix models developed for space-diversity techniques
[6], [7], [12]. The upper bound is shown to follow the same
dependence on correlation as the mean capacity does. Hence,
two different scenarios (or the impact of Tx and Rx ends) can
be compared using the difference upper-bounded capacity. It is
also shown that the higher correlated end has a dominant effect
on the MIMO capacity.
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