
 Bober, J. W., & Hiary, G. A. (2018). New Computations of the
Riemann Zeta Function on the Critical Line. Experimental
Mathematics, 27(2), 125-137.
https://doi.org/10.1080/10586458.2016.1233083

Peer reviewed version

Link to published version (if available):
10.1080/10586458.2016.1233083

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via Taylor & Francis at http://www.tandfonline.com/doi/full/10.1080/10586458.2016.1233083. Please refer to any
applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the
published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

https://doi.org/10.1080/10586458.2016.1233083
https://doi.org/10.1080/10586458.2016.1233083
https://research-information.bris.ac.uk/en/publications/0382821b-9713-4458-b553-ebca9dea8630
https://research-information.bris.ac.uk/en/publications/0382821b-9713-4458-b553-ebca9dea8630

NEW COMPUTATIONS OF THE RIEMANN ZETA FUNCTION

ON THE CRITICAL LINE

JONATHAN W. BOBER AND GHAITH A. HIARY

Abstract. We present highlights of computations of the Riemann zeta func-
tion around large values and high zeros. The main new ingredient in these
computations is an implementation of the second author’s fast algorithm for
numerically evaluating quadratic exponential sums. In addition, we use a new
simple multi-evaluation method to compute the zeta function in a very small
range at little more than the cost of evaluation at a single point.

1. Introduction

Computations of ζ(1/2 + it) have a long history and are of interest in number
theory because of fundamental links to the prime numbers. (The primes and zeta
zeros are Fourier transforms of each other.) With the exception of Riemann’s hand
calculation in the 1850s, which remained unknown to the outside world for many
decades, computations of ζ(1/2 + it) until 1932 had relied on the Euler–Maclaurin
formula for approximating sums by integrals.

An important advance came in 1932 when Siegel rediscovered the formula used
by Riemann in his hand calculation. This formula, now known as the Riemann–
Siegel (RS) formula, allows computing ζ(1/2+ it) by summing ⌊

√

t/2π⌋ terms, far
fewer than in the Euler–Maclaurin method.

For a long time after that, progress in zeta computations came from advances
in computing technology rather than faster algorithms. This is nicely illustrated in
Turing’s effort in the 1930s to build a mechanical computer to calculate zeta, and
his pioneering use of the electronic computer for that purpose two decades later. To
check the Riemann Hypothesis (RH), Turing introduced a novel method to prove
that a given list of zeta zeros in an interval is complete. This method is still the
state of the art today. See §3.

The main algorithmic improvements on the RS formula did not arrive until the
1980s, starting with the Odlyzko–Schönhage algorithm [18] for multiple evaluations
of zeta, and the algorithms of Schönhage [20] and Heath-Brown (see [9]) for evalua-
tion at a single point. Odlyzko implemented the Odlyzko–Schönhage algorithm and
computed a dataset of 20 billion zeros around zero number 1023. Gourdon [8] then
computed two billion zeros around the 1024-th zero using another implementation
of the Odlyzko–Schönhage algorithm.

2010 Mathematics Subject Classification. Primary: 11Y35. Secondary: 65Y20.
Key words and phrases. The Riemann zeta function, large values, exponential sums, the van

der Corput iteration, Theta algorithm.
GH is partially supported by the National Science Foundation under agreements No. DMS-

1406190. Both authors are pleased to thank IAS, MSRI, and ICERM, where parts of this work
was conducted.

1

2 J.W. BOBER AND G.A. HIARY

In the meantime, the theoretical complexity of computing ζ(1/2 + it) at a sin-
gle point became of interest in its own right. New algorithms by the second au-
thor [9, 10] have bounded this complexity by t1/3+o(1) time and little space, and
then by t4/13+o(1) time and space. The purpose of this article is to report on
our implementation of the t1/3+o(1) algorithm and subsequent computations. The
t4/13+o(1) algorithm is significantly more complicated and it is not clear that it
would offer a practical improvement in the range of our computations.

Most of our computations were in small “targeted intervals” where zeta was
expected to be unusually large. Our hope was that unusual behaviors of the zeros
would be discovered in such intervals. The heuristic method used to find these
intervals naturally produced very large t, and so most computations at large t
were done out of necessity. This resulted in the largest computed value of Z(t) ≈
16244.8652 and S(t) ≈ 3.3455, and in checking the RH for more than 50000 zeros
in over 200 small intervals going up to the 1036-th zero. See §4.

Our computations demonstrate that the t1/3+o(1) algorithm is practical. Indeed,
almost all computations finished in a few days on the “riemann machine,” a com-
puter cluster at the University of Waterloo. (The implementation source code is
available on the authors’ websites.) This cluster has 16 nodes (though we usually
limited our use to about 12 nodes) and each node has 8 cores at 2.27GHz clock
speed. Probably, the range of t feasible via the current implementation and using
easily available computational resources is past the 1040-th zero.

2. The Riemann–Siegel formula

Let s = σ+ it where σ and t are real numbers. The Riemann zeta function ζ(s)
is defined by

(1) ζ(s) :=

∞
∑

n=1

n−s (σ > 1).

It has a meromorphic continuation with a simple pole at s = 1, and satisfies the
functional equation ξ(s) = ξ(1− s) where ξ(s) := π−s/2Γ(s/2)ζ(s). The RH is the
conjecture that all zeros (i.e. roots) of ξ(s) lie on the critical line Re(s) = 1/2.

The RS formula is an asymptotic formula to compute ζ(s). Actually, the RS
formula is usually stated for Z(t) := eiθ(t)ζ(1/2+ it), which is a real-valued version
of zeta on the critical line often called the Hardy Z-function. In particular, one can
isolate simple non- trivial zeros of zeta merely by looking for sign changes of Z(t).
The phase factor θ(t) satisfies

(2)

∣

∣

∣

∣

θ(t)−
(

1

2
log

t

2πe
− π

8
+

1

48t

)∣

∣

∣

∣

≤ 0.129

t3
, (t > 1).

So one can compute θ(t) precisely and quickly for large t. Also, since Z(t) = Z(−t)
by the functional equation, we may restrict to t ≥ 0.

The version of the RS formula that we used in our computations is the same as in
[19]. For t > 2π, let a :=

√

t/(2π), N := ⌊a⌋ the integer part of a, and z = a− ⌊a⌋
the fractional part of a. Then the RS formula consists of a main sum

(3) M(t) =

N
∑

n=1

eit logn

√
n

,

NEW COMPUTATIONS OF ζ(1/2 + it) 3

a correction Cm(t), and a remainder Rm(t). Specifically, for each m ∈ Z≥0,

(4) Z(t) = 2ℜe−iθ(t)M(t) + Cm(t) +Rm(t),

where Cm(t) is a sum of m+ 1 terms,

(5) Cm(t) =
(−1)N+1

√
a

m
∑

r=0

Cr(z)

ar
,

and Rm(t) satisfies the bound Rm(t) ≪ t−(2m+3)/4. The functions Cr(u) on the
r.h.s. in (5) are linear combinations of derivatives of

(6) F (u) :=
cos(2π(u2 − u− 1/16))

cos(2πu)
,

up to the 3r-th derivative; see [7, 1]. For example, C0(u) = F (u) and C1(u) =
F (3)(u)/96π2, where F (3)(u) is the third derivative of F (u). To evaluate F (u), and
more generally Cr(u), near removable singularities at u = π(2n + 1)/2, we used a
numerically stable Taylor expansion.

