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Abstract. Alongside CHES 2018 the side channel contest 'Deep learn-
ing vs. classic profiling’ was held. Our team won both AES challenges
(masked AES implementation), working under the handle AGSJWS.
Here we describe and analyse our attack. We can solve the more dif-
ficult of the two challenges with 2 to 5 power traces, which is much less
than was available in the contest. Our attack combines techniques from
machine learning with classical techniques. The attack was superior to
all classical and deep learning based attacks which we have tried. More-
over, it provides some insights on the implementation.
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1 Introduction

Around the CHES 2018 conference Riscure organised the side channel contest
"Deep learning vs. classic profiling’. The task given was to break by any means
possible implementations of the DES, AES and RSA cryptographic algorithms.
Implementation details were largely kept secret. It was announced, for example,
that the AES implementation was masked but the concrete method was not made
public. On July 3, 2018 Riscure released altogether 40,000 power traces each for
the DES and the AES implementation and 40 for the RSA implementation.
With the power traces, also input, output and key data was published on the
web. This was meant to allow the participants to develop and test their attacks.
For each algorithm, two challenges (DES, AES) or three challenges (RSA) were
released at the beginning of September. The challenges consisted of 1,000 attack
traces for each of the AES and the DES implementations and of 1 trace each for
the RSA challenges. The goal was to submit the correct key as early as possible.
The first correct submission ’captured the flag’.

We (team AGSJWS) focused on the AES challenges and won both. In Sec-
tion 2 we describe our attack, which combines techniques from machine learning
with using a SAT solver to derive the desired AES key from some partial key
information extracted from the trace set. Furthermore, in Section 3 we evaluate
our attack and show that even for the more difficult 'portability’ challenge 2
to 5 power traces suffice to recover the key with a large probability of success



and at moderate computational cost. Our attack is more efficient than other
attacks we considered, which applied deep learning techniques or classical tech-
niques. Moreover, in Section 4 we show that our attack provides some insight into
the implementation and sources of leakage. We also highlight some unexpected
properties of the machine learned leakage extraction function.

2 Our attack on the AES implementation

2.1 Setup

The organizers provided four sets of power traces of a masked AES implemen-
tation (to be precise: AES-128), in the following denoted by Set 1 to Set 4,
which allowed the participants to develop and test their attack. Each of these
sets contained 10,000 power traces. The power traces in Set 1 to Set 3 came
from three different devices (denoted by A, B, ('), and each power trace corre-
sponded to encryption with a freshly chosen key. Set 4 contained power traces
from Device C, which in contrast were generated with a single key shared by all
traces. Plaintexts, ciphertexts and keys were known. No information was given
on the countermeasures against power analysis deployed in the implementation
beyond the fact that masking was used.

Later, two sets with attack traces were published. Set 5 (no-portability chal-
lenge) contained 1,000 power traces from device C, Set 6 (portability challenge)
contained 1,000 power traces from a new device D. The task was to recover the
particular keys.

2.2 Preliminary tests

In a first step we verified that the key expansion process was not masked. For
this, we used a decision tree classifier trained using scikit-learn [1] to distinguish
Set 3 and Set 4. The rationale here was that a non-randomized key schedule
used with a fixed key should produce a consistent signal in the traces that can
be used to recognise traces from Set 4, and that the main cipher operation
was very likely to be randomized. Training these distinguishers was immediately
successful. The signal was for this purpose partitioned into segments 1000 data
points long, where only every tenth point of each segment was used for training
and evaluation. We trained decision tree classifiers with maximal depth 5, using
otherwise the default parameters of the DecisionTreeClassifier class in scikit-
learn. Half of the samples in Set 3 and Set 4 were used for training, and half
were withheld for validation.

Evaluating our decision tree classifiers, we found that classification accuracy
varied strongly with the data segment considered but that distinguishing Set 3
and Set 4 was very easy for some data segments, reaching classification accuracies
up to 99.7 percent. Looking at validation accuracy as a function of data segment
number, a pattern emerged that suggested that a strong key-dependent signal
could be found at the very beginning of the trace, maybe related to the device
reading in key data, and during an operation, likely a key expansion step, that



is executed before each round transformation. The validation accuracy of these
distinguishers by data segment number can be found in Figure 1.

