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Abstract 

The solvatochromic effect is high in conjugate compounds and easy to observe by the colour change emitted 
when the solutions are exposed to UV light. It was found in a series of aminofluorene thiophene derivatives, 
previously synthesized, that irradiating at different wavelengths, the same pattern is obtained, i.e. a dual 
behaviour in the solvatochromism of the studied compounds. For each one, a bathochromic and hypsochromic 
effect exists, in polar and nonpolar solvents, respectively. Wavelength vs. polarity index plots clearly showed 
the abovementioned dual behaviour as well as the improved linearity in its plots. Amidst the wavelengths at 
which each compound is excited in each solvent, 280 nm was selected as the fixed wavelength for the 
measurements; (E)-9,9-diethyl-N-hexyl-N-phenyl-7-(2-(thiofen-2-yl) vinyl)-9H-fluoren-2-amine (M6-6) exhibits 
better linearity as compared to the other studied compounds, being the best to be proposed as polarity sensor 
or indicator. 
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1.Introduction 

In the last few years the interest to generate new compounds that allow determining properties or changes in 
the matter, without needing time-consuming approaches, has become a necessity. To make this possible, 
multiplecompounds that are sensitive to variations in solution have been synthesized; among them, compounds 
exist that can detect some change of property or characteristic and display it as a change in the sensor 
(transducer), as discussed elsewhere [1-7]. Within the multiple possible responses to be delivered, fluorescence 
is one of the most common. Numerous papers have been published where the detection of certain agents in 
solution were carried out using fluorescence, e.g. detection of ions [8,9], of specific sites in proteins [10], of pH 
[11], some small molecules and temperature changes [11-14]. Among the molecules intended to become 
sensors, a group of special interest exists: polarity sensors, specifically the molecules that undergo a change in 
their emission or fluorescence patterns, which allows correlating polarity changes in a solvent with the changes 
by solvatochromism [15,16]. The current research consists in studying electron donor molecules derived from 
fluorene and thiophene (Fig. 1). The nomenclature used is signalled in table 1. These molecules are part of the 
donor- acceptor (D- -A) synthetic route of compounds, which undergo important changes by 
solvatochromism, however, the molecules shown here exhibit a linear behavior [17,18]. 

 

Figure 1. Molecular structure of the synthesized dyes: M6-1(Me), M6-2(Et), M6-3(Pr), M6-4(Bu), M6-5(Pen) 
and M6-6(Hex). 
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Table 1. nomenclature of the studied compounds 

 

2. 

Experimental 

All solvents used, both in synthesis and measurements, must be dry (Supp. Info. Methods). The synthesis of 
the products was reported elsewhere [17,18]. All UV-Vis measurements were run on an Agilent UV-Vis 
spectrophotometer. Spectrofluorometric measurements were conducted on a HORIBA Scientific Fluoromax-4 
spectrofluorometer. The measurements were accomplished by using solutions between 2 and 3 μmol·L-1 of 
each dye in the assayed solvents (were the compounds are soluble): dichloromethane (DCM), tetrahydrofurane 
(THF), ethyl acetate (ETA), dioxane (DIO), acetone (ACT), acetonitrile (ACN), dimethylformamide (DMF) and 
dimethyl sulfoxide (DMSO). 

3. Results and discussion 

The compounds under survey exhibit a noticeable color shift when exposed to wavelengths close to their 
maximum absorption (Fig. 2). Fluorometric measurements for these compounds showed various patterns due 
to solvent effect, however, this change does not present a unique clear trend. 

 

Figure 2. UV irradiated M6-1 solutions in different solvents. Solvents sorted by polarity, from left to 
right: DCM-THF-ETA-DIO-ACT-ACN-DMF-DMSO, vs. the pure solvent (without compound 

within). 

Comparing the recorded fluorescence spectra for the six studied compounds, some important characteristics 
can be inferred for each one. In addition, some trends in the shift of the maximum emission peak can also be 
assessed. Two excitation wavelengths are selected, the first at about 380 nm (depending on the dye measured), 
corresponding to the maximum absorption, and the second 100 nm less than the former in order to observe 
which effect occurs close to wavelengths commonly emitted by UV lamps. 