The remainder Rm(t) in (4) is well-controlled when t is large. Gabcke derived
in his thesis [7] explicit bounds for Rm(t) when m ≤ 10. For example, if t ≥ 200,
then |R1(t)| < .053t−5/4, |R4(t)| < 0.017t−11/4, and |R10(t)| < 25966t−23/4. Even
the bound for R1(t) is sufficient in our computations since t is of size > 1020, so
already |R1(t)| < 10−26.

3. Turing’s method

The zeros of ξ(s) are called the non-trivial zeros of zeta. They are denoted by
ρn = 1/2 + iγn, n 6= 0. For example, ρ1 = 1/2 + i14.134725 . . ., ρ2 = 1/2 +
i21.022039 . . ., ρ3 = 1/2 + i25.010857 . . ., and ρ−n = ρn. The RH is the statement
that the ordinates γn are always real. The counting function of zeros is

(7) N(t) := |{0 < Im ρn < t}|+ 1

2
|{Im ρn = t}|.

Using the functional equation and the argument principle from complex analysis,
if t 6= Im ρn for any n, then

(8) N(t) =
1

π
θ(t) + 1 + S(t),

where θ(t) and S(t) are defined1 by a continuous variation in the argument of
π−s/2Γ(s/2) and ζ(s), respectively, as s moves along the line segments from 2,
where the argument is defined to be zero, to 2 + it to 1/2 + it; see [21, 5, 6]. If
t = Im ρn for some n, then we define S(t) := limǫց0

1
2 (S(t+ ǫ) + S(t− ǫ)).

As mentioned earlier, θ(t) can be computed easily; it increases roughly linearly
with no unpredictable oscillations. Therefore, in view of formula (8), the main
difficulty is to compute S(t), for which we employ Turing’s method [22]. This is a
particularly attractive method as it uses the already computed list of zeros together
with a few evaluations of Z(t). Basically, the value of S(t) is determined at two
points t2 > t1, which in turn determines N(t2) − N(t1).

2 If the number of zeros
found in [t1, t2] matches this difference, then the completeness of the zeros list is

1This is the same θ(t) appearing in the definition of Z(t).
2We assume that Z(t1) and Z(t2) are nonzero.

4 J.W. BOBER AND G.A. HIARY

verified, and we are in a position to compute S(t) throughout [t1, t2]. It is thus
clear that the main issue is to find such t1 and t2.

To this end, Turing first observed that if the sign of Z(t) is known, then the
value of S(t) is known modulo 2. It is therefore not necessary to compute S(t) to
any great accuracy. In fact, as observed in [6], it is advantageous to specialize to t
a good gram point3, for then S(t) must be an even integer, and it suffices to prove
that |S(t)| < 2 in order to conclude that S(t) = 0. The basic idea here is that S(t)

is small on average, satisfying the bound |
∫ t+∆

t
S(y)dy| ≤ 0.128 log(t+∆) + 2.30,

provided that t > 168π and ∆ > 0. So if one incorrectly assumes that S(t) ≥ 2,
then, provided that sign changes of the Z-function are sufficiently regularly spaced
around t, the average of S(y) over [t, t+∆] will contradict the required bound once
∆ is large enough (roughly of size ≫ log(t+∆)). And therefore one can conclude
that S(t) < 2. An analogous argument can be used to prove that S(t) > −2; see
[22, 6] for details.

4. Examples of computations

The new methods described in this paper are suitable for evaluation of Z(t) in
short intervals. Accordingly, most of our computations have focused on evaluating
the zeta function high on the critical line at spots where we might expect interesting
behavior. Additionally, we have done some evaluation at spots where t or N(t) is
a nice “round” number; in these spots we expect to see “typical” behavior.

To find points where we expect to see interesting behavior, we used the LLL
algorithm [15], as done in [17], to search for values of t where pit ≈ 1 for many
initial primes p. By multiplicativity, then, there should be unusually many values
of nit close to 1, making the initial segment of the main sum large. Though we
have not attempted to make this argument rigorous, it works well in practice, and
we have observed many values of Z(t) which are much larger than average by using
LLL to line up the values of just one hundred or so initial pit.

As a byproduct of our search for large values, we also find large values of S(t).
It is always the case in our computations that when ζ(1/2 + it) is very large there
is a large gap between the zeros around the large value. And it seems that to
compensate for this large gap the zeros nearby get “pushed” to the left and right.
A typical trend in the large values that we have found is that S(t) is particularly
large and positive before the large value and large and negative afterwards. This
behavior can be seen in the plots in Figures 1 and 2.

As a consequence on the Riemann Hypothesis, ζ(1/2 + it) is known to grow
slower than any fixed power of t. Currently, the best conditional upper bound is

(9) |ζ(1/2 + it)| ≪ exp

(

log 2

2

log t

log log t
+O

(

log t log log log t

(log log t)2

))

,

3The m-th gram point gm is the unique solution the equation θ(t) = πm ∈ Z≥−1 for t ≥ 7. It
is called good if (−1)mZ(gm) > 0. One usually finds a good gram point on testing Z(t) at few
consecutive gram points.

NEW COMPUTATIONS OF ζ(1/2 + it) 5

t Z(t)

39246764589894309155251169284104.0506 16244.8652

70391066310491324308791969554453.2490 −14055.8928

552166410009931288886808632346.5052 −13558.8331

35575860004214706249227248805977.2412 13338.6875

6632378187823588974002457910706.5963 12021.0940

698156288971519916135942940460.3337 11196.7919

289286076719325307718380549050.2563 10916.1145

50054757231073962115880454671617.4008 −10622.1763

803625728592344363123814218778.1993 10282.6496

690422639823936254540302269442.4854 10268.7134

1907915287180786223131860607197.5463 10251.5994

9832284408046499500622869540131.7445 −10138.5908

Table 1. All local maxima of |Z(t)| > 10000 found by our computations.

a result of Chandee and Soundararajan [3] improving the leading constant in earlier
results. On the other hand, Bondarenko and Seip [2] have recently shown uncondi-
tionally that there exist values of t for which

|ζ(1/2 + it)| > exp

(

(

1√
2
+ o(1)

)

√

log t log log log t

log log t

)

,

improving on previous results by a factor of
√
log log log t. Where exactly in this

range the largest values lie is still an open question.
Table 1 has a list of the 12 local maxima of |Z(t)| larger than 10000 that we

have found to date. We do not know if the values that we have found are close to
as large as possible.

