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Abstract— This paper try to give a new stabilization condition
of continuous Takagi-Sugeno fuzzy models. Using non-
quadratic Lyapunov function, the new condition of stabilization
are used in terms of linear matrix inequalities LMIs. To verify
the robustness of this new condition, a numeric example is used.

Index Terms: Takagi-Sugeno fuzzy system, Fuzzy Lyapunov
Function, Linear Matrix Inequalities LMIs, Parallel Distributed
Controller PDC

Introduction

Non linear systems are difficult to describe. Takagi-Sugeno fuzzy
model is a multimodel approach very used to modelize non linear
sytems by construction with identification of input-output data.
Many mechanical systems are modeling with T-S fuzzy system.

In this paper, a new stabilization conditions for continuous Takagi
Sugeno fuzzy models based on the use of fuzzy Lyapunov function
are discussed. This condition was reformulated into a linear matrix
inequality problem (LMIs). [1],[2]

To use the Takagi-Sugeno fuzzy models, we must analyze the
stabilization of this system. Two classes of lyapunov functions are
used in the literature : quadratic and non quadratic lyapunov
functions. Which the second is less conservative then the first

[31.[4].

The organization of the paper is as follows. First, T-S fuzzy
modeling is discussed. Second we discuss the proposed approach to
stabilize a T-S fuzzy system with Parallel Distributed Controller
(PDC). Third, simulation results show the robustness of the
proposed fuzzy control approach. Finally we make conclusion.

L System description and preliminaries

The continuous Takagi-Sugeno fuzzy model for a nonlinear system
is described as follows:[5]

x(t)=4 x(1)+Bu(t) U

Siz(t)is M, and...and z,(t) is M, then =4
y(1)=C x(t)

Where :
M 1 fuzzy set
r : nombre of model rules
ue R :  input vector
ye R :  output vector
A, e R :  states matrices
B e ®R"™" :  controls matrices

The T-S fuzzy model is written as follow:
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Consider:

W(Z(’))IQMJ(ZJ(’)) 3)

h(z(t)= i=12,

r: is the number of model rules

The term M( z, (t)) is the grade of membership of Zj(t) in M,

<

Since | > w, (z(1))>0 4)
i=1

w,(z(£))20 i=1L2,..,r

We have
0<h(z(t)<1 )

3 (2(0) =1 i=1,2,.r
i=1
The final outputs can be also rewritten in the following form
Zh( (0)(4 x(0)+ Bu()) ©)
)=;ht(z(r>)c,x<r>

Consider the following open-loop system:

Zh( (£))4,x (1) )

The closed -loop system is given as follow :

()= z h (= (), (= (1))G x (t)
DY S (= () (= <r)){G +G, } 0).

i=li<j

®)

The objective of this section is to find sufficient conditions for
stabilization of Takagi-Sugeno closed loop fuzzy system by
using Lyapunov theory.
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II.  Stabilization with PDC Controller:

Consider the closed loop system is written by the following
equation:

= )
- G, +G,
AETh GO O 0

Where Gz/' :Al _BIF; > C;ii :Al _BIE
The PDC fuzzy controller is represented as follows:

ZW(Z(t))Ex(t) - (10)
u(t)=—E————=—3 h(=(1)) Fx(z)

w(z(n) ™

The design of the PDC back to determine the gains returns. In
this section defines the Lyapunov function and sufficient
condition for stabilization.

Théorém 1[6]:
The system of fuzzy Takagi-Sugeno is stable if there exist
matrices P, ,k =1,2,... ,r and R, symmetric and positive

definite matrices and matrices such that they satisfy the
following LMI:

P,+R>0, ke{l,..,r} an
P, +uR>20, j=1,2,..,r 12)
P, +{G] (P, +uR)+ (P, + uR)G,} < 0,i,ke{l,....r} a3)
G +G," G, +G,
(S s e[S 00
for i, j,k=1,2,...,r where i< j
Where
G, =4, -B,F. .G, =4, - B F

ij i i J ii i i i

, =3 6, (P, +R), 0<e<1
1

k=

p 15)

II1. Numerical Examples:

x (k

Chariot

Figure 1 : inverted pendulum

Parameters that characterize the inverted pendulum are:

the carriage mass,

F(t) : the force applied to the
carriage,

x, (1) : moving the carriage,

m . the pendulum mass,

o(t) : the angle to the vertical,

x, (1) :  the lead angle.

Inverted pendulum movements are represented by the
following dynamic equations.

