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and their clinical implications
Agnes M.F. Wong, MD, PhD, FRCSC

ABSTRACT ● RÉSUMÉ

Amblyopia is a visual impairment secondary to abnormal visual experience (e.g., strabismus, anisometropia, form deprivation) during
early childhood that cannot be corrected immediately by glasses alone. It is the most common cause of monocular blindness globally.
Patching remains the mainstay of treatment, but it is not always successful and there are also compliance and recurrence issues.
Because amblyopia is a neural disorder that results from abnormal stimulation of the brain during the critical periods of visual
development, it is essential to understand the neural mechanisms of amblyopia in order to devise better treatment strategies. In this
review, I examine our current understanding of the neural mechanisms that underlie the characteristic deficits associated with amblyopia.
I then examine modern neuroimaging findings that show how amblyopia affects various brain regions and how it disrupts the interactions
among these brain regions. Following this, I review current concepts of brain plasticity and their implications for novel therapeutic
strategies, including perceptual learning and binocular therapy, that may be beneficial for both children and adults with amblyopia.

L’amblyopie est une déficience visuelle résultant d’une expérience visuelle anormale (par exemple, le strabisme, l’anisométropie, la
privation de vision des formes) dans la première enfance, qui ne peut être corrigée immédiatement par des lunettes seulement. C’est
la cause la plus commune de cécité monoculaire à l’échelle planétaire. L’occlusion demeure la base du traitement, mais il ne réussit pas
toujours et il y a des problèmes d’observance et de récurrence. Comme l’amblyopie est un trouble résultant d’une stimulation anormale
du cerveau pendant la période critique du développement de la vue, il est essentiel d’en comprendre les mécanismes neuraux pour
mettre au point de meilleures stratégies de traitement. La présente revue examine notre compréhension actuelle des mécanismes
neuraux qui sous-tendent les déficiences caractéristiques associées à l’amblyopie. Nous examinons ensuite les données modernes de
la neuroimagerie, qui montrent comment l’amblyopie affecte les différentes régions du cerveau et comment elles perturbent les
interactions entre ces régions. Par la suite, nous revoyons les notions courantes concernant la plasticité du cerveau et leurs implications
dans les nouvelles stratégies thérapeutiques, y compris l’apprentissage perceptuel et la thérapie binoculaire, qui peuvent être bénéfiques
pour les enfants et les adultes atteints d’amblyopie.
INTRODUCTION

Amblyopia is a unilateral (or less commonly, bilateral)
reduction of best-corrected visual acuity that cannot be
attributed only and directly to the effect of a structural
abnormality of the eye.1 It is caused by abnormal visual
experience early in life and cannot be remedied immedi-
ately by spectacle glasses alone.1 It is defined clinically as a
2-line difference in best-corrected acuity between the
eyes.1 Amblyopia is the most common cause of monocular
blindness, affecting about 3% to 5% of the population
worldwide.2-8 Because of its prevalence, amblyopia has a
huge financial impact. It has been estimated that untreated
amblyopia is associated with a loss of US$7.4 billion in
gross domestic product and an additional cost of US$341
million for its prevention and treatment annually in the
United States alone.9 In addition to the financial cost, the
personal cost of amblyopia is also considerable. People
with amblyopia (including those treated successfully and
those whose treatment has failed) often have restricted ca-
reer options and reduced quality of life,10 including de-
creased social contact, cosmetic issues when amblyopia is
associated with strabismus, distance and depth estimation
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deficits, visual disorientation, and anxiety about losing vi-
sion in the fellow eye.11

Amblyopia is associated most commonly with early
childhood strabismus, anisometropia, or both (mixed-
mechanism) and, more rarely, with visual deprivation,
including congenital cataract or ptosis. A large study of
427 adults has shown that these subtypes of amblyopia
are associated with distinctive patterns of loss of acuity
and contrast sensitivity.12 This study used a variety of
tests for acuity (Vernier, grating, and Snellen), for con-
trast sensitivity (Pelli-Robson and edge test), and for
binocular function (motion integration and stereo-op-
tical circles). It was found that strabismic amblyopia is
associated with moderate acuity loss and better-than-
normal contrast sensitivity at low spatial frequencies.12

