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Abstract—  This paper deals with the stabilization of Takagi-

Sugeno fuzzy models. Using non-quadratic Lyapunov 

function, new sufficient stabilization criteria with PDC 
controller are established in terms of Linear Matrix 

Inequality. Finally, a stabilization condition for uncertain 

system is given. 
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I.  INTRO DUCTIO N 

Fuzzy control systems have experienced a b ig growth  

of industrial applications in the recent decades, because 

of their reliab ility and effectiveness. Many researches are 

investigated on the Takagi-Sugeno models [1-2] which 

can combine the flexib le fuzzy logic theory and rigorous 

mathematical theory into a unified framework. Thus, it  

becomes a powerful tool in approximating a complex 

nonlinear system. 

Two classes of Lyapunov functions are used to 

analysis these systems: quadratic Lyapunov functions and 

non-quadratic Lyapunov ones which are less conservative 

than first class. Many researches are investigated with 

non-quadratic Lyapunov functions [1-9]. 

In this paper, a new stability conditions for Takagi 

Sugeno uncertain fuzzy  models based on the use of fuzzy  

Lyapunov function are presented. This criterion is 

expressed in terms of Linear Matrix Inequalit ies (LMIs) 

which can be efficiently solved by us ing various convex 

optimization algorithms [10]. The presented method is 

less conservative than existing results. 

The organization of the paper is as follows. In section 2, 

we present the system description and problem 

formulat ion and we give some preliminaries which are 

needed to derive results. Section 3 will be concerned to 

stability analysis for T-S fuzzy systems. Sect ion 4 

concerns the proposed approach to stabilize a T-S fuzzy  

system with Parallel Distributed Compensation (PDC). 

Next, a new stabilization condition for uncertain system 

is given. Finally section 6 makes conclusion. 

 

Notation: Throughout this paper, a real symmetric 

matrix 0S  denotes S being a positive definite matrix. 

The superscript ‗‗T‘‘ is used for the transpose of a matrix. 

 

II. SYSTEM DESCRIPTIO N AND PRELIMINARIES  

Consider an uncertain T-S fuzzy continuous model for 

a nonlinear system as follows: 

 

   

         

1 1
       

     

1, ,

i p ip

i ii i

IF z t is M and and z t is M

THEN x t A x t B u t

i r

A B 



     (1) 

where  1,2, , , 1,2, ,ijM i r j p  is the fuzzy set 

and r is the number o f model rules;   nx t   is the state 

vector,   mu t   is the input vector, n n

iA  , 

n m

iB  , and    1 , , pz t z t  are known premise 

variables.  and i iA B  are time-varying matrices 

representing parametric uncertainties in  the plant model. 

These uncertainties are admissibly norm-bounded and 

structured. 

 

The final outputs of the fuzzy systems are: 

 

             
1

r

i

i

i i i ix t h z t x t u tA A B B


      (2) 

where  

       1 2 pz t z t z t z t     

        
1

r

i i i

i

h z t w z t w z t


  ,

     
1

p

i ij j

j

w z t M z t


   for all t. 

The term   1i jM z t  is the grade of membership of 

 jz t  in 1iM  
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Since        
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




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we have  
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  
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i

h z t

h z t i r







  


for all t. 

The time derivative of premise membership functions 

is given by: 

 

  
 

 

 

   

1

s
i

i il il

l

z t dx t dx th
h z t

z t x t dt dt
 


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  (3) 

 

We have the following property: 

   
1

0
r

k

k

h z t


     (4) 

The PDC fuzzy controller is represented by  

 

 
    

  
    1

1

1

r

i i r
i

i ir
i

i

i

w z t F x t

u t h z t F x t

w z t







   



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 (5) 

The fuzzy controller design is to determine the local 

feedback gains iF
 in the consequent parts. 