The same conclusion can be reached by comparing point-wise variances be-
tween Set 3 and Set 4. In the parts of the traces that we suspect correspond
to the key schedule, measured current varies much more in Set 3 than in Set 4.
This is naturally expected if we assume that these parts of the traces perform
unmasked key schedule operations. With a fixed key (Set 4), oberserved variance
in power usage will mostly be noise in this case (although there might also be
some non-random signals from the measuring equipment or environmental trig-
gers), whereas for random keys (Set 3) a key-dependent varying leakage signal
is added on top of the noise.
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Fig. 1. Distinguishing Set 3 and Set 4 by decision tree classifiers. The dataset is parti-
tioned into windows of size 1000 and the validation accuracy of a decision tree classifier
trying to distinguish both sample sets is shown. Since Set 3 and Set 4 target the same
device and differ chiefly in Set 4 having a constant key, success in distinguishing be-
tween samples of both sets is heuristically indicative of key leakage. Significant leakage
is visible at the beginning of the trace and at 12 subsequent peaks. While distinguish-
ing power is significantly larger than random guessing throughout the trace, it seems
plausible that in between the visible peaks of leakage, the remaining success of the de-
cision tree classifier may be explainable by other factors such as changes in operating
conditions between both sets of measurements.

We then reduced the size of the traces in Set 3 by discarding all the data
points with index # 0(mod 10). For these reduced traces, we calculated for every
data point the correlation between the Hamming weight of the key and the power



usage at this data point. The results convinced us that targeting the Hamming
weights of the subkey bytes was feasible.

2.3 Attack: Phase I

Goals and setup The aim of Phase I was to guess the Hamming weights of the
176 ( = 11 % 16) bytes of the 11 round keys. We assumed a weight model, i.e. we
guessed that the Hamming weight of extended key bytes would leak from some
parts of the trace, preferably with an affine leakage function and a manageable
noise contribution to the signal.

Approaches studied We tried various machine learning methods based on neural
networks and decision trees. We found that owing to the relatively small number
of samples provided, overfitting was a significant problem for many network
architectures. Two approaches in particular fared well with regards to naturally
controlling overfitting. One was a deep convolutional network designed to process
the entire reduced trace while having a relatively small number of weights. The
second was a very simple design with just one input and one output layer and
only linear activations. These designs worked reasonably well without manual
elimination of uninteresting parts of the sample. Decision tree classifiers also
showed some promise. The linear design showed the best learning, so we selected
it for further development.

Model structure Our final model 6 can be described as a single-layer perceptron
with a particular step function as activation. Concretely, 6 is the concatenation
of an affine function f : R65990 5 R!76 with componentwise application of the
step function

5: R — N? s(z) := (|z], [z]).

Hence, we have 0 := o f, where s componentwise application of s to a
vector in R™ (with n = 176). Given a trace v with extended AES key k, the
output tuple 8(v); is interpreted as a top2-guess for the Hamming weight of the
i-th extended key byte k;. We say that the guess for the extended key byte k; is
true if k; € 0(v); and otherwise say that it is false.

Training The step function was chosen manually. Connection weights were
learned by Ridge regression, i.e. by minimizing the expected value of the er-
ror term

e(f,2,y) = If (@) = yl* + all fI*.