3.1 Behaviour of compounds in solution 

When these compounds are exposed at two different wavelengths, in general, they show several emission 
patterns (Figs. 3 and Supp. Info. Figs. S1 to 5).  Some molecules show a two maxima spectra that changes to 
one maxima, just changing the wavelength of excitation, this is the case of M6-2 and 4. M6-3 has a different 
behaviour, two maxima spectra to one in nonpolar solvent and one-to-one maxima in polar solvents. Products 
as M6-1, M8-5 and M8-6, show just one-to-one maxima pattern. 

Code 
name 

IUPAC name 

M6-1 (E)-9,9-diethyl-N-methyl-N-phenyl-7-(2-(thiophen-2-yl)vinyl)-9H-fluoren-2-amine 

M6-2 (E)-N,9,9-triethyl-N-phenyl-7-(2-(thiophen-2-yl)vinyl)-9H-fluoren-2-amine 

M6-3 (E)-9,9-diethyl-N-phenyl-N-propyl-7-(2-(thiophen-2-yl)vinyl)-9H-fluoren-2-amine 

M6-4 (E)-N-butyl-9,9-diethyl-N-phenyl-7-(2-(thiophen-2-yl)vinyl)-9H-fluoren-2-amine 

M6-5 (E)-9,9-diethyl-N-pentyl-N-phenyl-7-(2-(thiophen-2-yl)vinyl)-9H-fluoren-2-amine 

M6-6 (E)-9,9-diethyl-N-hexyl-N-phenyl-7-(2-(thiophen-2-yl)vinyl)-9H-fluoren-2-amine 
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Figure 3.M6-1 emission in the assayed solvents, exciting at  max  
in (a) nonpolar solvents; (b) polar solvents. At  ≠  max in (c) nonpolar solvents; (d) polar 

solvents. 

 According on the maxima values of each spectra (Table 2 and Supp. Info. Table S1 to S5), a different change 
in the values is clearly noticed, showing two contrasting influences from the solvents. The results between non-
polar solvents (DCM to DIO) and polar solvents (ACT to DMSO), indicate different electronic transitions.  These 
transitions become more and more energetic when the polarity increases from DCM to DIO and the opposite 
happens when the polarity increases from ACT to DMSO, which may be ascribed to a change of character of 
the molecule main transition [19-25]. In addition, the above agrees with the idea that in nonpolar solvents the 
hypsochromic shift [26] would show the n- * type transition that takes place from the nitrogen non-binding pair 
towards the conjugate chain. On the other hand, in polar solvents a bathochromic displacement [27] of the 

* type transition, belonging only to the conjugate chain, occurs.  

Table 2. M6-1 maximum emission in solvents of different polarity, excited at different . 

Solvent Solvent polarity 
index 

max excitation 
(nm) 

max 
emission 
(nm) 

excitation   

lamp (nm) 

max 
emission 
(nm) 

DCM 3.1 377 475   

  

  

280 

474 

THF 4.0 380 470 462 

ADE 4.4 380 458 458 

DIO 4.8 368 449 449 

ACT 5.1 380 484 494 

ACN 5.8  378 498 498 

DMF 6.4 378 499 497 

DMSO 7.2 387 511 507 

 

3.2 Graph analysis, maximum emission-to-polarity ratio  

In order to determine the relationship between maximum emission and solvent polarity changes, calibration 
curves were constructed to analyse their correlation. Different curves were obtained (Figs. 4 and Supp. Info. 
Figs. S6 to S10), that show the different patterns for each of the studied compounds in the employed solvents. 
This is the result of different types of excited states that decay towards fluorescence. In the current case, a 
transition from the electron donating nitrogen prevails in nonpolar solvents, while in polar solvents  chain-
dependent transition and its charge transfer predominate [31]. 
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Figure 4. M6-6 polarity index vs. emission max: (a) exciting at  max; (b) exciting at  ≠  max. 

 

 

Finally, a comparison of the squared correlation coefficients (Table 3), enables determining which compound is 
the best as sensor in the solvents and wavelength studied. Comparing each compounds values excited at the 
maximum absorption wavelength, it is observed that in nonpolar solvents M6-6 displays the highest relationship 
between the variables. On the other hand, in polar solvents, M6-1 exhibits the highest ratio, however, it is not 
possible to find any relationship between chain length and excitation maxima.  