Anisometropic amblyopia is associated with moderate
acuity loss and worse-than-normal contrast sensitiv-
ity.12 Mixed-mechanism amblyopia is associated with
very poor acuity and normal or subnormal contrast sen-
sitivity.12 The status of residual binocular function is
also a major determinant of the pattern of visual deficits.
People with no residual binocular function tend to have
poorer acuity but better contrast sensitivity, whereas
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those with residual binocular function tend to have bet-
ter acuity but poorer contrast sensitivity.12

The mainstay of treatment for amblyopia has been oc-
clusion therapy (patching or pharmacologic penalization),
with the rationale that the visual acuity in the amblyopic
eye will improve when vision in the fellow eye is blocked.
Depending on how treatment success is defined,13 the suc-
cess rate of patching ranges from 60% to 80%,14-16 and it
is critically dependent on patients’ compliance.15 Recur-
rence may occur after treatment is discontinued,17 requir-
ing continued monitoring of visual acuity and initiation of
further treatment if necessary. Furthermore, because oc-
clusion therapy does not promote binocular cooperation,
many patients with histories of amblyopia continue to have
abnormal binocular vision despite improved acuity. A bet-
ter therapeutic approach is thus needed.

Although amblyopia has been treated traditionally by eye
care professionals, it is a neural disorder that results from ab-
normal stimulation of the brain during the critical periods of
visual development. In order to devise a more effective treat-
ment strategy, it is crucial to understand the neural underpin-
nings of amblyopia. In this review, I examine our current
understanding of the neural mechanisms that underlie the
deficits typically seen in amblyopia, based on existing neuro-
anatomic, neurophysiologic, electrophysiologic, and psycho-
physical evidence. I then examine modern neuroimaging
findings that shed light on the level of neural dysfunctions in
amblyopia. Following this, I review the concept of brain plas-
ticity and its implications for new therapeutic strategies, in-
cluding perceptual learning and binocular therapy.

NEURAL MECHANISMS OF AMBLYOPIA

In the past few decades, significant inroads have been
made into our understanding of the neural mechanisms of
amblyopia. Extensive studies have shown no significant
anatomic or physiologic abnormalities in the retina.18-30

Similarly, no significant abnormality has been found in the
response properties of cells in the lateral geniculate nucleus
(LGN).31-37 There is evidence, however, of changes in cell
morphology in the LGN38-47 but these changes are not
sufficient to explain the behavioural changes in animals
and humans with amblyopia (see also the latest functional
magnetic resonance imaging [fMRI] findings discussed be-
low). It is generally agreed that the earliest functional and
anatomic abnormalities that contribute significantly to the
behavioural losses in amblyopia occur in cortical area
V1.36,48-61 The pioneering work of Wiesel and Hubel48,49

and a large body of subsequent work50-64 have demon-
strated that abnormal visual experience results in altera-
tions in functional properties and anatomic architecture in
V1, and more profound changes are seen in animals with
early visual deprivation than in those with anisometropic
or strabismic amblyopia. It has been shown that amblyopia
leads to a neuronal acuity (spatial resolution) deficit for

mid- to high-stimulus spatial frequencies in V1.36,58,60,61
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In addition, amblyopia is associated with a reduction in
binocularly driven neurons in V1, a reduction of V1 neu-
rons driven by the amblyopic eye, and increased binocular
suppression.36,48,49,58,65-67 Furthermore, recent work us-
ing dichoptic visual evoked potential (VEP) has shown
that suppression likely originates from V1.68