Bounds for the growth of S(t) are similar to the bounds for the growth of
log|ζ(1/2+ it)|. Again assuming the Riemann Hypothesis, Montgomery established
in [16] that there are values of t for which

(10) |S(t)| ≫
(

log t

log log t

)1/2

.

And Goldston and Gonek proved that |S(t)| ≤ (1/2+o(1)) log t/ log log t. Even un-
conditionally, |S(t)| is known to be unbounded by results of Selberg. Nevertheless,
previous to these computations, the largest observed value of S(t) seems to have
been −2.9076, as reported by Gourdon [8]. Table 2 lists 11 spots where we have
found values of |S(t)| > 3.1, the largest of which is S(t) ≈ 3.3455 for t ≈ 7.75×1027.

The data is just meant to be a sample of what we have computed. Further
examples of computations can be found on the authors’ websites. All together,
we have checked the Riemann Hypothesis for more than 50000 zeros in over 200
separate small intervals with values of t ranging from 1024 to 8× 1034.

6 J.W. BOBER AND G.A. HIARY

t S(t)

7757304990367861417150213053.6386 3.3455

546577562321057124801498516819.4609 −3.2748

35575860004214706249227248805976.9763 3.2722

31774695316763918183637654364.8066 3.2573

11580026442432493576924087062.5414 −3.2371

10758662450340950434456735185.3359 −3.2261

50054757231073962115880454671617.8419 −3.1826

50054757231073962115880454671617.8419 −3.1826

39246764589894309155251169284103.7774 3.1694

10251393160473423776137882271.3031 3.1660

77590565202125505656738011641.6876 3.1431

Table 2. Spots where |S(t)| > 3.1 found by our computations. In
this table, t actually denotes the imaginary part of a zero of ζ(s),
so the value of S(t) is attained just before (if negative) or after this
zero.

n γn

1025 1194479330178301585147871.32909

1026 11452628915113964213507127.18757

1027 109990955615748542241920621.36163

98094362213058141112271181439 1028 + 0.00366

1029 10191135223869807023206505980.23860

1030 + 484 98297762869274424758690514889.09764

1017590402074552798166351185765 1029 + 0.07316

1031 949298829754554964058786559878.40484

1032 9178358656494989336431259004805.28194

1033 88837796029624663862630219091104.93992

1036 + 42420637374017961984 81029194732694548890047854481676712.98790

Table 3. Some examples of zeros of ζ(1/2+it). Here the notation
means that ζ(1/2+ iγn) = 0 for some real number γn within about
10−5 of the number in the right column, and that there are exactly
n− 1 zeros in of ζ(s) in the critical strip with positive imaginary
part < γn.

NEW COMPUTATIONS OF ζ(1/2 + it) 7

F
ig
u
r
e
1
.
Z
(t
)
an

d
S
(t
)
ar
ou

n
d
th
e
la
rg
es
t
va
lu
e
of

S
(t
)
w
e
h
av
e
fo
u
n
d
.
H
er
e
t 0

=
77
5
7
3
0
4
9
9
0
3
6
7
8
6
1
4
1
7
1
5
0
2
1
3
0
4
4
.

8 J.W. BOBER AND G.A. HIARY

F
ig
u
r
e
2
.
Z
(t)

a
n
d
S
(t)

a
ro
u
n
d
th
e
largest

valu
e
of

Z
(t)

w
e
h
ave

fou
n
d
.
H
ere

t
0
=

39246764589894309155251169284094.

NEW COMPUTATIONS OF ζ(1/2 + it) 9

F
ig
u
r
e

3
.
Z
(t
)
an

d
S
(t
)
ar
ou

n
d

th
e
ze
ro

n
u
m
b
er

10
00
00
00
00
00
00
00
04
24
20
63
73
74
01
79
6
1
9
8
4
>

1
03

6
,
w
h
er
e
t 0

=
81
02
91
94
73
26
94
54
88
90
04
78
54
48
16
76
70
3.

In
co
n
tr
as
t
to

F
ig
u
re
s
1
an

d
2,

th
er
e
is

n
ot
h
in
g
p
a
rt
ic
u
la
rl
y
sp
ec
ia
l
a
b
o
u
t

th
is

ra
n
ge

of
t,
so

w
e
sh
ou

ld
ex
p
ec
t
th
is

to
ex
h
ib
it

ty
p
ic
al

b
eh
av
io
r
of

S
(t
)
an

d
Z
(t
).

10 J.W. BOBER AND G.A. HIARY

5. Reducing to quadratic exponential sums

To start, we choose a positive integer v0 ≤ N+1 and a real number u0 > 1. Then
we construct the sequences Kr = ⌈vr/u0⌉ and vr+1 = vr+Kr for 0 ≤ r < R, where
R is the largest integer such that vR < N +1. We define KR := min{⌈vR/u0⌉, N +
1− vR}. So vR+1 = N +1, which is the first point outside the range of summation
of the main sum M(t). We subdivide M(t) into an initial sum of v0 − 1 terms,
followed by R+1 consecutive blocks where the r-th block starts at vr and consists
of Kr consecutive terms. We use the Taylor expansion to express the r-th block as
a linear combination of the quadratic exponential sums

(11) F (K, j; a, b) =
1

Kj

K−1
∑

k=0

kje2πiak+2πibk2

, j ∈ Z≥0.

(We treat kj as 1 when k = j = 0.) To this end, we define

(12) fs(z) :=
e(s−1/2)(z−z2/2)

(1 + z)s
, fs(0) = 1.

For n ∈ [vr, vr + Kr), we write n = vr + k where 0 ≤ k < Kr. Then, letting
s∗ = 1/2− it and noting that

(13)
eit logn

√
n

=
eit log vr

√
vr

eitk/vr−itk2/2v2
rfs∗(k/vr),

we obtain, on expanding fs∗(z) around 0, that

(14)
∑

vr≤n<vr+Kr

eit logn

√
n

=
eit log vr

√
vr

∞
∑

j=0

cr(j)F (Kr, j; ar, br),

where the linear and quadratic arguments ar and br are given by the formulas
ar := t/2πvr and br := −t/4πv2r . The coefficients cr(j) are given by

(15) cr(j) :=

(

Kr

vr

)j
f
(j)
s∗ (0)

j!
,

where f
(j)
s (z) is the j-th derivative in z. For instance, f

(1)
s (z) = −1/2, f

(2)
s (z)/2! =

3/8, and f
(3)
s (z)/3! = −(16s+7)/48. In order to avoid clutter, we have suppressed

dependence on t, u0, and v0 in all of cr(j), ar, br, and R.
Let J denote a positive integer, and let cr = (cr(0), . . . , cr(J)) denote a tuple of

the first J + 1 coefficients. Define

(16) F(K, c; a, b) =

J
∑

j=0

c(j)F (K, j; a, b),

which is a linear combination of quadratic sums. Proposition 5.1, which is proved
in §9, bounds the truncation error ǫJ(t) in the main sum when the series on the
r.h.s. of (14) is stopped after J + 1 terms for each block. That is, ǫJ(t) satisfies

(17) M(t) =

v0−1
∑

n=1

eit logn

√
n

+

R
∑

r=0

eit log vr

√
vr

F(Kr, cr; ar, br) + ǫJ(t),

Proposition 5.1. Let α = 1/0.9, Kmin = 2000. If v0 = ⌈Kmint
1/3⌉ ≤ 1

3

√

t/(2π)

say, and u0 = α|s|1/3 ≥ 1, then ǫJ(t) is bounded as in the following table.