 

Table 3.  Pearson’s squared correlation coefficients for each line and for each studied compound 
(highest and lowest values are highlighted in blue and red, respectively) 

  

  

  

Compound/ 

solvent 
polarity  

Excitation = max Excitation ≠ max excitation 
average = 

max 

  

 excitation 
average ≠ 

max 

  

Average of 
both 
excitations 

nonpolar polar nonpolar polar   

M6-1 0.815 0.904** 0.972 0.718 0.859 0.845 0.852 

M6-2 0.909 0.272* 0.959 0.792 0.591 0.875 0.733 

M6-3 0.872 0.499 0.952* 0.713* 0.685 0.833* 0.759 

M6-4 0.174* 0.690 0.964 0.808 0.432* 0.886 0.659* 

M6-5 0.950 0.651 0.975 0.812 0.800 0.893 0.847 

M6-6 0.953** 0.882 0.995** 0.864** 0.918** 0.930** 0.924** 

Average of 
each type of 
solvent 

  0.779 0.650 0.969 0.785 - - - 

*Hower value. **Higher value. 

When it is excited at other wavelength, M6-6 exhibits the highest variables ratio, in both polar and nonpolar 
solvents, and M6-3 the lowest of all. Also, in the above case, it was not possible to find a relationship with 
substituent length.  Finally, averages comparisons show which wavelength and which compound is the best to 
sense polarity, in that case it is M6-6. As for wavelengths, exciting at 280 nm usually afforded the best results. 
On the other hand, the compounds are most efficient when measuring in nonpolar solvents. Comparing the 
compounds, the relationship between the M6-6 variables behaves more linear than the rest, M6-4 being the 
worst of them. Table 4 shows the coefficient values for each of the registered lines, showing they do not differ 
much each other (separating non-polar and polar solvents), but it exists a change in the signal (positive-to-
negative), of the slope, where the correlation coefficients tend to be low (table 3). 
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Table 4.  Coefficients of calibration curves (Figs. 4 and Supp. Info. Figs. S6 to S10), for each studied 
compound (y = mx+ b, where y = l; x = solvent polarity index; m = slope and b = y axis 

intercept).  R values in the inset of any graphic. 

Compound/ 

excitation 

max ≠ max 

Solvent polarity Nonpolar Polar Nonpolar Polar 

Coefficient m b m b m b m b 

M6-1 -15.1 524.6 12.0 424.6 -14.1 518.3 5.7 464.4 

M6-2 -29.5 573.0 19.4 383.5 -17.3 531.4 10.5 431.9 

M6-3 -21.0 579.3 0.30 490.9 -18.4 536.3 10.9 428.3 

M6-4 -14.9 517.4 20,2 368.7 -15.2 525.1 10.4 432.7 

M6-5 -16.7 533.2 8.5 446.6 -17.5 536.0 11.5 426.0 

M6-6 -20.3 548.7 9.3 440.4 -22.1 554.8 5.8 463.5 

Conclusions 

Six compounds evidencing solvatochromic effect when exposed to UV radiation have been synthesized and 
assayed as polarity sensors or indicators. The emission spectra, excited at different wavelengths, were 
determined at both the maximum absorption and another fairly close maximum. A dual behavior of the maxima 
was determined owing to solvent effect: in polar solvents a bathochromic change occurs and in nonpolar 
solvents a hypsochromic change takes place. This behavior is related to different excited states that are 
stabilized and then decay in fluorescence, all due to solvent effect. Wavelength vs. polarity index plots clearly 
showed this dual behavior. The optimum wavelength to conduct measurements is 280 nm, and the compounds 
are most efficient when measuring in nonpolar solvents, being M6-6 which presents better linearity in its plots, 
as compared to the other studied compounds. So, M6-6 is the best to be proposed as polarity sensor or 
indicator.  
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Supplementary Material 
In this section it is shown the drying methods of the solvents used in this work, e.g. DMSO. Moreover, we show 
the emission patterns of M6-2, 3, 4, 5 and 6 with the respective emission maxima tables, discussed in the results 
and discussion section. 

javascript:popupOBO('CHEBI:24636','C3CC41622D','http://www.ebi.ac.uk/chebi/searchId.do?chebiId=24636')