The open-loop system is given by the equation (6) 

       
1

r

i i i

i

x t h z t A A x t


    (6) 

By substituting (5) into (2), the closed-loop fuzzy  

system can be represented as: 

 

          
1 1

r r

i j i i j

i j

x t h z t h z t A B F x t 

 

   (7) 

where 
i i i i i iA A A and B B B      

 

Assumption 1 

 

The time derivative of the premises membership 

function is upper bounded such that k kh  , 

for 1, ,k r , where, , 1, ,k k r  are given positive 

constants. 

 

Assumption 2 

 

The matrices denote the uncertainties in the system and 

take the form of  

    
i ii i A BA B DF t E E       

where ,  and 
i iA BD E E are known constant matrices 

and  F t is an unknown matrix function satisfying : 

     ,TF t F t I t   

where I is an appropriately  dimensioned identity 

matrix. 

 

Lemma 1 (Boyd et al. Schur complement [6]) 

 

Given constant matrices 
1 2 3,  and    with 

appropriate dimensions, where 
1 1

T  and 
2 2

T  , 

then 
1

1 3 2 3 0T      

                  if and only if 

 2 31 3

12

0 or 0
**

T      
   

   
p p  

 

Lemma 2 (Peterson and Hollot [8]) 

 

Let , ,TQ Q H E and  F t satisfying 

   TF t F t I  are appropriately d imensional matrices 

then the following inequality 

     0T T TQ HF t E E F t H  p  

is true, if and  only if the following inequality holds for 

any 0 f  

 
1 0T TQ HH E E   p  

 

 

III.  BASIC STABILITY CO NDITIO NS  

Consider the open-loop system (8). 

       
1

r

i i

i

x t h z t A x t


   (8) 

 

This section gives a new condition for stability of the 

unforced T-S fuzzy system by using the Lyapunov theory. 

 

Theorem 1 [11] 

 

Under assumption 1 and for 0 1  , the Takag i 

Sugeno fuzzy system (8) is stable if there exist positive 

definite symmetric matrices , 1,2, ,kP k r , matrix 

TR R  such that the following LMIs hold. 

  0, 1, ,kP R k r    (9) 

  0, 1, ,jP R j r    (10) 

 

   
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1

2

   0,   

T

i j j i

T

j i i j

P A P R P R A

A P R P R A i j

  

 

   

    

 (11) 

where , 1,2, ,i j r and  
1

r

k k

k

P P R 


  and 

1    

 

 

IV.  STABILIZATIO N WITH PDC CO NTRO LLER 

Consider the closed-loop system without uncertain-

ties which can be rewritten as  
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






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      (12) 

where  

ij i i jG A B F  and 
ii i i iG A B F  . 

In this section we define a fuzzy Lyapunov function 

and then consider stability conditions.  

 

Theorem 2 

 

Under assumption 1 and for g iven 0 1  , the 

Takagi-Sugeno system (12) is stable if there exist positive 

definite symmetric matrices , 1,2, ,kP k r , and ,R  

matrices 
1, , rF F  such that the following LMIs hols. 

  0, 1, ,kP R k r                (13)

 0,    1,2, ,jP R j r                 (14) 

    
 

0,   

, 1, ,

T

ii k k iiP G P R P R G

i k r

     


              (15) 

 

    0,  
2 2

for , , 1,2, ,  such that 

T

ij ji ij ji
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i j k r i j

 
    
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   
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                                                                      (16) 

where 

ij i i jG A B F  ,
ii i i iG A B F   , 1 ,    

and  
1

r

k k

k

P P R 


   

Proof 

Let consider the Lyapunov function in the following 

form: 

        
1

r

k k

k

V x t h z t V x t
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with  

        ,        1,2, ,T

k kV x t x t P R x t k r  
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 

, ,  0 1, 1 ,  
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T T

k k

k

P P R R

P R k r

  



     

  
. 