The first locus of dysfunction in amblyopia appears to
occur in V1, but a number of studies suggest that there are
also abnormalities in downstream extrastriate and later
specialized cortical areas. For example, neurophysiologic
studies in amblyopic monkeys have shown that the neuro-
nal acuity loss in V1 is not sufficient to account for the
behaviourally measured acuity loss.58 In addition, no reli-
able difference in neuronal contrast sensitivity is detected
between the amblyopic and the fellow eye, despite a sub-
stantial difference in contrast sensitivity as measured be-
haviourally.58 Furthermore, it was found that a very brief
period (3 days) of prism-induced strabismus in monkeys
during the critical period increases the prevalence of V1
neurons that exhibit binocular suppression without alter-
ing their neuronal acuity.66 Recently, Bi et al.69 demon-
strated that robust binocular suppression can be found in
both V1 and V2, further indicating that cortical develop-
ment is affected beyond V1.

Rigorous psychophysical and electrophysiologic studies
in humans provide further support that abnormalities are
also evident in extrastriate areas and beyond. Numerous
deficits in higher level visual processing that are not solely
related to the basic losses in spatial resolution and contrast
sensitivity in V1 have been demonstrated. For example,
during amblyopic eye viewing, people with amblyopia ex-
hibit higher order perceptual deficits that involve abnor-
mal processing of spatial information in the ventral “what”
pathway,70 including global form perception,71-75 global
contour processing,76-78 crowding,79,80 and Vernier acuity
plus positional certainty,81-83 even after acuity and con-
trast sensitivity deficits have been taken into account. They
also exhibit higher order deficits that involve abnormal
processing of spatiotemporal information in the dorsal “ac-
tion” pathway70 during amblyopic eye viewing, including
global motion integration,84-87 second-order motion de-
tection,88-90 complex motion detection,81 and motion-
defined form.91 Deficits in higher cognitive functions,
including perception of real-world scenes,92 tasks that in-
volve higher order attentional components,93-95 number
processing,96 and reading97 are also evident. It is interest-
ing that deficits have also been found during fellow-
eye78,79,84,86-91,94,98-100 and binocular viewing.92,97,101 In
addition to sensory deficits, amblyopia also affects
motor functions,102-106 including the initiation and ex-
ecution of saccadic eye movements,107 planning and
execution of reaching movements,108 the temporal coor-
dination of combined eye-hand movements,109 and online
control of reach movements in 3 dimensions.110 The com-
mon elements in many of these sensory and motor tasks are

that they are not acuity limited; rather, they require both
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local and global processing, as well as integration over rel-
atively large regions of space, time, or both,84,111,112 and
they involve extracting and segregating a signal from back-
ground noise,72,78,113 clearly implicating higher order pro-
cessing.

NEUROIMAGING IN AMBLYOPIA

A number of neuroimaging studies114-149 have investi-
gated the loci and extent of cortical deficits in humans with
amblyopia using such techniques as positron emission to-
mography,114-119 anatomic121-124 and fMRI,123,125-149

and magnetoencephalography.150-152 Some neuroimag-
ing studies have suggested that V1 may be nor-
mal,114,123,133,136,153 in contrast to many other neuro-
imaging studies115-119,121,125-127,129,134,140,141,148,154,155

and the large body of neurophysiologic work36,48-61,65-67

that have pointed to V1 as the first locus of dysfunction.
The discrepancy among these studies may result from
differences in techniques or stimuli used, as well as from
differences in patient characteristics (e.g., amblyopia
subtypes). Although the stimuli used in most of these stud-
ies114,117,120,125,127,129,132,134-136,148 adequately stimu-
lated striate and early extrastriate areas, they were not op-
timized to activate fully the later specialized cortical
regions. In addition, functional brain imaging techniques
measure gross neural activity and the pattern of responses
recorded from visual areas is critically dependent on both
the type of visual stimuli presented during scanning and
the baseline conditions used to isolate visual activity. It is
now generally agreed that visual dysfunctions occur both
within125-127,129,134,140,141,148 and beyond133,136,140,148