NEW COMPUTATIONS OF ζ(1/2 + it) 11

t

J
18 21 24 27 30

1024 0.000831893 0.0000386099 0.0000108755 7.46138× 10−6 5.42799× 10−6

1026 0.00283154 0.0000925556 7.50489× 10−6 3.85022× 10−6 2.76739× 10−6

1028 0.00839067 0.000256977 9.10602× 10−6 1.82102× 10−6 1.21035× 10−6

1030 0.0230403 0.000698646 0.0000196934 1.1228× 10−6 4.96568× 10−7

1032 0.0603446 0.00182714 0.0000495358 1.44903× 10−6 2.13244× 10−7

1034 0.15309 0.00463399 0.000124900 3.12046× 10−6 1.36063× 10−7

1036 0.37952 0.011489 0.00030938 7.53404× 10−6 1.89985× 10−7

Table 4. Bounds on ǫJ(t) for various J and t.

The bounds in Table 5.1 are calculated as |ǫJ(t)| ≤ cmax(J, t)Mmax(t) where
cmax(J, t) is essentially a bound on the truncation error after J terms in the Taylor
expansion of fs∗(z) at z = 0, andMmax(t) is a bound on the sum of the R+1 blocks.
The bound Mmax(t) that we proved is of the form ≪ t1/6 log t, which we know is
a significant overestimate, and is in fact the main source of inefficiency in Propo-
sition 5.1. In practice, ǫJ(t) is bounded by something like cmax(J, t)

√

log(N/v0),
though we cannot prove this. In any case, Table 5 furnishes bounds on cmax(J, t)
alone. The numbers appearing there should be much closer to the true truncation
error in our computations. Note that cmax(J, t) depends mostly on J , and that its
dependence on t is weak in comparison.

t

J
18 21 24 27 30

1024 1.048× 10−8 4.864× 10−10 1.370× 10−10 9.399× 10−11 6.838× 10−11

1026 1.028× 10−8 3.358× 10−10 2.723× 10−11 1.397× 10−11 1.004× 10−11

1028 1.025× 10−8 3.137× 10−10 1.112× 10−11 2.223× 10−12 1.478× 10−12

1030 1.024× 10−8 3.105× 10−10 8.751× 10−12 4.989× 10−13 2.207× 10−13

1032 1.024× 10−8 3.100× 10−10 8.404× 10−12 2.459× 10−13 3.618× 10−14

1034 1.024× 10−8 3.099× 10−10 8.353× 10−12 2.087× 10−13 9.099× 10−15

1036 1.024× 10−8 3.099× 10−10 8.345× 10−12 2.033× 10−13 5.125× 10−15

Table 5. Bounds on cmax(J, t) for various J and t.

We consider the sensitivity of the main sum to perturbations in the quadratic
sums in (17). Such perturbations arise from the accumulation of roundoff errors
when using floating point arithmetic. If each sum F(Kr, cr; ar, br) in (17) is com-

puted to within ε, say, then this introduces a total error ≤ ε
∑R

r=0 1/
√
vr. Choosing

u0 and v0 as in Proposition 5.1, and noting vr+1 = vr + Kr ≥ vr(1 + 1/u0), it is
easy to show that this error is ≤ 0.05εt1/6, provided that u0 ≥ 200 and t ≥ 1010

say. In practice though, this maximal size is never reached. Instead, due to pseu-
dorandom nature of roundoff errors, one observes square-root cancellation in their

sum. So the cumulative error is typically ≤ ε(
∑R

r=0 1/vr)
1/2. Thus, under the same

assumptions on u0 and t as before, the error is ≤ 0.0011ε.

12 J.W. BOBER AND G.A. HIARY

6. Computing quadratic exponential sums

The main new ingredient in our algorithm to compute the zeta function is
an implementation of Hiary’s algorithm to compute quadratic exponential sums
F(K, c; a, b). The algorithm runs in O((J +1)A logA(K/ǫ)) bit operations, where ǫ
is the desired accuracy and A ≤ 3. This algorithm was derived in [10] to compute
ζ(1/2+it) in t1/3+o(1) time, which is the method implemented in our computations.
Currently, the fastest method for computing zeta at a single point has asymptotic
running time t4/13+o(1); see [9]. This method relies on computing cubic exponential
sums instead of quadratic sums, and is practical only if t is extremely large. (The
issue of practical t threshold for the t4/13+o(1) method is being tackled in upcoming
work by the second author.)

From a high level point of view, in the typical case the algorithm for quadratic
sums works by using Poisson summation to write F(K, c; a, b) as a combination of
a shorter sum and some integrals which can be calculated to whatever precision
we like. The length of the new sum will be ⌊a+ 2bK⌋, and we will be able to
assume that 0 ≤ b < 1/4, so the length of the sum decreases quickly. There are
some cases where this Poisson summation does not work well, but these correspond
precisely to the case where b is very small and we can compute this sum by using
Euler–Maclaurin summation.

From [10], we distill Proposition 6.1. The proof of this proposition is essentially
the content of Equations (3.37), (3.38), and (3.39) [10], though we have modified
the notation in some ways, and have explicitly written out the result for general
v, rather than only for v = (0, 0, . . . , 1), as is done in [10]. (This implicitly in-
volves changing an order of summation, which causes the appearance of zj and z′j
and makes computation more efficient.) The formula in Proposition 6.1 is fairly
complicated since, following [10], it is completely explicit and avoids numerical
differentiation. This ensures better and more robust performance in practice.

The algorithm works by applying the formula in Proposition 6.1 repeatedly,
until either b ≪ 1/K, in which case the Euler–Maclaurin summation is used, or
K ≤ Kmin, in which case direct summation is used.

The algorithm for computing quadratic sums has been subsequently implemented
by Kuznetsov [14], but using Mordell integral identities instead of the Poisson
summation and relying on numerical differentiation.

Proposition 6.1. If K is a positive integer, a ≥ 0, and b > 0, then we have the

transformation

F(K,v; a, b) = F(q,v′; a′, b′) +R(K,v; a, b),

where q = ⌊a+ 2bK⌋ is the length of the new quadratic sum, a′ = a/(2b) is the

new linear argument, and b′ = −1/(4b) is the new quadratic argument. The new

coefficient vector v′ = (v′0, . . . , v
′
J) is defined by

v′j = e−
iπa2

2b qjb−
j
2

J
∑

ℓ=j

vℓb
− 1+ℓ

2 K−ℓAj,ℓ

∑

k≡ℓ−j mod 2
0≤k≤ℓ−j

akb−
k
2 Bℓ−j,k,

Aj,ℓ =
ℓ!

j!
π

j−ℓ
2 2

j−3ℓ−1
2 e

πi
4 (1+3(ℓ−j)), Bj,k =

(−1)
k+j
2

(

j−k
2

)

! k!
(2π)

k
2 e−

3πik
4 .