% (1)=x,(1)
X, (l):é(allxl (t)+a72 X, (l)+a74 x4( )+b u( ))
(1) =x,(1)
—la X a, x Ay, x u
XA(t)*a( a1 1 + 2 z(t)+ 14 4(t)+b4 (t)) (16)
a=(M+m)(J+ml*)=m*I”cos’ (x,(t))

Lsin(x (1))

ay == () ( (M +m)ymgl-m*1*x; (t)cos(x‘(t)))
an:"]lffl(M*'m)

a24=%fnmlcos(x| (t))

bzz—%mlcos(x, (1))

1 sin (x, (1))

a, = l_)", mlcos (x, (t))
a

ay ==

(ngl2 cos(x, (t))=(J+m P )mlx; (t))

G-ty (semE)

by=J+ml’

n +m (17)
These equations can be put in the form of a state space
representation:

{x(z) =Ax(t)+Bu(t)
t)= t
where
x (1) .
x (1) : the state vector characterizing the system
x(r)= :
x (1)
x (1)
Where
x,(rad) . the ‘lead angle of the pendulum relative to the
vertical,
x,(rad/s) the angular velocity of the pendulum
x, ( m) the movement of the carriage,
x(m/s) the speed of movement of the carriage.

Its characteristics matrices are written as follows:

0 1 0 O 0

| a220a24B:b2C:1000
0 0 0 1 0 0010

a, ay 0 ay, b,

The matrix 4, et B, are written in another way:



0 1 0 0 0

4 :l Ay, Ay, 0 ay, B = by,
al 0 0 0 1 0

Ay ap 0 ay, by,

The characteristic parameters of the inverted pendulum is
given by the following table

Table 1 : Characteristic parameters of the inverted pendulum

Parameters | Numerical value | Designation

g(m/ Sz) 9.8 gravitational constant

M(Kg) 1.3282 Mass of carriage

m(Kg) 0.22 mass of pendulum

So(N/m/s) 22.915 coefficient of friction of the

carriage

fi(N/rad/s) | 0.007056 coefficient of friction of
pendulum

I(m) 0.304 half- length of the pendulum

J(Kgm®) 0.004963 moment of inertia of the
pendulum

To avoid getting a big number of rules, simplifications can be
made and which lead to a fuzzy model consists of four rules.
In fact, a fuzzy model can be obtained accurately representing
the equations by using 32 rules. Because we have five
nonlinear terms.

sin(x,(t))

(cos” (x,(¢)).x3 (¢ ) cos(x, (¢)),cos(x, (£)), ) x5 (1)

The study of the control of the inverted pendulum for angles
close to 0, some simplifications are allowed:

m’ I cos’ (x1 (t)) is negligible(M+m)(J+m]2) .

m’ I” x; (t)cos(x, (¢)) 1s negligible (M +m)mgl.
(J+mi*)mix}(r) is negligible ne g/” cos(x, (1))

By making these simplifications there is two nonlinear terms
sin (x, (1)) ,cos (x, (1)) giving a model of the
penc:ullurtn in 4 fuzzy rules.

The simplified equations model of the pendulum becomes:
a:(M+m)(J+mlz)

a,, :é%(lt(;))((M+m)mgl)
ay —_l 1(M+m)

b2=—gmlcos(xl(t))

_ 1sin(x1(t)) 2
a, P (m gl cos(x,(t)))
a, == f,mlcos(x,(t))
a44——ff0(J+mlz)

b,=J+ml’

19)

To deal with the nonlinearity, and delay in the premise of the
fuzzy model, we must take into account function f(x), which

isbounded. £ < f(x)< f, for xe [—xo,xo],x0 <7z can

be writing in:
f()=F.a+F.p

(20)
Consider the function f(x) =cos(x)
cos(x) = cos(x)—cos(x,) 1—cos(x) cos(x,) (21
1-cos(x,) 1—cos(x,)’ ’

{a: S =1

i cos(x) —cos(x,) 2 1—cos(x)

! 1—cos(x,) ! 1—cos(x,) 23)
Consider the function

sin(x) for all
£ = )
X
xe[~xy,%,],x, <7 can write as :

X,(x—sin(x)) sin(x,)

sin(x) _% sin(x) —xsin(x,)