V1 to include extrastriate and later specialized cortical ar-
eas. In this regard, several studies133,136 that investigated
later specialized cortical areas deserve special attention. Le-
rner et al.133 asked their subjects to identify, during fMRI,
famous faces or buildings as well as the facial expression or
building category. They found a selective abnormality in
the fusiform gyrus, which is important for face perception,
but they found that the parahippocampal area, which is
important for scene recognition, is normal in amblyopia.
Using grating stimuli of different spatial frequencies,
Muckli et al.136 showed a progressive reduction in activity
in the V4�/V8 and lateral occipital complex, a brain area
that is important for object recognition, during amblyopic
eye stimulation. Most recently, Secen et al.156 compared
attentive tracking of 1, 2, or 4 moving targets during pas-
sive viewing with baseline fixation in an amblyopic group
and an age-matched control group. They found that the
activity in areas involved in motion processing—including
the middle temporal complex (MT�), frontal eye fields,
and anterior intraparietal sulcus—are reduced during am-
blyopic eye viewing in humans. Their results156 are consis-
tent with a recent neurophysiologic study157 that showed,

for the first time, abnormal neuronal responses in area

C

MT/V5 in amblyopic monkeys with motion sensitivity
deficits that are typically associated with amblyopia.

This locus of dysfunction view, however, is inherently
simplistic. The function of a given brain area depends not
only on the cooperative activity of neuronal populations
within the same area, it also depends strongly on the inter-
actions of this brain area with other areas, locally and over
considerable extents across both space and time.158,159

Thus, a more complete understanding of amblyopia re-
quires investigations into whether amblyopia is associated
with abnormal interactions among various visual areas
and, if so, whether feedforward and feedback interactions
are affected differentially. For example, although evidence
from animal neurophysiologic34,160,161 and human fMRI
studies126,132,143 have suggested reduced activation in
both the LGN and V1, is the reduced activity in the LGN
due to a primary deficit in the LGN itself (i.e., reduced
feedforward to V1, plausibly from changes in LGN cell
size) or in V1 (i.e., abnormal feedback from V1)? Given
that no significant functional abnormalities have been
found in the LGN that could explain the behavioural loss
in amblyopia,31-37 does the reduced fMRI activity in LGN
indicate abnormal feedback from V1? Similarly, because
visual processing are affected in both striate and extrastriate
areas, are these effects due to feedforward mechanisms pre-
dominately, or is feedback interactions also involved? Re-
cently, advanced analytic techniques, such as effective con-
nectivity and functional connectivity, have been used to
investigate the interactions among various brain regions in
a host of neurologic diseases.158,159,162-164 To date, only
one study has applied this technique in combination with
fMRI to examine amblyopia.165 They found that the ef-
fective connectivity of geniculate-striate and striate-extra-
striate networks was reduced during amblyopic eye view-
ing and that feedforward and feedback interactions were
affected equally. In an important finding, they reported
that the effective connectivity loss did not correlate to the
regional activity loss demonstrated by fMRI, but it did
correlate with the depth of amblyopia. They also found
that reduced LGN activity may not be determined solely
by feedback mechanisms from the cortex.

PLASTICITY AND ITS CLINICAL IMPLICATIONS

Although modern neuroimaging has opened an unprec-
edented window for us to investigate brain activity in hu-
mans in vivo in health and disease, tremendous scientific
advances have also been made in our understanding of
brain development, in particular, the fundamental concept
of brain plasticity. The term plasticity refers to the dynamic
ability of the brain to reorganize its connections function-
ally and structurally in response to changes in the environ-
ment. The existence of critical periods in early postnatal
life during which neuronal circuits display a heightened
plasticity in response to external stimuli is well estab-

lished.166-168 After the end of the critical periods, plasticity
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declines dramatically. Much effort has been made in the
past decades to elucidate the mechanisms underlying the
activation and regulation of critical periods in the brain.
Although earlier studies in cats169,170 and humans171-176

suggested some plasticity, the prevailing consensus was
that because of the lack of sufficient plasticity within the
brain, amblyopia therapy is effective only early in life, be-
fore the critical periods end. Recent studies using rodent
(mouse and rat) models177-187 as well as humans,188,189