The time derivative of   V x t with respect to t  

along the trajectory of the system (12) is given by:  
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The equation (18) can be rewritten as, 
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          (19) 

By substituting (12)  into (19), we obtain,  

        1 2 3, , ,V x t x z x z x z    (20) 

where 
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k
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T
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T
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            

     

3
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,
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T

k i j
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T
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 
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Then, based on assumption 1, an upper bound of 

 1 ,x z  obtained as: 

       1

1

,
r

T

k k

k

x z x t P R x t 

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Based on (4), it follows that 

  
1

0
r

k

k
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

   where R is any symmetric 

matrix of proper dimension.  

 

Adding R to (24), then 
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Then,  
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If (15) and (16) holds, the time derivative of the 

fuzzy Lyapunov function is negative. Consequently, we 

have 
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 

and the closed loop fuzzy system (12) is stable.    This is 

complete the proof. 

 

 

V.  RO BUST STABILITY CO NDITIO N WITH PDC 

CO NTRO LLER 

Consider the closed-loop system (7). A sufficient 

robust stability condition is given follow.  

 

Theorem 3 

 

Under assumption 1, and assumption 2 and for 

given 0 1  , the Takag i-Sugeno system  (7) is stable if 

there exist positive definite symmetric matrices  

, 1,2, ,kP k r , and ,R  matrices 
1, , rF F  such that the 

following LMIs hols. 

  0, 1, ,kP R k r   (26) 

 0,    1,2, ,jP R j r    (27) 
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where ij i i jG A B F  , ii i i iG A B F   , 

1 ,   and  
1

r

k k

k

P P R 


    

Proof 

Let consider the Lyapunov function in the following 

form: 

         
1

r

k k

k

V x t h z t V x t


  (30) 

with 

          ,   1,2, ,T

k kV x t x t P R x t k r         

where  

 

, ,  0 1, 1 ,  
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T T
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P P R R

P R k r

  



     

  
. 

The time derivative of   V x t with respect to t  

along the trajectory of the system (12) is given by:  

 

              
1 1

r r

k k k k

k k

V x t h z t V x t h z t V x t
 

  

 (31) 

The equation (31) can be rewritten as, 

 

          

       

       

1

1

1

            

            

r
T

k k

k

r
T

k k

k

r
T

k k

k

V x t x t h z t P R x t

x t h z t P R x t

x t h z t P R x t













 
  

 

 
  

 

 
  

 







      (32) 

By substituting (7)  into (32), we obtain,  

        1 2 3, , ,V x t x z x z x z            (33) 

where 

          1

1

,
r

T

k k

k

x z x t h z t P R x t


 
    

 
      (34) 

         

      

       

   

     

2

2

1 1

2

1 1

,

0

0

0

0

r r
T

k i

k i

T

ii k k ii

r r
T

k i

k i

T

aiai

ai bi k

bi bi i

aiai

k ai bi

bi bi i

x z x t h z t h z t

G P R P R G x t

x t h z t h z t

E
D D P R

E F

E
P R D D x t

E F

 





 

 

 

   



    
           

     
            





 (35) 
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            

     

          

   

   

3

1 1

1 1

,

2 2

 

0

0

0

0

r r
T

k i j

k i i j

T

ij ji ij ji

k k

r r
T

k i j

k i i j

T

aiai

ai bi k

bi jbi

ai

k ai bi

bi

x z x t h z t h z t h z t

G G G G
P R P R x t

x t h z t h z t h z t

E
D D P R

E F

P R D D

 





 

 

 

      
            



    
          


 







 

          

 

   

1 1

+ 

0

0

0

0

ai

bi j

r r
T

k i j

k i i j

T

ajaj

aj bj k

bj bj i

ajaj

k aj bj

bj bj i

E
x t

E F

x t h z t h z t h z t

E
D D P R

E F

E
P R D D x t

E F





 

    
         

    
              

     
               



                  (36) 

Then, based on assumption 1, an upper bound of 

 1 ,x z  obtained as: 

       1

1

,
r

T

k k

k

x z x t P R x t 


     (37) 

Based on (4), it follows that 

  
1

0
r

k

k

h z t R R


   where R is any symmetric 

matrix of proper dimension.  