Here, f(z) = Az + b and | f||* := ||A||?, where || - || denotes the L2 norm
(A € RIT6%65000 p o) RIT6 5 ¢ RO5090 o € R). The average is taken over a
training set X of IV input values and the corresponding set of output vectors
Y .This is a special case of Tikhonov regularization. The regularization term «
was chosen by grid search with generalized cross validation using the GridCV
class in scikit-learn [1]. In this step X and Y were set to the union of Set 1 and
Set 2. The classifier so trained was tested using Set 3 and Set 4. We found that
classifier performance was easily sufficient to solve the portability challenge, and



with the approach thereby validated restarted training using the same methods
but using all three training sets Set 1, Set 2 and Set 3 to obtain a new set
of weights that was expected to be even more robust to change of device or
operating conditions. The resulting classifier was validated against Set 4. While
validation against Set 4 had the disadvantage of testing against a set with just
one key and against a device already used in training, given the viability of the
general approach used we were confident that the resulting classifier would be
better than the one trained only on two training datasets. Grid search for the
regularization parameter o chose ov = 2'4. Reasonable regularisation parameters
would be a lot smaller if traces were normalised before processing, but in our
tests normalisation did not seem to help prediction accuracy.

2.4 Combining traces

Our classifier 6 takes as input a single trace and outputs a vector of 176 top-2
guesses for the Hamming weights of the extended key bytes. It is intuitive that
prediction accuracy can be improved by averaging the outputs of f over many
traces, as this is expected to reduce the noise component of the signal. Since f
is a linear function, this averaging can equivalently be performed at the level of

input data. Hence, when given a set S of n traces to predict, our approach is to

calculate t,, := % and produce the top-2 prediction 6(t.y).

2.5 Attack: Phase I1

Phase I provided 176 top-2 guesses for the round key bytes. In Phase II we
applied a SAT solver to solve a system of non-linear equations which is given by
the AES key expansion algorithm and restrictions on the values of the expanded
key bytes given by our top-2 guesses. We then removed a randomly selected
subset of 20 key bytes (’drop out’), and we only gave the top-2 guesses of the
remaining 156 key bytes to the SAT solver.

This approach tolerates a small number of false top-2 guesses in Phase I as
explained below.

The probability that a uniformly distributed byte has Hamming weight m
or m+1is < 126/256 < 0.5 (with the probability of 126/256 being reached
for m € {3,4}). Hence each top-2 guess provides more than 1 bit information.
A straight-forward (admittedly heuristic) argumentation suggests that 156 top-
2 guesses from attack Phase I should determine the AES key uniquely. This
conclusion matches with our experiments.

The Pseudoalgorithm below sketches our attack.

Pseudoalgorithm
Determine 176 top-2 guesses (Attack Phase I)
Repeat (Attack Phase II)
- select randomly 20 top-2 guesses (’drop-out’)
- input the remaining 156 top-2 guesses into the SAT
solver
- terminate the SAT solver if it is unlikely that



a solution exists
until the SAT solver finds the key

As SAT solver, we used CryptoMinisat 5.0.1 [2] via the python interface
given by the pycryptosat package (version 0.1.4) [3]. Search on a particular SAT
instance was terminated if the number of conflicts encountered during search
exceeded 300000 (thus limiting the size of the search tree explored by the SAT
solver). This took on average 20 seconds on our machine. Solutions were usually
found within that time frame.

2.6 Results

In the contest the neural network in Phase I delivered 176 correct top-2 key
guesses for both Set 5 (no-portability challenge) and Set 6 (portability challenge),
in each case using all 1000 challenge traces available. The SAT solver needed
some seconds to find the correct keys.

3 Reducing the number of traces

After the contest we had a closer look at our attack. Our results are explained
below. The most interesting question, of course, was how many power traces our
attack requires at least to recover the key (in a reasonable time, with modest
computing resources).

For the Set 5 (no-portability challenge) in most cases even a single trace
turned out to be sufficient. In the following we consider Set 6 (portability chal-
lenge).

We already know that the attack will succeed if all the false top-2 guesses are
contained in the drop-out. Of course, if there are m false guesses this probability

equals
()
(176) J (1)
m

and the expected number of trials in the attack Phase II ( = no. of systems of
non-linear equations) is given by the reciprocal of (1) divided by a constant ¢
(empirically close to 1) that is given by the likelihood that attack Phase IT will
abort on a solvable SAT instance.