however, have challenged this notion. It has been shown
that a brief reduction of GABAergic inhibition in the
brains of rats is able to reopen a window of plasticity in the
visual system well after the normal closure of the critical
periods.181 Indeed, intracortical inhibitory circuitry has
now emerged as a key factor in defining the limits of cor-
tical plasticity. Pharmacologic and epigenetic manipula-
tions of cellular and molecular “brakes” that normally con-
fine plasticity to the critical periods (e.g., Lynx1177 and
histone acetylation178) have been shown to reopen the crit-
ical period and restore normal visual functions in adult
amblyopic mice, again underscoring intracortical inhibi-
tion as a main obstacle.177,179 It has thus been hypothe-
sized that a critical factor in restoring plasticity and induc-
ing recovery from amblyopia is to increase the ratio
between excitation and inhibition by reducing intracorti-
cal inhibition.168,170,180-182 For example, in rodent mod-
els, plasticity can be elicited by reducing intracortical inhi-
bition through pharmacologic treatment with chronic
administration of antidepressants (e.g., fluoxetine, a selec-
tive serotonin reuptake inhibitor),183 anticonvulsants
(e.g., valproic acid),178,179 or chondroitinase ABC.184 In-
tracortical inhibition could also be reduced by exposure to
environmental enrichment,185,190-192 prolonged dark ex-
posure,186 or caloric restriction.187,193 In agreement with
this hypothesis, it has been shown that vision in the am-
blyopic eye in adult humans can be improved after only a
10- to 15-minute application of repetitive transcranial
magnetic stimulation (rTMS) to the visual cortex. This
visual improvement is likely through adjusting the balance
between excitation and inhibition,194 similar to a reduc-
tion of intracortical inhibition in the motor cortex after
rTMS.195-197 It is interesting to note that both fluoxetine
and valproic acid are FDA-approved drugs that are widely
prescribed for depression (fluoxetine) and seizure disorders
(valproic acid) and have well-described beneficial and side
effects, and thus may hold promise for treatment of am-
blyopia. Although these findings in rodent models are
very interesting, they are still a long way from being
clinically useful as alternative approaches to the treat-
ment of amblyopia.

A behavioural manifestation of plasticity in humans is
perceptual learning, a process in which practicing a chal-
lenging task repeatedly leads to significant and persistent
improvements in visual performance over time. The effects
of perceptual learning have been well documented beyond

the critical period of development in visually normal
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adults, with improvements in visual performance in a wide
range of tasks, but these improvements are usually task
specific.198-203 It is interesting that visual improvements
after perceptual learning in individuals with amblyopia are
not task specific and generalize to untrained tasks and
novel stimuli,204-210 which makes perceptual learning at-
tractive as a potential therapy. Indeed, some improvements
in visual acuity (30%; 1.5 letter lines), positional acuity
(16%), and stereopsis (54%) have been reported, in a small
nonrandomized pilot trial, in adults with amblyopia after a
period of playing an action-based video game using the
amblyopic eye.211 In addition, the effects of perceptual
learning on amblyopic visual acuity are often long-
lasting.205,212,213 Although the neural mechanisms of per-
ceptual learning are not known for certain, they are gener-
ally believed to operate through a reduction of internal
noise in the visual system or via improved efficiency in
extracting stimulus information by changing the relative
weighting of the information.214-217 It has been reported
that perceptual learning elicits plastic changes in the visual
system, as shown by changes in V1 activation during fMRI
in humans.218 At present, whether perceptual learning oc-
curs at a lower level (e.g., V1) or at a higher “decision stage”
of visual processing, or both (e.g., via feedback, or im-
proved lateral interaction,207 or at a low level but under
top-down control)219,220 remains an open question.