NEW COMPUTATIONS OF ζ(1/2 + it) 13

The remainder R(K,v; a, b) is given explicitly by

R(K,v; a, b) = e2πiaK+2πibK2

e
πi
2

J
∑

j=0

Sj +
1

2

J
∑

j=0

vj

+
v0
2

− δ⌈a⌉−1v
′
0.

The Sj are defined as follows. Let zj = ij
∑J

ℓ=j vℓ
(

ℓ
j

)

, z′j =
∑J

ℓ=j vℓ
(

ℓ
j

)

2
ℓ+1
2 e

iπ(ℓ+1)
4 ,

ω = {a+ 2bK}, and ω1 = ⌈a⌉ − a. Then

Sj = zj

[

IC̃1
(K, j, ω, b)− IC7

(K, j, ω, b)− J1(ω, b, j, q − ⌈a⌉ ,K)

+ (−1)jIC9H
(K, j, 1− ω, b) + J2(2bK − ω1, 1− ω, b, j,K)

]

+ vj

[

(−1)j+1J1(ω1, b, j, q − ⌈a⌉ ,K) + (−1)j+1IC7(K, j, ω1, b)

+ IC9H
(K, j, 1− ω1, b) + (−i)j+1J2(2bK − ω, 1− ω1, b, j,K)

]

− z′je
2πiaK−2πωKIC9E

(K, j, ω, b).

Here, the J terms are given by the integrals

J1(α, β, j,M,K) =
1

Kj

∫ K

0

tj exp(−2παt− 2πiβt2)
1− exp(−2πMt)

exp(2πt)− 1
dt,

J2(α1, α2, β, j,K) =
1

Kj

∫ K

0

tj exp(−2πβt2)
exp(−2πα1t) + (−1)j+1 exp(−2πα2t)

exp(2πt)− 1
dt.

The I terms are all integrals of the same integrand along different paths in the

complex plane, which we can write explicitly as integrals over segments of R≥0 as

IC7(K, j, α, β) = e−
iπ(j+1)

4
1

Kj

∫ K
√
2

0

tj exp
(

−(1 + i)π
√
2αt− 2πβt2

)

dt,

IC9H
(K, j, α, β) =

1

Kj

∫ ∞

0

tj exp(−2παt− 2πiβt2)dt,

IC9E
(K, j, α, β) =

1

Kj

∫ ∞

0

tj exp(−2π(α− iα+ 2βK + 2iβKt− 4πβt2)dt,

IC̃1
(K, j, α, β) = −ie−2παK−2πiβK2

∫ K

0

tj exp(2πiαt− 4πβKt+ 2πiβt2)dt.

Some remarks:

• The formula in Proposition 6.1 takes on a simpler form if J = 0.
• The integral J2 occurs from certain “boundary” terms in the computation,
while the bulk of the contribution to the sum generally comes from the J1.

• If ω is not too small (compared to the target precision) then the terms
involving IC9E

and IC̃1
are not large enough to make any significant con-

tribution, so we do not need to compute them.

14 J.W. BOBER AND G.A. HIARY

7. Simple multi-evaluation

Thus far we have only described how to evaluate ζ(1/2+ it) at a single point. To
locate zeros and make plots of zeta, we of course want to evaluate at more points.
We note that the sum M(t), which consumes almost all the computation time, is a

bandlimited function with highest frequency τ = log⌊
√

t/2π⌋; see [17]. So we can
use interpolation to recover M(t) for any t in a small window if we have already
evaluated it on a relatively coarse grid of points covering a slightly larger window.
Such a grid consists of points spaced π/β apart, with β > τ . In light of this, we
focus first on the problem of computing M(t0 + δj) for a range of integers j, with
t0 large and δj ≪ 1. For concreteness, we might imagine that 1024 < t0, δ = .04,
and 0 ≤ j ≤ 1000, which corresponds to the evaluation of ζ(1/2 + it) in a window
of size 40. To further simplify matters, we avoid the vicinity of t0 where the length
of M(t) changes; i.e. t0 of the form 2πn2 for some integer n.

We perform the multi-evaluation on each block, which we recall have the shape

v+K−1
∑

n=v

ei(t0+δj) logn

√
n

=
ei(t0+δj) log v

√
v

K−1
∑

k=0

ei(t0+δj) log(1+k/v)

√

1 + k/v
.(18)

The entirety of our multi-evaluation is based on the simple observation that in
factoring out the first term in this sum we have removed most of the oscillation
from the summands. So the inner sum in (18) changes little with j, and it suffices
to approximate by its value at t0 only.

Let us denote the inner sum in (18) by V (t, v,K). Then using the inequality
log(1 + x) ≤ x for 0 ≤ x ≤ 1, and the bound (K − 1)/v ≤ 1/u0, we obtain

(19) |V (t0 + δj,K, v)− V (t0,K, v)| ≤ ρδj

u0
max

0≤∆<K

∣

∣

∣

∣

∣

K−1
∑

k=∆

eit0 log(v+k)

∣

∣

∣

∣

∣

,

where ρ > 1 depends on t0. Given the range of t0 under consideration, we can show
that ρ = 1.1 is admissible. So, summing over all blocks, the total error in the multi-

evaluation method is at most ρδju−1
0 Mmax(t0). Now, Mmax(t0) ≤ At

1/6
0 log t0 for

some constant A (see Lemma 9.1), and by the main result in [13] we should be able
to take A ≤ 1. Moreover, we have u0 ≥ αt1/3 where we took α = 1/0.9 in our
computations. Thus, the error in the multi-evaluation is

(20) ≤ ρAδj log t0

αt
1/6
0

≤ δj log t0

t
1/6
0

.

In light of this, the multi-evaluation can be carried out safely over a large range

of j (of length t
1/6−ǫ
0). In practice, the estimate (20) is conservative because the

estimate for Mmax(t0) is wasteful. Almost surely the cumulative error will be
significantly below the maximal size (20), and is much closer to

(21) ≤ δj
√

log(N/v0)

t
1/3
0

.

8. Our implementation

In this section, we document our implementation of the t1/3+o(1) algorithm. We
remark that due to special features of the theta algorithm in [10] (e.g. strong links

NEW COMPUTATIONS OF ζ(1/2 + it) 15

0 5×1016 1017

Range of summation

0

109

2×109

3×109
Su

m
m

an
ds

 p
er

 se
co

nd

Figure 4. The computation at the largest height was split into
over 130000 independent blocks of computation, each computing a
consecutive piece of the main sum. Here we show the “speed” of
our implementation in terms of the number of summands per sec-
ond summed in each block. We can see here that the diophantine
properties of the input affect the running time of the theta algo-
rithm; for example, the largest spikes correspond to summands
n−1/2+it where t/(4πn2) is very close to an integer.

between the running time and number-theoretic properties of the inputs), there are
several spots of optimization, but we have explored only few of them.