We divided the 1,000 attack traces from Set 6 into non-overlapping subsets of
N =2,3,4,5 power traces. Table 1 shows the empirical cumulative distribution
of false top-2 guesses for different sample sizes. Table 2 shows the expected num-
ber of trials in Phase IT and the expected execution time under the assumption
that each trial needs 20 seconds. We furthermore assume that our abort condi-
tion does not lose a significant fraction of solvable instances. Both assumptions
are approximately true with single-threaded execution on our machine and our
chosen abort condition at 300000 conflicts. For the solution of difficult instances,
parallelization is of course desirable and easy to accomplish for our algorithm.

These results show that our attack is expected to be nearly almost successful
for N = 5 if we are willing to spend less than half an hour of CPU time. If we
spend 44 hours then even for sample size N = 2 more than half of the attacks
will be successful.

Prob(all m false top-2 guesses in the drop-out) =




number of false top-2 guesses

of<1[<2[<3] <4
N =2| 1%| 8%|24%|41%| 57%
N = 3]10%|38%|63%|82%| 91%
N = 4|31%(60%|84%|96%| 98%
N = 5[45%|83%|95%|99%|100%

Table 1. Number of false top-2 guesses (cumulative, empirical results, among 176 top-2
guesses)

number of false top-2 guesses

0 1 2 3 4

E(# systems of eq.) 1 9 81| 784| 7973
E(exec. time) |20 sec|3 min|27 min|4.3 h{44 h

Table 2. Expected no. of trials in Attack Phase II and the expected execution time
depending on the number of false top-2 guesses (among all 176 top-2 guesses)

4 Anatomy of the classifier

We have examined the weights of our trained model to see whether anything can
be learned from them. We find that the sixteen bytes of the original key cause
a strong power signal in three active regions of the trace, while the remaining
bytes of the expanded key have one active region of the trace each. The three
active regions for bytes 0 and 1 are shown in Figure 2.

We see that the active regions for byte 0 and byte 1 have significant overlap.
Further, we see that the classifier assumes a negative relationship between the
power usage in some parts of the trace and the Hamming weight of both byte
0 and byte 1. For some of the relevant points, single-point regression also shows
a negative correlation. In other points of the trace, negative coefficients for the
prediction of byte 0 seem to conincide with positive values for byte 1. A possible
explanation might be that the negative coeflicients are an adaptation minimizing
crosstalk between the power signatures of consecutive bytes. In general, the
curves for single-point regression and the coefficients of our classifier have a
similar shape, but do not follow each other entirely.

It is natural to assume that the coefficients in the inactive regions of the trace
are just noise, i.e. that they do not contribute to predictive accuracy. However,
this assumption seems to be wrong, as the following experiment demonstrates.

Denote by t; the i-th trace of Set 4 and let 7 : Z10000 — Z10000 be a random
permutation. Let ¢;[a : b) denote the subtrace consisting of the data points with
indices {a,a +1,...,b— 1} of trace ¢; and let || be concatenation of arrays. We
created a set of hybridized traces tj by setting t; := ;[0 : 30000)|[t(;)[30000 :
65000). This set of traces will in the sequel be called hybridized Set 4. All traces
in Set 4 have the same key and correspond to the same device, so if prediction
of Hamming weights is a largely local operation, we would expect that a loss in
prediction performance when our classifier is applied to hybridized traces instead
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Fig. 2. (All) The horizontal axis denotes the index within a reduced trace. Traces are
reduced by using only every tenth data point. The vertical axis gives the numerical
weights of our predictor. (a-c) Weights for the Hamming weight prediction of byte 0
(green) and byte 1 (red) of the AES key in our best classifier. Only the active areas of
the trace are shown. (d) All weights for byte 0. (¢) Weights for the prediction of bytes
25 (blue) and 26 (green). Only the active part of the trace is shown. (f) All weights for
byte 25.




of regular traces will mostly happen around the splicing point, i.e. affect maybe
a few bytes of the key but leave most untouched.
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Fig. 3. Error rates of our main model by byte for Set 4 and hybridized Set 4. Hy-
bridization is seen to affect predictive performance across the whole trace.