Given that perceptual learning generalizes to tasks for
which people have not been trained and results in enduring
visual improvements—a property essential for amblyopia
treatment—it holds promise as a primary intervention or
as an adjunct to supplement occlusion or penalization
therapy for amblyopia. In this regard, it is important to
clarify the difference between perceptual learning and the
Cambridge Stimulator treatment (CAM) that was first de-
scribed in the 1970s.221 CAM treatment might be consid-
ered to be the first application of perceptual learning. It
consisted of having patients passively view slowly rotating
stripes during monocular viewing with the amblyopic eye.
Its effectiveness, however, has been challenged by a num-
ber of negative studies over the past few decades.222-225

CAM treatment also differs in important ways from the
perceptual learning studies conducted in the past 15 years
in that it relies on very brief and passive exposures, whereas
perceptual learning requires prolonged active participation
and attention. Many studies have shown that perceptual
learning improves amblyopic visual function,204-209,226-231

but to date, only 3 small studies with control groups have
investigated the effectiveness of perceptual learning as a
therapeutic option. Polat et al.207 found that patients
(n � 63) who underwent perceptual learning showed sub-
stantial improvement over a patching-only group (n �
10), with a twofold improvement in contrast sensitivity
and in letter-recognition tasks.207 In another study, Chen
et al.213 found that patching was superior to perceptual
learning, with a mean improvement of 0.34 logMAR in

the patching group (n � 27) and 0.25 logMAR in the
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perceptual learning group (n � 26). However, the 2
groups of patients differed in baseline characteristics, in-
cluding age and “dosage” of treatment. In a third study,
Liu et al.232 demonstrated that perceptual learning had a
small but significant therapeutic impact on children who
had never had (n � 13) or who were no longer responsive
to (n � 10) occlusion therapy with improvement of single
E acuity by 0.9 to 1.5 lines and crowded E acuity by 0.7 to
1.2 lines. Compared with patching, it is important to point
out that the visual experience of the amblyopic eye during
perceptual learning differs substantially from that during
routine patching. Perceptual learning involves an inten-
sive, active, supervised visual experience with feedback,
and thus its effects might be more efficacious than simply
relying on everyday experiences during patching. Clearly,
randomized, controlled clinical trials that directly compare
patching alone with patching plus perceptual learning are
needed to address the effectiveness of perceptual learning
as a potential therapy for amblyopia.

INTEROCULAR SUPPRESSION AND ITS CLINICAL

IMPLICATIONS

In addition to perceptual learning, reducing interocular
suppression has also received considerable attention as a
therapeutic strategy for amblyopia. Classic studies of visual
deprivation using animal models have shown a loss of bin-
ocularly driven neurons and those driven by the amblyopic
eye in V1.36,48,49,58 Newer emerging evidence (primarily
from humans233-239 and also from a feline model240),
however, suggests that binocularly driven neurons are ac-
tually present in strabismic amblyopia, but suppressive
mechanisms render the visual cortex functionally monoc-
ular during binocular viewing. For example, it has been
demonstrated that the loss of binocular responsiveness by
V1 neurons is reversible when interocular suppression is
removed by ionophoretic applications of bicuculline (a se-
lective blocker of GABA receptors that blocks GABAergic
inhibition) in cats.240 This finding indicates that the loss of
binocular summation is a result of active suppression
rather than a decrease in binocularly driven neurons.241

The importance of interocular suppression is further
supported by new psychophysical findings in humans with
amblyopia.233-237 Baker et al.238 showed that normal bin-
ocular contrast summation is possible when the signal at-
tenuation by the amblyopic eye was accounted for by vary-
ing the signal strength to the fellow eye, suggesting that the
apparent lack of binocular summation is due to an imbal-
ance in the monocular signals. In addition, a reduction in
suppression has been shown to lead to improved binocular
function in patients with amblyopia.239 Furthermore, by
using fMRI, Farivar et al.242 demonstrated that during
amblyopic eye stimulation, the early cortical response was
more attenuated and delayed when the fellow eye was open
than when the fellow eye was closed, further indicating the

important role of interocular suppression in amblyopia.
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Based on these findings, it has been argued that ambly-
opia is intrinsically a binocular problem, not a monocular
problem on which occlusion treatment is predicated,
which may explain why improvement in binocular func-
tion does not always occur despite monocular vision im-
provement.188 Accordingly, binocular treatment in the
form of refractive adaptation (spectacle correction) has
been used for some time in the treatment of amblyopia.243