X X(x, —sin(x,)) x(x,—sin(x,))  x, 24)
Where
1:)cosin(x)—x sin(x,) .., _ X o(x —sin(x)) 25)
b ox(msinGg) T x(x—sin(x,)
The inverted pendulum is not controllable around _ 7 and
2
z
2
So we chose xle [—88",88"]
A= cos()cl)—0.0348’F12 _ 1—cos(x,) (26)
1-0.0348 1-0.0349
_1.5359sinCr))—x, o _1.5359(r, —sin(r,) V1))
2T x,(15359-1) TP x,(1.5359-1)

The weights h[(xl(t)), i=1,2,3,4 are obtained from the
products ' | F* F)et F) :

h(x,)=F'F, hy(x,)=FF,
hy(x,)=F'F’ h,(x,)=F’F;

The Inverted pendulum modeling and gives the following
matrices:

28

0 1 0 o0 0 1 0o o
_| 2591161 02789 0 3971095| | 0294096 02789 0 3971095
4= 0 0 0 1 72 o 0 0 1

11193 001222 0 -14.801 0012704 001222 0 -14.801
0 1 0 0 0 1 0 0
|06l 02789 0 13819 | 0294096 02789 0 13819
1o 0 o 1 [ A= 0 0 0 1
0.038951 0.0004252 0 -14.801 0.0004421 0.0004252 0 -14.801

>



0 0 0 0

1.7078 0.05943 1.7078 0.05943
= , B = , B= et B, =
0 0 0 0
0.02529 0.02529 0.02529 0.02529
Rulel:if x is F' then #(e)= A x(0)+ Byu(r)
y()=C x(1)

Rule2:if x is F lhen|x(t)= A, x(t)+ Byu(r)
y(t)=C,x(t)

Rule3:if x,is F, then{x(t)= Ay x (1) + By u (1)
y(t)=Cyx(t)

Rule 4:if x,is F; then {x ()= 4, x(t)+ Byu(r)
y(t)=Cox(1)

The four initial models are unstable, they have positive

eigenvalues, Table 2

Table 2 : Summary table of the eigenvalues of matrices Ai

eig(4,) | eig(4,) | eig(A,) | eig(4,)

0 0 0 0
5.2339 5.1806 1.6152 1.6655

4909 | 48379 | 12863 | -1.3742
148461 | 114.8647 | -14.8510 | -14.8134

1. Stabilization control law PDC:

Consider the closed loop system written by the following
equation

x(r>=§h, (= (), (= ()G, (0)
DS (= () (- <z>){Gv +, } (0).

29

2

where G[/ =4, - BiF/' et Gii = Ai - B,F,
PDC control law is represented as  follows:
2w(z()Fx() (30)
u(t)=—————=-2h(z(¢)) Fix(t)
Sul) T

The closed-loop system is globally asymptotically stable if
there exists symmetric matrices and positive definite

P k=12, ,ret R=RT, and matrices
F,,... , F, such that they satisfy the following LMI: .[4]

P+R-0, ke{l,...r} @31

P+UR>0, j=12....r (32)

P,+{G] (B +uR)+(B, +uR)G,} <0,i.ke{L...r}
T

i

(33)

G +G, G +G,
{850 oo oun) {05 <o G4

For i, j,k=1,2,...,r where i < j
where

G, =4, -B,F;,G; =4, -B,F,

, ’ 35)
P,=Y¢, (P, +R)and 0<e<1

k=1
We chose ¢, =0.85,4=0.5

The results of the stability analysis and the shaping of LMIs
are:

147472 -115.6169 119122 -39113

Pl 1156169 4131766 -0.7102 -14.7651
119122 07102 4953 -1.2836
39113 -147651 -12836 18407

103.9682 -119.8725 119138 -4.5012

-1198725 416846 0949 -8.0854
119138 09 4954 -12713

45012 -8084 -12713 179878

1044175 -114.8835 11.9012 -3.8319
pie -114.8835 419.5671 -0.5652 -16.6687
119012  -0.5652 4.9529 -1.2837
-3.8319  -16.6687 -1.2837 18.4179
115.0851 -69.6047 12.2236 -5.1634
P4 -69.6047 177.2886 -1.1119 -11.3246
122236 -1.1119 4954  -1.2536
-5.1634  -11.3246 -1.2536  19.0259

-98.2618 110.8835 -11.6188 1.2030
110.8835 -36.9477 39139 -18.936
TI-11.6188 39139 3.8708 -7.9774
1.2030  -18.936 -7.9774 124.1508

F,=[41.2123 28.1726 -76.1726 119.1816]
F,=[23.544 6.5301 -32.6125 34.2956]
F,=[22.8407 8.8906 -45.7892 122.6646]
F,=[14.6584 11.7044 -17.0676 53.4315]