8.1. Quadratic exponential sums. We have a general implementation of the
algorithm described by Proposition 6.1, focused on moderate precision output for
general input. The entirety of our C++ code currently consists of a bit over 3000
lines, though some of that is for precomputed tables and constants that are pro-
duced quickly. It was quite useful during the implementation to constantly compare
answers obtained from the C++ code with answers obtained from a basic version of
the algorithm that was implemented in Mathematica. The end result is a single
function which computes the sum F (K,v; a, b) to a specified “attempted” abso-
lute precision ǫ. By this we mean that if our implementation were bug-free, and if
our subroutines employ sufficient working precision consistently (as they hopefully
should), then we would compute the answer to within ǫ.

In practice, floating point arithmetic is not exact, and we limit our use of high
precision arithmetic (using MPFR) to small areas of the algorithm where it is com-
pletely unavoidable. For example, if K is very large then F (K,v; a, b) typically
oscillates rapidly as b changes (on a scale like 1/K2), so it is necessary to specify
the value of b sufficiently precisely. For typical input (for example, with J = 18,
v = (1, 1, . . . , 1), and a and b arbitrary) we expect to be able to able to compute up
to an absolute precision of around 10−10 with our implementation, and we usually
get over 40 bits of relative precision.

16 J.W. BOBER AND G.A. HIARY

There are also some other limitations in our implementation that come from our
use of C++ doubles. For example, there are numbers that occur in the computation
which may become too large or too small to be represented as double precision
numbers, but in practice our implementation will usually fail before we reach this
point. We hope, at least, that our implementation will return “not a number” in
such a case to indicate an error, rather than returning a wrong answer. These are
technical limitations, however, and with some effort they could be removed at little
cost to the overall running time of our implementation.

For efficient evaluation of the integrals arising in Proposition 6.1, we cannot rely
on straightforward numeric integration. Instead we must deal with each integral
on a case-by-case basis and evaluate as appropriate. Many of the details are given
in [10], and we do not include them all here, but as a typical example we explain
here how one might evaluate the integral

J := J1(α, β, 0,M, 1) =

∫ 1

0

exp(−2παt− 2πiβt2)
1− exp(−2πMt)

exp(2πt)− 1
dt.

Here, α ∈ [0, 1] and β ∈ [0, 1/4]. We can begin by replacing exp(−2πiβt2) by its
Taylor series, and get

J =

∞
∑

r=0

(−2πiβ)r

r!

∫ 1

0

t2r exp(−πat)
1− exp(−2πMt)

exp(2πt)− 1
dt.

The integral inside the sum will be small, so we can truncate the infinite sum after
a small number of terms, and we now focus on this inner integral, in which we can
expand the geometric sum

1− exp(−2πMt)

exp(2πt)− 1

to get that the inner integral equals

M
∑

m=1

∫ 1

0

t2r exp(−2π(α+m)t)dt.

This integral is now a fairly simple function, and we have a number of choices for
how to evaluate it. For example, we can evaluate it explicitly using its antideriv-
ative, or we can again use the Taylor expansion for the exponential and integrate
term-by-term, or we can write it in terms of an incomplete gamma function and use
a continued fraction expansion; these methods each work well for different ranges
of parameters.

This still does not completely solve the problem, as M may be very large. To
deal with this, once m is past a certain size we use a simple approximation to the
antiderivative of the integrand and Euler–Maclaurin summation to compute the
sum over the full range.

8.2. The main sum. We compute the sumM(t) =
∑N

n=1 n
−1/2+it in three stages,

as different methods of computation are appropriate for different sizes of n. We
write

M(t) = M1(t) +M2(t) +M3(t),

where

M1(t) =
∑

n0≤n<n1

nit

n1/2
, M2(t) =

∑

n1≤n<n2

nit

n1/2
, M3(t) =

∑

n2≤n<n3

nit

n1/2
,

NEW COMPUTATIONS OF ζ(1/2 + it) 17

with n0 = 1, n1 ≍ t1/4, n2 ≍ t1/3 and n3 = N .
In stage 1, we compute the sum M1(t) directly. More specifically, we compute

each term to roughly 50 bits of relative precision, then add up the terms. This
ensures that in the ranges of t where we computed the roundoff error |M1(t) −
fl(M1(t))| is far subsumed by the “practical truncation error” discussed in §5.

In stage 2 we still add up each term in the sum individually, but gain efficiency
by approximating the exponent (it − 1/2) log(1 + k/v) in successive terms using
a rapidly decaying Taylor series instead of computing it directly using expensive
multiprecision arithmetic for the logarithm function. Another advantage to this
approach is that, now, double precision arithmetic suffices to to compute many of
the terms in the Taylor expansion, and higher precision is only needed for the first
few terms (the exact number of these terms and the needed working precision are
both determined by the attempted absolute precision ǫ and using formulas coded
in the implementation). The overall effect is to ensure that the roundoff error from
stage 2 is again subsumed by the practical truncation error.

In stage 3 we approximate by quadratic exponential sums as described in §5 and
apply the theta algorithm described in §6, passing a requested precision parameter
ε to the algorithm. In turn, ε is passed to subfunctions in our code in order to
determine the needed working precision for each subfunction, and so on. Signifi-
cant effort was spent on sharpening formulas to calculate the working precision for
each subfunctions. This enabled a numerically more robust implementation and
facilitated the discovery of programming bugs. Actually, the precision of the theta
algorithm in practice is much better than the requested precision ε. Here is a typi-
cal example. On a test suite of 29952 sums which might come from a computation
of ζ(1/2 + i1036), when the theta algorithm is called with a precision of ε = 10−5,
the worst error is 5.361× 10−6 but the typical error is around 7.45× 10−9, and the
vast majority of the errors are < 3× 10−8.

In summary, we expect the values of Z(t) that we computed to be accurate to
within ±10−7 typically, and accurate to within ±10−5 in the worst cases. The
bulk of the error comes from the practical truncation error discussed in §5. In
comparison, the practical roundoff and multi-evaluation errors are small.

8.3. Example running time. Figure 4 gives an indication of the speed of our
current implementation. We graph the number of terms per second computed
in large blocks of the main sum at the largest height computation we ran, in a
range around t = 81029194732694548890047854481676712. For this computation,
we used approximately 22.5 cpu-core-years on the BlueCrystal Phase 2 cluster at
the University of Bristol, which has 2.8 Ghz Intel Xeon E5462 cpus. Using just
our “stage 2” code, we estimate that the same computation would take around 300
core-years instead. Towards the end of the range the “stage 3” code often has a
speedup over “stage 2” by a factor of around 200.