In addition, it has been suggested that the binocular prob-
lem involving suppression should be addressed first, if
good binocular outcome is to be achieved, as opposed to
hoping that binocular vision will return after monocular
acuity improvement as the result of occlusion therapy.
Based on this suggestion, a new binocular treatment has
been proposed. It is based on strengthening binocular
combination through a gradual reduction in suppres-
sion.244 Using this binocular approach, Hess et al.244-246

demonstrated that individuals with strabismic amblyopia
could combine information normally between their eyes
when suppression was reduced by presenting stimuli of
different contrasts to each eye via dichoptic viewing. By
gradually increasing the contrast presented to the fellow
eye, they showed that this approach led to improvement in
binocular vision and, eventually, binocular combination
occurred when the eyes viewed objects of the same physical
contrast. In addition, concomitant improvement in stere-
opsis and monocular acuity of the amblyopic eye also oc-
curred. Based on these initially promising results, a work-
ing prototype of a portable gaming device (Apple iPod
Touch, Cupertino, Calif.) has been developed and imple-
mented.244,247 However, it should be noted that the sam-
ple sizes in these studies were small.244-246 In addition,
many of the subjects in these studies244-246 had small-angle
strabismus that was detected later in childhood, a situation
that differs substantially from the typical population com-
monly encountered in clinical settings. These factors may
have increased the probability of residual binocular func-
tion and may raise questions about the general applicabil-
ity of the results. Furthermore, intractable diplopia is a
potentially debilitating complication, especially in patients
with strabismic amblyopia. Larger studies are needed to
further investigate its therapeutic values and potential side
effects. It should also be emphasized that due to test-retest
variability, a real improvement requires a change in visual
acuity of at least 0.2 logMAR (or 2 Snellen lines)248 or a
change in stereoacuity of at least 2 octaves for most stereoa-
cuity tests.249

CONCLUSIONS

Although amblyopia has traditionally been treated by
eye care professionals, it is a neural disorder that results
from abnormal stimulation of the brain during critical pe-
riods of development. At first glance, amblyopia appears to
result in subtle neural dysfunction, which upon closer ex-

amination produces far-reaching consequences. Although
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tremendous resources are spent on preventing or treating
amblyopia, many patients with amblyopia continue to
have abnormal vision throughout their lives. To devise
effective therapeutic strategies for the prevention and treat-
ment of this disorder, we must first understand how early
anomalous visual experience disturbs brain development.
Based on available neuroanatomic, neurophysiologic, elec-
trophysiologic, psychophysical, and neuroimaging evi-
dence, it is now clear that the neural deficits in amblyopia
have several key characteristics: (i) abnormal spatial and
temporal processing; (ii) deficits in both ventral and dorsal
processing streams; (iii) abnormal activities in V1, extra-
striate and later specialized cortical areas; (iv) deficits in
local and global processing; (v) abnormal integration of
visual information over space and time; (vi) abnormal seg-
regation of signals from noise; and (vii) abnormal inter-
ocular suppression. In addition, it is now known that
higher brain functions rely upon a fine balance between
local specialization and global integration of brain pro-
cesses. Viewing the brain as a complex network of interact-
ing subsystems has led to a shift from searching for locally
activated regions toward identifying task-related func-
tional networks. New neuroimaging and analytic tech-
niques will allow us better understanding of how amblyo-
pia affects the spatiotemporal coordination across the
entire cortical visual network. Furthermore, our knowl-
edge of brain plasticity and the factors that control the
opening and closure of critical periods has increased
dramatically in the past decades. New insights gained
from this knowledge have led to new therapeutic strat-
egies that harness plasticity (e.g., perceptual learning
and binocular therapy), which may allow for greater
recovery of visual functions in both children and adults
with amblyopia well beyond the critical period.
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Canadian Foundation for Innovation, and the Department of Oph-
thalmology and Vision Sciences.
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