Adding R to (34), then 

        1

1

,
r

T

k k

k

x z x t P R x t


           (38) 

Then,  

           
1

2 3, ,
r

k

k

T

kV x t x xt P R t x z x z


     

 

If  

     

   

   

1

0

0

0
0

0

r
T

k k ii k k ii

k

T

aiai

ai bi k

bi bi i

aiai

k ai bi

bi bi i

P R G P R P R G

E
D D P R

E F

E
P R D D

E F

  







    

    
           

     
            



 

Then, based on Lemma 2, an upper bound of 

 1 ,x z  obtained as: 

     

  

   

1

1

0

r
T

k k ii k k ii

k

T

ai

k ai bi T

bi

T aiT

ai bi i k

bi i

P R G P R P R G

D
P R D D

D

E
E E F P R

E F

  

 

 





    

 
   

  

 
       



 

 

by Schur complement, we obtain, 

 

 

   1

0* 0

* *

k ai k biP R D P R D

I

I

 





   
 

 
  

 

with 

    
   

   

1

T

ii k k ii

TT

k ai ai bi i bi i

P G P R P R G

P R E E E F E F

  

 

     

   
 

 

   

   

2 2

0

0

0

0

T

ij ji ij ji

k k

ai aj

ai aj bi bj

bi bj

T

ai aj
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bi j bj i

ai aj

ai aj bi bj

bi bj

ai aj

G G G G
P R P R

D D D D
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P R P R

E F E F

D D D D
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 

 

     
          

    
          

  
    

    

    
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



0

bi j bj iE F E F

  
      

 

 

Then, based on Lemma 2, an upper bound of 

 1 ,x z  obtained as: 

   

 

   

 
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       
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    
  

 
  
   

 

by Schur complement, we obtain, 

 

     2

0* 0

* *

k ai aj k bi bjP R D D P R D D
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I
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with  

   

     

   

2
2 2

T

ij ji ij ji
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k ai aj ai aj

T T

bi j bj i bi j bj i

G G G G
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P R E E E E

E F E F E F E F

 

 

    
       

   

   


  


 

 

If (28) and (29) holds, the time derivative of the 

fuzzy Lyapunov function is negative. Consequently, we 

have     0V x t  and the closed loop fuzzy system (7) 

is stable. This is complete the proof. 

 

 

Ⅵ .  NUMERICAL EXAMPLE 

Consider the following T-S fuzzy system: 

       
1

r

i i

i

x t h z t A x t


   (39) 

with: 2r   

the premise functions are given by: 

  
 1

1 1

1 sin

2

x t
h x t


 ;   

 1

2 1

1 sin

2

x t
h x t


 ;  

1

5 4

1 2
A

  
  

  
;   2

2 4

20 2
A

  
  

 
; 

It is assumed that  1 2
x t  . For

11 120, 0.5,    

21 0.5,   and
22 0,  we obtain 

 

1

37.7864 26.8058

26.8058 36.2722
P

 
  
 

 ; 2

98.5559 28.7577

28.7577 22.9286
P

 
  
 

 ;    

-1.2760 -2.2632

-2.2632 -0.6389
R

 
  
 

 

 
Figure 1. State variables 

 

Figure 3 shows the evolution of the state variables. As 

can be seen, the conservatism reduction leads to very 

interesting results regarding fast convergence of this 

Takagi-Sugeno fuzzy system. 

Ⅶ .  CONCLUSION 

 

 This paper prov ided a new condition  for the stability 

and stabilizat ion of Takagi-Sugeno fuzzy systems in 

terms of a combination of the LMI approach and the use 

of non-quadratic Lyapunov function as Fuzzy Lyapunov 

function.  

In addition, a new condition of stability of uncertain 

system is given for Takagi-Sugeno fuzzy systems by the 

use of proposed fuzzy Lyapunov function. 
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