However, it turns out that top-2 prediction error on hybridized Set 4 is strictly
higher than on Set 4 for 156 of the 176 bytes predicted. Figure 3 shows top-
2 prediction error rates on both sets as a function of the byte predicted. We
hypothesize that the coefficients in inactive regions of the trace serve to adapt
the model against change of device or environmental conditions or possibly other
global influences on prediction accuracy such as small alignment deviations.

We tested this hypothesis by looking at the combined output of the inactive
weights for byte 25 of the trace. Byte 25 of the extended key is relatively difficult
to predict using our approach, as is shown also in Figure 3. Visual examination of
the weight vector suggested identifying indices 15000 to 17000 of the trace as the
active part of the trace for the purposes of byte 25 prediction. We then zeroized
the corresponding weights (i.e. weights 15000 to 17000) in our predictor and
computed the combined outputs of the remaining weights for all 30000 training
traces (i.e. the output of the hamming weight predictor with the internal weights
changed as described). Denote by o(t) € R the output value so computed for
input the trace .

Recall that for a vector v € R™ the mean of v is defined by setting

m(v) := % i U4
i=1



and for n > 1 the empirical standard deviation! is given by

o) \/2?_1@2- —m(v)?

n—1

Further, for a vector v € R™ with n > 2 and s(v) # 0 we define its normalisation
to be v(v) := (v —m(v))/s(v), where addition between vectors and scalars is
defined in the natural way, i.e. component-wise.

‘We then find that Y25 := V((O(ti))0§i§30000) and o := V((S(ti))0§i§30000) are
in close correspondence to each other for ¢; € Set 1USet 2USet 3 (see Figure 4).
This is slightly surprising, as the output of the inactive part of a trace is a linear
function of the trace, whereas the empirical standard deviation is a nonlinear
function. However, it is a differentiable function in the area of interest, so the
traces may simply be close enough to each other in R%%%%0 for this function to
have a good linear approximation locally.

As can be seen from Figure 4, the standard deviation of a trace is an excellent
tool for device discrimination, so the results of this test confirm our hypothesis
that the predictor uses parts of the trace that do not directly carry inform-
ation about the extended key bytes to take into account device properties or
environmental factors.
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Fig. 4. Normalised empirical standard deviations (sigma) for the traces of Set 1 to
Set 3 compared to normalised output of our predictor restricted to inactive areas of
the trace for extended key byte 25 (Y25). Normalised output closely follows the stan-
dard deviation for the trace. Traces 0-9999 correspond to Set 1, traces 10000-19999
correspond to Set 2, and the remaining traces 20000-29999 correspond to set 3. (Left)
Data for all 30000 training traces. (Right) Same data for a few traces within Set 2.

5 Conclusions

We have shown how a combination of linear classifiers and a SAT solver can break
a protected AES implementation by power analysis with a very small number of

! Note that this treats each trace as though it were a vector of realisations of a random
variable. Of course it isn’t.
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traces. To develop our attack, the adversary does not need to know much about
the implementation. We hypothesize that our success is due to lack of masking
of the key schedule. An additional signal is found right at the beginning of the
trace, suggesting that initial key setup might also be unprotected. It would be
interesting to know the physics underlying some negative correlations between
power usage and Hamming weight of key bytes. A hypothesis related to cross-
talk between signals of consecutive bytes may offer a partial explanation in some
cases.

In terms of a comparison to classical profiling, machine learning is quite useful
in this case study in terms of automatically taking care of relations between a
wide range of observations and the variables of interest. Our classifier naturally
combines the results of thousands of measurements into one Hamming weight
estimate and we did in fact get significantly worse results when restricting our
approach to small sets of time slices judged interesting in terms of key prediction
(note that such restriction would have to be fairly drastic in order to be useful
since we seek to predict all 176 Hamming weights of the extended key). On the
other hand, it is generally easier in classical profiling to deal with overfitting,
and models are more closely tied to pre-existing knowledge about the physics
of the device under attack. There is, however, no hard boundary between both
approaches and combining the advantages of both worlds may well be feasible
in future attacks.
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