The results of the stability analysis and the shaping of LMIs
are state matrices closed-loop of four basic models are given
by:

G,=4,—-(BF) and matrices

Gy=G,+G,=4,—(BF)+A,—(B,F)



0

| 444714

10
-1.0932

0
-14.2975
0
-1.1550
0
-17.1458
0
-0.6794
0
-10.1589
0
-0.4216
0
-58.7690
0
-2.2482
0
-45.9296

1331 =
0

Gll

Gy =

-1.7726
0
-31.9560
0
-1.5148
0
-30.8427
0
-1.8345
0
-16.8690
0
-1.5766
0
-27.3047
0
-1.1011

Gy =

Gy =

Gup =

Gy =

1 0
47.8342 130.2358
0 0
0.7005  1.9286
1 0
-10.8732  55.6956
0 0
0.1591 0.8248
1 0
-7.3128  39.0994
0 0
-0.2128 1.1580
1 0
-9.7155 14.5740
0 0

-029 04316
2 0
-58.7074 185.9314
0 0
0.8596  2.7534
2 0
-38.6822 143.3167
0 0
-09133  3.0866
2 0
434876 94.2659
0 0
-0.9905  2.3602
2 0
-20.2017 106.0466
0 0
03720  1.9828
2 0
-25.0071 56.9958
0 0
-0.4492  1.2564
2 0
-17.0283 53.6734
0 0
-0.5028  1.5896

0
-164.4037
1
-17.8151
0
-39.0028
1
-15.6683
0
-65.0323
1
-17.9032
0
-26.0579
1
-16.1523
0
-203.4064
2
-33.4834
0
2324101
2
35.7183
0

-134.3176

2

-33.9674

0
-179.4934
2
-33.5715
0
-81.4008
2
-31.8206
0
-91.0902
2
-34.0555

Table 3:Summary table of the eigenvalues of stabilizing gains

eig(G,) agG,) | @gGy) | €g(G,y) | @gGy)
504318 | -163119 | -18.9134 | -17.0752 | -62.52
143813 | -9.0832 | -3.1384 | -7.6179 | 27.97
+
-0.7291 05732 | | 9635i 11631 | -1.21
0.1070 | +0.1613i 200116

05732 | -3.1384 -0.48

~0.1613i | - 1.9635i

-0.0259

Table 4 : Summary table of the eigenvalues of stabilizing gains

eig(Gy,,) | @8Gu) | €gGyy) | €2(Ghyy,) | @8 (GO
-50.5298 -50.1811 - -34.7308 -36.1573
36.4793
-21.6285 - -0.5371 -
25.9454 - +0.2962i1 10.6302
-2.0408 14.7689
-0.2014 - -0.5371 -
1.1483 - -0.2962i1 4.2580
- 2.0393 -21.0227
0.1803 - -
0.4856 0.0384

All the eigenvalues of stabilizing gains are negative real parts then

inverted pendulum is stable in closed loop.
To properly check the stability of inverted pendulum closed loop
applies the basic commands to the system. Figure 2 shows the

simulation results.

Gl

n of states ofsystem

évolution of state

Figure 2 : Evolution of state variables of the inverted pendulum

The figure 2 shows that all states of the inverted
pendulum X,,X,,X;,Xx, converge to a steady state which is
(x,=0) starting from the initial state

x,=(05 0 0.3 ()).Which verifies the stability of the

closed loop system.




The shapes of the two outputs )} et ), are given in Figure 3:
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Figure 3 : Evolution outputs inverted pendulum

Let the initial condition X, :(().5 0 03 0), we check the

convergence of the states of each subsystem to the steady state
(x,=0)
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Figure 4 : Evolution of the state variables of model 1

Figure 5 : Evolution of the state variables of model 2
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Figure 6 : Evolution of the state variables of model 3
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Figure 7 : Evolution of the state variables of model 4
The shapes of the two outputs }; et ), of each subsystem

are presented in the figure below :

temolses)

Figure 9 : Evolution of model outputs 2
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Figure 10 : Evolution of model outputs 3

Figure 11: Evolution of model outputs 4

1v. Conclusion :

This paper introduces the modeling of the inverted pendulum
. We studied the stabilisation of the inverted pendulum via
linear matrix inequality. The stabilisation conditions are
verified by PDC control law, simulation results verify the
convergence of the states of the closed loop system and
outputs of each sub-systems to the point of stable equilibrium.
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