9. Proofs

Proof of Proposition 5.1. By definition

(22) ǫJ(t) =

R
∑

r=0

eit log vr

√
vr

∑

j>J

cr(j)F (Kr, j; ar, br).

18 J.W. BOBER AND G.A. HIARY

Applying partial summation to F (Kr, j; ar, br) gives

(23) |F (Kr, j; ar, br)| ≤
(

Kr − 1

Kr

)j

Fmax(Kr; ar, br),

where

(24) Fmax(K; a, b) = max
0≤∆<K

∣

∣

∣

∣

∣

K−1
∑

k=∆

e2πiak+2πibk2

∣

∣

∣

∣

∣

.

In view of this, let us define

cmax(J, t) = max
0≤r≤R

∑

J<j

(

Kr − 1

Kr

)j

|cr(j)|,

Mmax(t) =

R
∑

r=0

Fmax(Kr; ar, br)√
vr

.

(25)

(The dependence of cmax(J, t) on t is through the coefficients cr(j).) By the triangle
inequality then,

(26) |ǫJ(t)| ≤ cmax(J, t)Mmax(t).

Now, recall that

(27) cr(j) =

(

Kr

vr

)j
f
(j)
s∗ (0)

j!
.

By construction Kr = ⌈vr/u0⌉, hence, (Kr − 1)/vr ≤ 1/u0. Also, if we write

(28)
fs∗(z)

j!
= e−

s∗z3

3
e

s∗z3

3 fs∗(z)

j!
= e−

s∗z3

3

∞
∑

m=0

dmzm,

then

(29)

∣

∣

∣

∣

∣

f
(j)
s∗ (0)

j!

∣

∣

∣

∣

∣

≤
∑

0≤m,h
m+3h=j

|s|h
h!3h

|dm|,

where, by Cauchy’s theorem applied with a circle of radius ρ > 0 around the origin,

(30) |dm| ≤ 1

2π

∣

∣

∣

∣

∣

∫

|z|=ρ

e
s∗z3

3 fs∗(z)

zm+1
dz

∣

∣

∣

∣

∣

≤ e
ρ
2+

ρ2

4 +|s|∑∞

ℓ=4
ρℓ

ℓ

ρm
.

Choosing ρ = 1/|s|1/4 therefore gives

(31) |dm| ≤ |s|m/4eλ(s),

where

λ(s) ≤ 1

2|s|1/4 +
1

4|s|1/2 +
1

4(1− |s|−1/4)
.(32)

Combining (31), (29), (27), and observing that d0 = 1 and |d1|+ |d2|+ |d3| = 49/48

(since they come exclusively from expanding e−
1
2 (z−z2/2)) we obtain (on treating

NEW COMPUTATIONS OF ζ(1/2 + it) 19

the cases m = 0, 1 ≤ m ≤ 3, and 4 ≤ m separately) that

cmax(J, t) ≤
[

e1/3α
3 −

∑

0≤h≤ J
3

1

h!

1

(3α3)h

]

+
49

48|s|1/3α
[

e1/3α
3 −

∑

0≤h≤ J−1
3

1

h!

1

(3α3)h

]

+
eλ(s)

|s|1/3α4

[

e1/3α
3 −

∑

0≤h≤ J−4
3

1

h!

1

(3α3)h

]

+
eλ(s)+1/3

|s|5/12αJ−1(α− 1)
.

(33)

The proposition now follows on substituting into (26) this estimate for cmax(J, t)
and the bound for Mmax(t) from Lemma 9.1. �

Lemma 9.1. Let α = 1/0.9, Kmin = 2000. If v0 = ⌈Kmint
1/3⌉ ≤ 1

3

√

t/(2π) and

u0 = α|s|1/3 ≥ 1, then

Mmax(t) ≤
√

1

u0
+

1

v0

(

log t
2πv2

0

log(1 + 1
u0
)
+

t1/4

3π1/4

√
2√
u0

+
2t

3π

√
2√

u0v0v0

+

√
t√
π

1

v0
+ 2u0 + 2u0 log

t

πv20
+ 5

)

.

(34)

Proof. Recall that

(35) Mmax(t) =

R
∑

r=0

Fmax(Kr; ar, br)√
vr

.

To bound Fmax(Kr; ar, br), we use the Weyl-van der Corput Lemma in [4, Lemma
5]. This lemma gives rise to a certain geometric sum, which is in turn bounded
using the Kusmin–Landau Lemma in [4, Lemma 2]. This gives for each positive
integer M ,

Fmax(Kr; ar, br)
2 ≤(K +M)

(

Kr

M
+min(1/π‖2br‖+ 1,Kr)

)

,(36)

where ‖x‖ is the distance to the nearest integer to x. Choosing M = Kr yields

(37) Fmax(Kr; ar, br) ≤
√

4Kr + 2Kr min(1/π‖2br‖,Kr).

We partition {br}Rr=0 into subsets Iℓ = {br : 2|br| ∈ [ℓ− 1/2, ℓ+ 1/2), 0 ≤ r ≤ R}.
So Mmax =

∑

ℓ Mℓ where

(38) Mℓ =
∑

br∈Iℓ

√

Kr/vr
√

4 + 2min(1/π‖2br‖,Kr).

Let K∗
ℓ denote the maximum block length Kr associated with a subset Iℓ. Analo-

gously define v∗ℓ to be the maximum such vr. Then appealing to the inequality

(39) Kr/vr ≤
√

1/u0 + 1/v0,

and the bound
√
x+ y ≤ √

x+
√
y (valid for x, y ≥ 0), we obtain

(40) Mℓ ≤
√

1/u0 + 1/v0

(

2|Iℓ|+
√

2/πM∗
ℓ

)

where |Iℓ| is the cardinality of Iℓ and

(41) M∗
ℓ =

∑

br∈Iℓ

√

min(1/‖2br‖, πK∗
ℓ).

20 J.W. BOBER AND G.A. HIARY

We boundM∗
ℓ in terms of the minimum distance between distinct points br, br′ ∈ Iℓ,

(42) δℓ = min
br,br′∈Iℓ
br 6=br′

|2br − 2br′ |.

To this end, proceed similarly to the proof of [11, Lemma 3.1] (starting with Equa-
tion (25) there and using the monotonicity of the br) to obtain

(43) M∗
ℓ ≤

∑

0≤w≤1/2δℓ

√

2min (1/wδℓ,K∗
ℓ) ≤

√

2K∗
ℓ + 2/δℓ.

The last inequality follows on isolating the term in the sum corresponding to w = 0,
fixing the min to be 1/wδℓ in the remainder of the sum, and estimating that by an
integral.

At this point, we observe that if ℓ < t/2πv2R − 1/2 or ℓ > t/2πv20 + 1/2, then

Iℓ is empty. In view of this, and since vR ≤
√

t/2π, we may restrict the range of
summation in (38) to 1 ≤ ℓ ≤ ℓ∗ = t/2πv20 + 1/2. So, substituting (43) into (40),
summing over ℓ, and using the obvious formula

∑

ℓ |Iℓ| = R+ 1, we obtain

(44) Mmax(t) ≤
√

1/u0 + 1/v0

2R+ 2 +
∑

1≤ℓ≤ℓ∗

√

2K∗
ℓ +

∑

1≤ℓ≤ℓ∗

2/δℓ

 .

Now, a simple calculation shows that

(45)
t

π(2ℓ+ 1)
≤ v2r ≤ t

π(2ℓ− 1)
, (br ∈ Iℓ).

Hence,

(46) v∗ℓ ≤
√
t

√

π(2ℓ− 1)
, and so K∗

ℓ ≤
√
t

√

π(2ℓ− 1)

1

u0
+ 1.

So, using the inequality
√
x+ y ≤ √

x+
√
y once again, we obtain

(47)
∑

1≤ℓ≤ℓ∗

√

2K∗
ℓ ≤ t1/4

π1/4

√
2√
u0

(

1

3
+

2

3

t3/4

π3/4

1

v
3/2
0

)

+

√
t√

πv0
+ 1.

Here, we additionally estimated
∑

1≤ℓ≤ℓ∗ 1/(2ℓ − 1)1/4 ≤ 1/3 + (2/3)(2ℓ∗ − 1)3/4,
which follows on isolating the term corresponding to ℓ = 1 and bounding the rest by
an integral. Furthermore, since the sequence {br}Rr=0 is monotonically increasing),
then

(48) δℓ = min
br,br+1∈Iℓ

(2br+1 − 2br) = min
br,br+1∈Iℓ

t

2π

Kr(vr+1 + vr)

v2rv
2
r+1

.

Thus, using the inequalities Kr/vr ≥ 1/u0 and vr+1 ≤ v∗ℓ , we arrive at the lower
bound δℓ ≥ (2ℓ− 1)/u0. Consequently, as

∑

1≤ℓ≤ℓ∗ 1/(2ℓ− 1) ≤ 1 + 1
2 log(2ℓ

∗ − 1),
we obtain

(49)
∑

1≤ℓ≤ℓ∗

2/δℓ ≤ 2u0 + u0 log(t/πv
2
0).

Last, a routine application of induction (see [12, Lemma 3.1]) gives

(50) R ≤ log(
√

t/2π/v0)

log(1 + 1/u0)
+ 1.

The claim follows on substituting (50), (49), and (47) into (44). �

NEW COMPUTATIONS OF ζ(1/2 + it) 21

References

1. M. V. Berry, The Riemann-Siegel expansion for the zeta function: high orders and remain-

ders, Proc. Roy. Soc. London Ser. A 450 (1995), no. 1939, 439–462. MR 1349513 (96f:11105)
2. Andriy Bondarenko and Kristian Seip, Large GCD sums and extreme values of the Riemann

zeta function, arXiv:1507.05840 (2015).

3. Vorrapan Chandee and K. Soundararajan, Bounding |ζ(1
2
+ it)| on the Riemann hypothesis,

Bull. Lond. Math. Soc. 43 (2011), no. 2, 243–250. MR 2781205
4. Yuanyou F. Cheng and Sidney W. Graham, Explicit estimates for the Riemann zeta function,

Rocky Mountain J. Math. 34 (2004), no. 4, 1261–1280. MR 2095256 (2005f:11179)
5. Harold Davenport, Multiplicative number theory, third ed., Graduate Texts in Mathematics,

vol. 74, Springer-Verlag, New York, 2000, Revised and with a preface by Hugh L. Montgomery.

MR 1790423 (2001f:11001)
6. H. M. Edwards, Riemann’s zeta function, Dover Publications, Inc., Mineola, NY, 2001,

Reprint of the 1974 original [Academic Press, New York; MR0466039 (57 #5922)].
MR 1854455 (2002g:11129)

7. W. Gabcke, Neue herleitung und explicite restabschätzung der Riemann-Siegel-formel., Ph.D.
thesis, Göttingen, 1979.

8. X. Gourdon, The 1013 first zeros of the Riemann zeta function and zero computation at very

large heights, Online manuscript (2004).
9. Ghaith A. Hiary, Fast methods to compute the Riemann zeta function, Ann. of Math. (2) 174

(2011), no. 2, 891–946. MR 2831110 (2012g:11154)
10. , A nearly-optimal method to compute the truncated theta function, its derivatives,

and integrals, Ann. of Math. (2) 174 (2011), no. 2, 859–889. MR 2831109 (2012g:11215)
11. , An explicit hybrid estimate for L(1/2 + it, χ), arXiv:1510.00950 (2015).
12. , An alternative to Riemann-Siegel type formulas, Math. Comp. 85 (2016), no. 298,

1017–1032. MR 3434892
13. , An explicit van der Corput estimate for ζ(1/2 + it), Indag. Math. (N.S.) 27 (2016),

no. 2, 524–533. MR 3479170
14. A. Kuznetsov, Computing the truncated theta function via Mordell integral, Math. Comp. 84

(2015), no. 296, 2911–2926. MR 3378853
15. A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász, Factoring polynomials with rational coeffi-

cients, Math. Ann. 261 (1982), no. 4, 515–534. MR 682664
16. Hugh L. Montgomery, Extreme values of the Riemann zeta function, Comment. Math. Helv.

52 (1977), no. 4, 511–518. MR 0460255
17. A. M. Odlyzko, The 1020-th zero of the Riemann zeta function and 175 million of its neigh-

bors, Unpublished manuscript, 1992.
18. A. M. Odlyzko and A. Schönhage, Fast algorithms for multiple evaluations of the Riemann

zeta function, Trans. Amer. Math. Soc. 309 (1988), no. 2, 797–809. MR 961614 (89j:11083)
19. Michael Rubinstein, Computational methods and experiments in analytic number theory, Re-

cent perspectives in random matrix theory and number theory, London Math. Soc. Lecture
Note Ser., vol. 322, Cambridge Univ. Press, Cambridge, 2005, pp. 425–506. MR 2166470
(2006d:11153)

20. A. Schönhage, Numerik analytischer Funktionen und Komplexität, Jahresber. Deutsch. Math.-
Verein. 92 (1990), no. 1, 1–20. MR 1037441

21. E. C. Titchmarsh, The theory of the Riemann zeta-function, second ed., The Clarendon Press
Oxford University Press, New York, 1986, Edited and with a preface by D. R. Heath-Brown.
MR 882550 (88c:11049)

22. A. M. Turing, Some calculations of the Riemann zeta-function, Proc. London Math. Soc. (3)
3 (1953), 99–117. MR 0055785

JB: Heilbronn Institute for Mathematical Research, School of Mathematics, Uni-

versity of Bristol, Howard House, Queens Avenue, Bristol BS8 1SN, United Kingdom

E-mail address: j.bober@bris.ac.uk

GH: Department of Mathematics, The Ohio State University, 231 West 18th Ave,

Columbus, OH 43210, USA

E-mail address: hiary.1@osu.edu

